
Brainware: Synergizing Software Systems and 
Neural Inputs 

Shihong Huang 
Computer & Electrical Engineering and Computer Science 

Florida Atlantic University 
Boca Raton, FL 33431, USA 

+1-561-297-1275 
shihong@fau.edu 

Emmanuelle Tognoli 
Center for Complex Systems & Brain Sciences 

Florida Atlantic University 
Boca Raton, FL 33431, USA 

+1-561-297-0110 
tognoli@ccs.fau.edu 

ABSTRACT	
  
The rapid advances in the field of Brain Computer Interfaces 
(BCI) are expected to enrich the quality of people’s lives. BCI 
connects computer actions with neural inputs—signals 
indicating the user’s intentions, desired actions, attention, 
thoughts, memories, and emotions. BCI applications present 
significant challenges for computer science and software 
engineering research: an avalanche of neural signals will make 
their way as direct input into software systems. Given the 
differences between neural inputs and behavioral ones, the 
integration of neural inputs will require special approaches, and 
not simply adding yet more user interface channels to pre-
existing software systems. This paper explores the challenges of 
designing and implementing self-adaptive software systems that 
could synergize brain states. After framing the problem, its 
rationale and possible solutions, in this paper we argue that the 
software engineering community ought to investigate how to 
incorporate neural inputs into software systems. The days are 
now upon us when software systems can “feel” and “anticipate” 
the users’ intentions and therefore react self-adaptively and 
synergistically to their needs. 

Categories	
  and	
  Subject	
  Descriptors	
  
D.2.2 [Design Tools and Techniques]: User interfaces 
H.1.2 [User/Machine Systems]: Human factors 

General Terms 
Human Factors, Performance 

Keywords 
Brain computer interface (BCI), human computer interface 
(HCI), neural input, self-adaptive systems, overt and covert 
behavior and attention, human in the loop 

1. INTRODUCTION 
Humans are highly evolved and adapted organisms who have 
achieved a high level of intelligence and efficiency in cognition 
(information processing) and behavior (enactment). Computers 
have both inspired and been inspired by human information 
processing [28][7]. The landmark design of von Neumann’s 
stored-program architecture was based on performance of 
arithmetic calculations and information processing by humans 
and designed as a fast and automatic surrogate for such tasks. In 
turn, the digital computer has become, over the course of many 
decades, a highly influential model for understanding and 
interpreting human brains and behavior, as evidenced by the 
lasting success of cognitive neuroscience.  

This long history of reciprocal inspiration between brains and 
computers has captured human imagination. Many sci-fi movies 
foresee a future where computer systems are controlled by one’s 
brain. In turn, a software system could behave as an artificial 
brain that can “feel” and “anticipate” human intentions and 
therefore react self-adaptively to its needs. The advancement of 
BCI techniques and availability of EEG to the general 
population is making this dream come true. The applications of 
BCI include medical (e.g., sensory and motor restoration [2]) as 
well as nonmedical applications (e.g., navigating virtual 
environments and Google earth [25]). The seamless integration 
of humans and computers in our daily lives and the high demand 
for interaction efficiency will likely require a dramatic change or 
even a paradigm shift in computer science and software 
engineering to accommodate neural signals in software systems.  

In this paper we advocate that the time has come to embrace the 
challenges and to underline the importance of covert behaviors 
(i.e., behaviors that are not accessible to the casual observer, 
such as covert shift of attention, memory retrieval, perceptual 
integration, planning, or action preparation) that will go beyond 
the more familiar overt user behavior (e.g., mouse, keyboard, or 
voice commands). The rest of this paper is organized as follows. 
Section 2 illustrates the need to augment computing systems 
with neural inputs. Section 3 describes enabling technologies 
and BCI types to realize such goals. Section 4 presents neural 
inputs as the missing link in self-adaptive systems. Finally, 
Section 5 concludes the paper and outlines avenues for research. 

2. FROM BEHAVIOR TO BRAIN INPUT 
2.1 Bottleneck of HCI: Behavioral Inputs  
Brains are massively parallel systems, performing numerous 
processes such as perception, logical reasoning, action planning, 
memory retrieval, support of the body’s physiological functions, 
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attentional orienting, all at once (cf. Fig. 1.1). On the other end 
of the interaction, computers are also massively parallel 
information processing systems (cf. Fig. 1.3-7). Between brain 
and computer stands the bottleneck of Human Computer 
Interaction (HCI): the overt human behavior (cf. Fig. 1.2) 
channeled to the computer by attached input devices (cf. Fig. 
1.3). User inputs are mapped into computer actions (cf. Fig. 1.5-
6) by a series of software instructions (cf. Fig. 1.4). The outputs 
(i.e., sound notifications and screen refresh) are returned to the 
user through perception (cf. Fig. 1.7), eliciting a new set of brain 
states, functionally translated into covert human behavior (cf. 
Fig. 1.8), and ultimately leading to a new selection of overt 
behaviors (cf. Fig. 1.1). Human behavior is notoriously slow and 
essentially serial, with only a selected few patterns of 
multitasking found to be stable either inherently or after training 
has led to the creation of attractors in the behavior’s 
coordination dynamics [16]. Human behavior is the weak link 
that limits the performance of HCIs. Consequently, this 
bottleneck prevents software developers to push speed and 
parallelism beyond the normal rate of information encountered 
in human behavior.  

 
Figure 1: An outline of information flows in contemporary 
computer-interaction systems (1-8) and future prospects of 
integrating covert human behavior decoded from neural signals (9). 

2.2 Forthcoming Neural Inputs 
One contemporary development that could transform the 
cooperation between humans and machines, and fundamentally 
alter the demand on software systems, is the generalized 
incorporation of neural inputs into computer systems. Neural 
inputs are decoded information about users’ brain states and 
their corresponding covert behaviors. The neural signals that 
convey those states can be acquired through suitable sensor 
arrays, decoded and directly addressed to the computer (cf. Fig. 
1.9) where they trigger specific actions (cf. Fig. 1.5-6) according 
to software instructions (cf. Fig. 1.4) in the absence of any overt 
behavior (cf. Fig. 1.2). Such neural inputs provide a fast 
connection between users’ mental processing (e.g., intentions) 
and the processing performed by the computer. To the present 
day, software engineering has had few if any direct neural inputs 
to deal with, but this situation is about to change. From the 
viewpoint of a computer system, neural inputs are different from 
behavioral ones. Covert human behaviors such as intention, 
attention, and thoughts occur at a faster rate and significantly 
earlier than the overt behavior that they elicit (e.g., action, 
orientation, communication, or gaze). Covert behaviors also tend 

to happen, not as a nicely organized series of steps, but rather as 
an integrated ensemble that can come and go, and reconfigure its 
associations according to demand. Those properties require a 
fundamental change in the way inputs are dealt with by software 
systems. 

3. ENABLING TECHNOLOGIES: BCI 
Electroencephalography (EEG) is the most common BCI 
enabling technology, which measures ionic current flows in the 
brain’s neurons over the course of brain functions. This 
technique recently evolved from specialized equipment reserved 
for neuroscientists to more accessible gadgets for ordinary users 
[10]. This move was made possible by innovations that evolved 
from “wet” electrodes operated with conductive gel, expensive 
hardware, high-end bioamplifiers and high-density wiring, to 
consumer-use EEGs that use dry electrodes and wearable 
headsets with lightly-wired and even wireless transmission of 
brain signals [11][8][29][19]. 

3.1 Principles of BCI 
Today the minimal BCI system includes:  sensing equipment to 
measure brain activity, a decoder, interpreter or classifier to link 
the measured brain activity with specific brain states  (e.g., 
pattern recognition algorithms, a support vector machine, 
independent or principal component analysis (ICA/PCA), as 
well as artificial neural networks), and an output that changes 
the state of the computer system according to rules of the BCI 
(e.g., if attention positioned on email application icon, prepare 
launch). Usually, the BCI functions are in a closed loop, which 
means that the agent whose brain activity is interfaced is made 
aware of the changes that have occurred as a result of her brain 
activity. A variety of neuroscience techniques are leveraged to 
measure brain activity, including EEG, Magnetoencephalo-
graphy (MEG), the slower and non-portable functional Magnetic 
Resonance Imaging (fMRI), as well as functional near-infrared 
spectroscopy (fNIRS). All of these techniques have been 
explored for BCI, but EEG has a clear advantage for consumer-
aimed BCI applications, due to speed, low-cost, and portability. 
EEG-based BCI are further subdivided into invasive (e.g., 
human epileptic patients prepared for brain surgery), semi-
invasive BCIs, and non-invasive BCIs [18]. Invasive recording 
techniques allow the activities of single neurons or populations 
of neurons to be recorded with electrodes implanted into the 
brain. The recorded activity is most precise and detailed, but the 
technique is limited to people with neurosurgical conditions and 
a priori excludes the normal population. For the latter, the only 
option is non-invasive techniques. A significant challenge is to 
translate recorded neural activities into information about the 
user’s mental state.  

3.2 BCI Examples 
Early examples of invasive BCIs in animals demonstrated neural 
control of a robotic arm by rats [5] and monkeys [4]. BCI-
controlled movements have evolved from one to three 
dimensions [24], and recently, a monkey successfully used a 
prosthetic arm to feed itself [26]. For non-invasive EEG, 
pioneering research uses brain waves and a computer to spell 
letters and communicate messages involving patients who had 
totally lost the capability to communicate [12][23]. This type of 
BCI resorted to selective attention to identify which letter 
displayed on a screen a person was attentive to. A number of 
applications also examined how to control a cursor or an object 



on the screen using brain activity [31][2] or objects placed in the 
environment [21]. Interest also arose for signals encoding the 
brain’s emotional states through the development of effective 
BCIs [20].  

3.3 Preliminary Work on Covert Attention 
Our own research group has developed a BCI prototype based 
on covert attentional shifts [3]. It exploits the neuromarker ξ that 
arises in the brain when users seek information in the periphery 
of the visual field. Our ongoing research aims to decode the 
position of the user’s focus of attention from brain signals. If 
successful, with additional knowledge of the position of the 
user’s head and screen, it would be possible to map the covert 
attention trajectory in real time. In particular, when subjects 
interact with computers, it may become possible to determine 
which icon or parts of the screen the user is paying attention to 
(while eye gaze is focused on a different location). This 
information opens up possibilities to develop a computer system 
endowed with predictive capabilities. It provides contingencies 
for the future actions that the user is likely to undertake in the 
next 0.25-3.0s. Accordingly, it could be used to pre-emptively 
pre-allocate computer resources and background tasks to fulfill 
the user’s intended action.  

3.4 Opportunities 
As our partial overview shows, the BCI field comprises many 
research projects in the neuroscience community. Moreover, 
several BCIs have been successfully implemented—dealing with 
selective attention, motor preparation, and motor control. The 
software engineering community should seize this unique 
opportunity and investigate how to capture and exploit neural 
inputs in software systems.  

4. SELF-ADAPTIVE SYSTEMS  
From a software engineering perspective, the increasing 
complexity and dynamism of software intensive systems require 
that the systems be able to adapt themselves at runtime to react 
and deal with the uncertainties and the unpredictable nature of 
the environments in which they operate [13]. The systems 
should be able to adapt to different user needs, with different 
resources, intrusions, faults and exceptions. The self-adaptive 
capability requires the system to be able to modify its behavior 
and/or structure in response to its perception of the environment, 
the system itself as well as its goals [9]. 

For the past decade, much research has been undertaken in 
developing methods, techniques, and tools to address the needs 
of software-intensive systems that are self-adaptive in nature [6]. 
For example, defining models that can represent a wide range of 
system properties [1], managing uncertainty at the requirements 
stage [30], making feedback control loops more explicit [17], 
building architecture based self-adaptation [14][15], and 
creating frameworks for assessing and certifying adaptation 
properties of self-adaptive systems [27]. 

Self-adaptive systems research has focused on systems’ reaction 
to resources, environments, exceptions, and recovery. Humans 
constantly interact with the physical world [22]. Human-in-the-
loop and covert behavior should be recognized when systems 
make decisions and react accordingly.  

4.1  Missing Link: Human Neural Inputs 
Self-adaptive software systems feed on contextual information 
from the environment, from within themselves, and from the 
user. A wealth of data about the user’s intentions, thoughts, 
emotions, and desires is available, but hidden in the patterns of 
her brain (i.e., covert behaviors). Therefore, one of the missing 
links in the many existing self-* properties of self-adaptive 
systems is to address how to anticipate and react to human 
thoughts and mental states, which can be accomplished by 
taking neural inputs into account. Neural inputs provide ample 
opportunities to incorporate human-in-the-loop mechanisms into 
self-adaptive systems. This constitutes a paradigm shift in 
software systems—from reacting to anticipating.  

4.2 The Challenges of Integrating Neural 
Inputs into Software Systems 
When facing this pending arrival of neural inputs in software 
systems, many questions arise: How do we integrate this wealth 
of new inputs into existing software architectures? How do we 
recognize covert behaviors to provide better experiences to end-
users? How do we coordinate and correlate neural inputs with 
behavioral inputs and with each other to ensure that they will 
facilitate rather than interfere with human computer interaction? 
We propose to investigate these research questions by 
characterizing appropriate self-adaptive systems. Neural input is 
a natural place to start for a number of reasons. There are 
similarities in functional architectures, especially the pervasive 
existence of feedback loops, in both the brain and self-adaptive 
software.  

Other auspicious parallels concern time effectiveness, autonomy, 
and the faculty to adapt to unpredictable circumstances. The 
self-adaptive systems research community has developed many 
mechanisms to cope and deal with uncertainty by adapting 
software systems at runtime. In general, uncertainty may be due 
to changes in the operational environment, variability of 
resources, and new user needs. As Garlan [13] posited, human 
behavior contributes large amounts of uncertainty, and if we add 
covert human behavior (e.g., intentions, desired actions, 
attention, thoughts, memories, or emotions) even more 
uncertainty will result.  

The challenges of brain inspired self-adaptive systems are that 
the system should adapt to the uncertainty and transient covert 
behavior of the human brain and adapt effectively to user needs. 
Furthermore, it may use covert behavior inputs to reflect on its 
own response to earlier input. 

5. CONCLUSION AND FUTURE WORK 
This paper posited to the software engineering community that 
human covert behavior should be placed in the loop. We argued 
that direct connections between neural inputs and computer 
systems are inevitable and that the community needs to face 
these connections. Through the unique features of neural inputs 
(e.g., fast and parallel insight into user’s intentions, desired 
actions, attention, thoughts, memories, or emotions), smart 
software systems will someday “feel” and “anticipate” users’ 
intention and therefore react self-adaptively. To reach this goal, 
our current efforts are to list the properties that software 
architects need to consider to adapt to the neural inputs’ specific 
properties. This list is inspired by the ways brains self-organize 
and integrate their many functions continuously over time. Our 



research creates a framework to bring neural signals into the 
realm of HCI and endow the cooperation between human and 
machine with features such as preparatory attention and 
intention. With those considerations in mind, we expect that this 
work will elevate software systems to a new level.  

In time, this research will extend beyond the interaction between 
users and computing systems. The class of domains that would 
benefit most from direct neural inputs is where users and 
systems are intimately intertwined. For example, consider a 
smart home where the aim is to make the user happy. Today’s 
smart environments are lacking largely because the system has 
so little knowledge about what the user wants, thinks, likes, or 
dislikes (i.e., human covert behaviors). As a result, it has been 
difficult to build effective systems that anticipate and react to 
user needs. But such immersive systems will proliferate as BCI 
technology emerges and software systems become more task-
centric and responsive to context changes. In the self-adaptation 
realm, such systems are often referred to as mixed initiative 
systems, where users and the system work together closely to 
achieve common goals. Making use of the brain’s highly 
efficient parallel, multifunctional processing and self-organizing 
functionalities, and having direct neural inputs to the systems is 
the natural next step to enable software systems to “feel” and 
“anticipate” users’ intentions and thus react self-adaptively. 

6. REFERENCES 
[1] Andersson, J., et al. (2009). Modeling dimensions of self-

adaptive software systems, in: Software Engineering for 
Self-Adaptive Systems, LNCS 5525:27-47. 

[2] Birbaumer, N. (2006). Breaking the silence: Brain–
Computer Interfaces (BCI) for communication and motor 
control, Psychophysiology 43(6):517-532. 

[3] Calderon, R. (2007). Brain Computer Interface and 
Neuroprosthetics, M.Sc. Thesis, Florida Atlantic 
University. 

[4] Carmena, J.M., et al. (2003). Learning to control a brain-
machine interface for reaching and grasping by primates, 
PLOS Biology 1(2):e42. 

[5] Chapin, J.K., et al. (1999). Real-time control of a robot 
arm using simultaneously recorded neurons in the motor 
cortex. Natural Neuroscience 2(7):664-70. 

[6] Cheng, B.H.C., et al. (2009). Software engineering for 
self-adaptive systems: A research roadmap, in: Software 
Engineering for Self-Adaptive Systems, LNCS 5525:1-26. 

[7] Churchland, P.S., Sejnowski, T.J. (1992). The 
Computational Brain, MIT Press. 

[8] Cognionics 64-channel wireless EEG Headset, retrieved 
Feb. 2014.  www.cognionics.com 

[9] de Lemos, R., et al. (2013).  Software engineering for self-
adaptive systems: A second research roadmap, in: 
Software Engineering for Self-Adaptive Systems II, LNCS 
7475:1-32. 

[10] Debener, S., et al. (2012). How about taking a low-cost, 
small, and wireless EEG for a walk? Psychophysiology 
49(11):1617-1621. 

[11] EPOC, retrieved Feb. 2014.  
emotiv.com/epoc/features.php 

[12] Farwell, L.A., Donchin, E. (1988). Talking off the top of 
your head: Toward a mental prosthesis utilizing event-
related brain potential, Electroencephalography and 
Clinical Neurophysiology 70(6):510–523. 

[13] Garlan, D. (2013). A 10-year perspective on software 
engineering self-adaptive systems (Keynote), Proc. 8th Int. 
Symp. on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2013), p. 2. 

[14] Garlan, D., et al. (2012). Foundations and tools for end-
user architecting, in: Large-Scale Complex IT Systems, 
LNCS 7539:157-182. 

[15] Garlan, D., et al. (2009). Architecture-based self-
adaptation, in: Autonomic Comp and Networking, pp. 31-
55. 

[16] Kelso, J. A.S., Dumas, G., Tognoli, E. (2013). Outline of a 
general theory of behavior and brain coordination. Neural 
Networks 37:120–131. 

[17] Müller, H., Pezzè, M., Shaw, M. (2008). Visibility of 
control in adaptive systems, 2nd Int. Workshop on Ultra-
Large-Scale Software-Intensive Systems (ULSSIS 2008), 
pp. 23-26. 

[18] Rao, R.P.N. (2013). Brain-Computer Interfacing: An 
Introduction. Cambridge University Press. 

[19] ReThink Medical Next Generation Wireless EEG, 
retrieved Feb. 2014 www.rethinkmedical.com 

[20] Rizzo, G. (2013). Design and evaluation of an effective 
BCI-based adaptive user application: A preliminary case 
study, in: User Modeling, Adaptation, and Personalization 
(UMAP 2013), LNCS 7899:380-383. 

[21] Royer, A.S., et al. (2010). EEG Control of a Virtual 
Helicopter in 3-Dimensional Space Using Intelligent 
Control Strategies. IEEE Trans. on Neural Systems 
Rehabilitation Engineering 18(6):581-589. 

[22] Schirner, G., et al. (2013). The Future of Human-in-the-
Loop Cyber-Physical Systems, IEEE Computer 46(1):36-
45. 

[23] Sellers, E., Schalk, G., Donchin, E. (2003). The P300 as a 
typing tool: tests of brain computer interface with an ALS 
patient, Psychophysiology 40:S77. 

[24] Taylor, D.M., Tillery, S.I.H., Schwartz, A.B. (2002). 
Direct cortical control of 3D neuroprosthetic devices, 
Science, 296(5574):1829-1832. 

[25] Velasco-Alvarez, F., et al. (2013). BCI-based navigation 
in virtual and real environments, Advances in 
Computational Intelligence, LNCS 7903:404-412. 

[26] Velliste M, Perel S, Spalding M.C., Whitford A.S., 
Schwartz A.B. (2008). Cortical control of a prosthetic arm 
for self-feeding, Nature 453:1098-1101. 

[27] Villegas, N.M., et al. (2011).  A framework for evaluating 
quality-driven self-adaptive software systems, in: Proc. 
6th Int. Symp. on Software Engineering for Adaptive and 
Self-Managing Systems (SEAMS 2011), pp. 80-89. 

[28] von Neumann, J. (2012). The Computer and the Brain. 
Yale University Press, 3rd Edition. 

[29] Wearable Sensing, retrieved Feb. 2013 
wearablesensing.com 

[30] Whittle, J., et al. (2010). RELAX: A language to address 
uncertainty in self-adaptive systems requirement, in: 
Requirements Engineering 15(2):177-196. 

[31] Wolpaw, J.R., McFarland, D.J. (2004). Control of a two-
dimensional movement signal by a noninvasive brain-
computer interface in humans, in: Proc. National Academy 
of Sciences USA 101(51):17849-54. 


