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Abstract. Dynamic systems defined on the scale of neural ensembles are
well-suited to model the spatiotemporal dynamics of electroencephalo-
graphic (EEG) and magnetoencephalographic (MEG) data. We develop
a methodological framework, which defines the activity of neural ensem-
bles, the neural field, on a sphere in three dimensions. Using Magnetic
Resonance Imaging (MRI) we map the neural field dynamics from the
sphere onto the folded cortical surface of a hemisphere. The neural field
represents the current flow perpendicular to the cortex and thus allows
the calculation of the electric potentials on the surface of the skull and
the magnetic fields outside the skull to be measured by EEG and MEG,
respectively. For demonstration of the dynamics, we present the propa-
gation of activation at a single cortical site resulting from a transient in-
put. Non-trivial mappings between the multiple levels of observation are
obtained which would not be predicted by inverse solution techniques.
Considering recent results mapping large-scale brain dynamics (EEG,
MEG) onto behavioral motor patterns, this paper provides a discussion
of the causal chain starting from local neural ensemble dynamics through
encephalographic data to behavior.

1 Introduction

Non-invasive techniques such as functional Magnetic Resonance Imaging (fMRI),
ElectroEncephaloGraphy (EEG) and MagnetoEncephaloGraphy (MEG) provide
entry points to human brain dynamics for clinical purposes, as well as the study
of human behavior and cognition. Each of these imaging technologies provides
spatiotemporal information about the on-going neural activity in the cortex, in
particular fMRI on the 10sec time scale and 1mm spatial scale, EEG and MEG
on the 1msec and 1cm scales. Analysis techniques of experimental spatiotemporal
data typically involve the identification of foci of activity such as single or multi-
ple dipole localization (see [40] for an overview). More sophisticated techniques
emphasize the pattern approach which aims at the identification of distributed
sources or activity patterns. These remain somewhat invariant during the time
course and typically minimize a postulated norm such as the Gaussian variance
(Principal Component Analysis or PCA)[10,25,29] or non-Gaussian statistical
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independence (Independent Component Analysis or ICA)[33] of which the latter
may also be derived from a Bayesian framework[28]. Signal Source Projection or
SSP provides a decomposition into patterns of activity which are physiologically
or anatomically meaningful, by these means, however, restricting the possible
solution space to the experimenters expectations. Most ambitious techniques
wish not only to decompose the spatiotemporal dynamics into meaningful pat-
terns, but also identify equations which govern the dynamics of these patterns
[3,4,18,30,31,39]. Unfortunately, the successful application of these techniques
has been typically limited to special cases in which the majority of the observed
dynamics has already been well understood [18]. Spatiotemporal activity prop-
agation of electro- and magnetoencephalographic signals has been represented
by discretely coupled oscillator models (see chapter on source modeling in [40])
representing dipole sources. Spatially and temporally continuous models, so-
called neural fields, were formulated by Wilson-Cowan [41,42], Nunez [35] and
Amari[1] in the 70s. With improving imaging techniques and the development
of MEG these types of models experienced a renaissance [8,19,32,37,43]. These
models are typically based on coupled neural ensembles in a spatially continuous
representation using integral equations involving a time delay via propagation.
Jirsa & Haken [19] generalized and unified the earlier models by Wilson-Cowan
[41,42] and Nunez [35] and demonstrated that they describe the same system.
The modeling on these different levels of organization has been phenomenolog-
ical, i.e. only partially taking into account the specific neurobiological nature
of the measured signal and its underlying mechanism of generation. Each level
of description has been tackled separately, never in unison with other fields of
research, and typically applying strong simplifications. For example, Steyn-Ross
et al.[38] explain a hysteresis phenomenon called ’biphasic response’ in the clini-
cal human EEG during anesthesia. Their underlying neural model is based upon
Liley’s work [32] using a spatially uniform activity distribution in one dimen-
sion with a connectivity distribution which falls off exponentially, independent
of the cortical location. Similarly Jirsa et al. [21] also applied a one-dimensional
model allowing, however, for varying spatial structure in activity distributions.
Here, by applying the neural field equations to a bimanual coordination situ-
ation, they predicted the spatiotemporal dynamics observed in the MEG and
confirmed these experimentally. A set of equations, governing human bimanual
coordination [13] and known in the literature since 1985, was derived from these
neural field equations. This connection between spatiotemporal brain dynamics
to behavioral dynamics has become possible through the notion of functional
units [19,21,11] serving as interfaces between neural and behavioral signals. De-
spite these successes, the simplifications made in these approaches do not take
into consideration a more detailed physiological and anatomical interpretation
of the identified mechanisms, e.g. how an active area may be identified when a
spatially uniform activity distribution is assumed [38], resulting in an effectively
zero-dimensional, thus point like model and hence brain.

In the present paper we develop a framework which overcomes these simpli-
fications and allows a quantitative comparison between experimental data and
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theoretical modeling. The neural model used here is based on Jirsa & Haken [19]
which allows the connection to the behavioral dynamics through the concept of
a functional input or output unit [11]. We form a synthesis of methodologies
in order to systematically relate scales of organization from neural ensembles
through EEG and MEG to behavioral dynamics (for strategic aspects of our ap-
proach, see the trilogy [26]). The conceptual steps are the following: We define a
spatiotemporal neural field dynamics on a spherical geometry. This dynamics is
mapped under the constraint of area preservation onto the folded cortical hemi-
sphere. Here the propagation of neural activity generates the forward solutions of
EEG and MEG under the spatial constraint of the skull and its return currents.
For the simplest cortical architecture, we choose the experimental condition of
an induced stimulus on the cortical surface and map the neural field dynamics
on the different levels of organization: 1. cortex on a sphere; 2. unfolded cortex;
3. folded cortex; and 4. folded cortex in the skull generating EEG and MEG.

Our paper is organized as follows: First, we review the neural field dynam-
ics of Jirsa & Haken, its physiological and anatomical basis and its connection
to behavioral observations. Second, we elaborate the methodologies involved in
traversing scales of organization from the level of neural ensemble to EEG and
MEG. Third, we discuss the example of neural field dynamics after an induced
stimulus. Finally, we provide a discussion and an outlook to future work.

2 Methods

2.1 Neural Field Dynamics

A neural field theory describes wave propagation along a continuous sheet com-
posed of excitatory and inhibitory neural ensembles [19]. The first principles
are based on conversion operations relating the local rates of action potentials
(pulses) and dendritic currents (waves)[9]. When averaged over the ensemble,
their relation follows a sigmoidal nonlinearity. Here, the main variable, the neu-
ral field, is the ensemble average of dendritic currents ψ(x, t) generated at lo-
cation x and time t. Action potentials travelling along axons with a velocity v
may cause substantial time delays via propagation and are incorporated into the
model. The distribution of the intracortical fibers, and thus the local connectiv-
ity, is homogeneous [2], whereas the distribution of the corticocortical fibers is
not (estimates are that forty percent of all possible corticortical connections are
realized for the visual areas in the primate cerebral cortex [7]). For these rea-
sons an inhomogeneous interareal connectivity has to be allowed resulting in a
translationally variant connectivity function f(x,X) �= f(x−X). External input
pj(x, t) is realized such that afferent fibers make synaptic connections. Then the
neural field dynamics may be written as

ψ(x, t) =
∫

Γ

dX f(x,X) · S[ψ(X, t− | x−X |
v

) +
∑

j

pj(X, t− | x−X |
v

)] ,

(1)
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where Γ represents the closed two-dimensional surface. Similar neural field sys-
tems of Jirsa-Haken type may be derived as special cases such as the Wilson-
Cowan model [41,42] in terms of pulse activities and the Nunez model [35,36]
in terms of wave activities. Both models may be mapped onto each other by
applying known conversion operations [19]. The neural field equation (1) can be
transformed into a partial differential equation for a homogeneous connectivity
function f(x,X) = f(| x − X |) such as e−|x−X|/σ. Then the nonlinear partial
differential equation reads in one dimension

ψ̈ + (ω2
0 − v2�) ψ + 2ω0ψ̇ = (ω2

0 + ω0
∂

∂t
) · S[ψ(x, t) + p(x, t)] (2)

where ω0 = v/σ. In case of a general connectivity function, an integral represen-
tation has to be maintained.

Functional units represent interfaces between the neocortex and non-cortical
(input and output)signals and include subcortical structures such as the projec-
tions of the cerebellum on the cortex or specific functional areas such as the motor
cortex. Until now the spatial localizations of functional units have been identified
with the spatial structure generated by time dependent input signals, open to
observation in the EEG/MEG (e.g. see [27]). In the case of a finger movement
this spatial structure corresponds to a dipolar mode in the EEG/MEG located
over the contralateral motor cortex. Anatomically these areas are obviously de-
fined via their afferent and efferent fibers connecting to the cortical sheet. As
such we will treat these in the spirit of this paper, a realistic treatment of brain
signals, architecture and its resulting EEG/MEG. We define the j-th functional
input unit pj(x, t) (see [11] for a detailed treatment) by its location βj(x) on
the folded cortical sheet and a time dependent peripheral signal rj(t) (such as a
finger movement)

pj(x, t) = βj(x)
∫ t

t0

f(t− τ)N(rj(τ))dτ (3)

where t0 is the initial time point, f(t − τ) a convolution and N a nonlinear
function, the latter both to be determined from experimental data as shown in
[11]. There, a read-out procedure of EEG/MEG has been developed such that
finger movements may be reconstructed directly from encephalographic data.
Equivalently, the read-out procedure may be viewed as a rule for how neural
currents drive the finger movement represented as an oscillator. This idea served
as the basis for connecting brain and behavioral dynamics in [21] and allowed
the derivation of the phenomenological behavioral HKB equations from neural
fields. Along the same lines a functional output unit may be constructed,

ψ̄j(t) =
∫

Γ

dx βj(x)ψ(x, t) , (4)

where βj(x) defines the spatial location of the output unit in the cortical sheet
and ψ̄j(t) is the signal sent to the periphery, e.g. driving finger movements[11].
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2.2 Neural Field Dynamics on a Sphere

The neural field equation (1) is defined in two dimensions with spherical bound-
ary conditions. For a homogeneous, exponentially decaying connectivity function
the corresponding partial differential equation may be determined:

(
∂2

∂t2
+ 2ω

∂

∂t
+ ω2

0 − v2�)3/2 ψ = (ω3
0 + ω2

0

∂

∂t
) · S[ψ(x, t) + p(x, t)] (5)

The details of the differential operators on the lhs of (5) depend on the spatial
decay of the connectivity. However, these details are not significant for large
scale pattern formation as shown by Haken [14]. Each cortical hemisphere is
represented in a spherical geometry and its dynamics is defined by (1), or (5)
respectively. The two spheres interact by two means: through calossal path-
ways connecting the two spheres and through afferent fibers (crossing and non-
crossing) from the periphery. Subcortical regions such as the brainstem are not
included. Should heterogeneous fiber pathways be included also, then the inte-
gral representation given by (1) is used and two types of pathways distinguished:
1. The calossal fiber system from one sphere to another is treated in a manner
equivalent to peripheral afferents. 2. Other heterogeneous pathways are included
in the connectivity function f(x,X). Note that heterogeneous pathways con-
tribute strongly to the dynamics on all scales of organization; even local changes
of connectivity have recently been shown to result in a major reorganization of
brain activity [22,23].

2.3 Unfolding of the Cortical Sheet and Its Spherical Representation

In order to equate the distribution of neural fields with actual cortical structure
a mapping between the spherical surface and the cortical surface is required.
Several steps are undertaken to complete this mapping. All of the described pro-
cedures were performed using the Freesurfer software package developed by Dale
and colleagues [5,6]. The first step is the segmentation of the brain structure and
the definition of the gray-white matter boundary within each hemisphere. This
step allows for the description of the cortical surface by a mesh defined by a set
of vertices and polygons. The second step involves the inflation of the cortical
surface to produce a closed surface that has minimal folding but also minimizes
any distortion in the relative location between cortical locations (see middle of
figure 1). This step eliminates the difficulty of visualizing cortical activity within
sulci. The final step is to transform this shape onto a spherical representation
while maintaining as much of the spatial relation as possible by preserving the
metric properties of the surface while minimizing the local curvature. With this
procedure, any point on the folded cortex can be addressed using any number of
coordinate systems via its isometric location on the neural sphere. Both trans-
formations, forward and backward, are well defined and their product yields the
identity. Figure 1 gives an impression of this process by showing the three sur-
faces with again the curvature of the gray-white matter boundary color coded
in red and blue and a spherical coordinate grid in green with the line of zero
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longitude in white. The resulting meshes are extremely dense typically involving
on the order of 150,000 vertices for the representation of a single hemisphere.
For the purpose of computational frugality we decimated this tessellation to a
more manageable number of vertices and corresponding polygons, 4512 and 9022
respectively.

Fig. 1. Inflating the surface representing the gray-white matter boundary and
mapping onto a sphere. From right to left the sequence shows how a spherical
coordinate grid gets folded into the fissures.

2.4 Representation of Neural Fields on the Folded Cortex

In the previous section we described how each hemisphere was expanded and
warped onto a sphere. As a result of this transformation, each sampled vertex
on the folded cortical surface has a corresponding vertex located on the surface
of a sphere. In addition to this one-to-one mapping between the vertices defining
both the surface of the cortex and a sphere, the connectivity of the polygons (i.e.
how the vertices are connected) remains constant across this transformation. As
a result, a description of activity on the surface of the spherical hemisphere is
automatically mapped onto the surface of the cortical representation. The task,
therefore, simplifies the mapping of the activity onto the surface of an irregularly
sampled sphere. This is a simple matter because the neural field is continuous
across the sphere on which it is generated and therefore can be sampled at any
arbitrary point. The mesh vertices of the cortical sphere are easily converted to
spherical coordinates and the value at the corresponding location of the neural
field sphere is assigned. For graphical presentation, the field distribution over
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the cortical surface can be represented as a set of color values scaled between
the maximum and minimum field strength. Changes in this color representation
over time then give a temporal depiction of how the field dynamics unfold on the
actual cortical surface. However, in order to calculate the forward solution using
these current densities we need the addition of information about the direction
of current flow at each vertex location and each point in time.

The generation of local field potentials within the cortex is dominated by
activity in ensembles of pyramidal cells, which are oriented perpendicular to the
cortical surface. It is possible therefore to model the direction of instantaneous
current flow in a small cortical region as a normal vector on the mesh surface.
The orientation of the vector gives the direction of current flow and the length
of the vector gives the current strength. For the purpose of mapping neural ac-
tivations onto the representation of the cortical surface a vector oriented normal
to the polygon surface was computed for each mesh vertex. These vectors were
then normalized to a length of one and scaled by the amount of neural activation
at each time point. Because the direction of current flow is given by the orien-
tation of the cellular generators, orientation of these vectors does not change
over time (see following section 2.5 for details). Instantaneous current flow is
always represented by vectors oriented orthogonal to the cortical surface while
the propagation of current flow across the cortical surface is modelled as changes
in the absolute and relative strengths of these vectors over time.

2.5 Forward EEG and MEG from the Neural Field Dynamics

At this stage we have a representation of the current distribution in three-
dimensional space x ∈ R3 and its evolution over time t. To make a comparison
with experimental data the forward solutions of the scalar electric potential V (x)
on the skull surface and of the magnetic field vector B(x) at the detector loca-
tions have to be calculated. Here it is useful to divide the current density vector
J(x) produced by neural activity into two components. The volume or return
current density, Jv(x) = σ(x)E(x), is passive and results from the macroscopic
electric fields E(x) acting on the charge carriers in the conducting medium with
the macroscopic conductivity σ(x). The primary current density is the site of
the sources of brain activity and is approximately identical to the neural field
ψ(x, t), because, although the conversion of chemical gradients is due to diffu-
sion, the primary currents are determined largely by the cellular-level details
of conductivity. In particular, cell membranes, being good electrical insulators,
guide the flow of both intracellular and extracellular currents and thus result
in a current flow perpendicular to the cortical surface due to the perpendicular
alignment and elongated shape of pyramidal neurons. In the quasistatic approx-
imation of the Maxwell equations, the electric field becomes E = −∇V where ∇
is the Nabla-operator (. . . ∂/∂x . . . )T . The current density J is

J(x) = ψ(x, t)n(x) + σ(x)E(x) = ψ(x, t)n(x) − σ(x)∇V (x) (6)

where n(x) is the cortical surface normal vector at location x.
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The forward problem of the EEG and MEG is the calculation of the electric
potential V (x) on the skull and the magnetic field B(x) outside the head from
a given primary current distribution ψ(x, t)n(x). The sources of the electric and
magnetic fields are both, primary and return currents. The situation is compli-
cated even more by the fact that the present conductivities such as the brain
tissue and the skull differ by the order of 100. Following the lines of Hämäläinen
et al. [15,16] and using the Ampére-Laplace law, the forward MEG solution is
obtained by the volume integral

B(x) =
µ0

4π

∫
(ψ(X, t)n(X) + V (X)∇′σ(X))× X

| X |3 dv
′ (7)

where dv′ is the volume element, ∇′ the Nabla-operator with respect to X and
µ0 the magnetic vacuum permeability. The forward EEG solution is given by
the boundary problem

∇ · (σ(x)∇V (x)) = ∇ · (ψ(x, t)n(x)) (8)

which is to be solved numerically for an arbitrary head shape, typically using
boundary element techniques as presented in [15,16]. In particular, these au-
thors showed that for the computation of neuromagnetic and neuroelectric fields
arising from cortical sources, it is sufficient to replace the skull by a perfect insu-
lator, and, therefore, to model the head as a bounded brain-shaped homogeneous
conductor. Three surfaces S1, S2, S3 have to be considered at the scalp-air, the
skull-scalp, and the skull-brain interface, respectively, whereas the latter provides
the major contribution to the return currents. The three-dimensional geometry
of these surfaces may be obtained from MRI scans.

3 Results

To illustrate the simultaneously ongoing dynamics on the different levels of or-
ganization we choose a simple example of induced wave propagation along the
cortical sheet. The connectivity is spatially homogeneous and has an exponential
fall-off. Only one functional unit, the stimulus input, is defined just posterior to
the central fissure, otherwise the neural sheet is completely homogeneous and
isotropic. For visualization purposes, only one hemisphere is shown in the fol-
lowing.

At time t = 0 a stimulus signal r(t) is sent to the cortical sheet through
afferent fibers via synaptic connections defined by β(x − x0) = e−|x−x0|. The
time course r(t) is an exponential increase until t=160ms, then followed by an
exponential decrease and is plotted on the bottom of figure 2. The stimulus
excites the neural sheet at site A, x = x0, and initiates wave propagation by
means of a circular traveling wave front undergoing attenuation in space and in
time. The time courses of the neural ensembles at site A and site B, which is
more distant to the stimulus site, are shown. For several selected time points
the spatiotemporal activity patterns on the sphere are plotted in the top row
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of figure 2. Here and in the following the color code represents -MAX to MAX
as black goes to white. In the rows below, the same neural activity patterns are
represented on the unfolded cortex and on the folded cortex for the same time
points after being mapped from the spherical representation following sections
2.3 and 2.4.

Fig. 2. The neural fields evoked by a transient stimuli distributed on the sphere
(top row), inflated cortex (second row) and folded cortex (third row) for 6 sep-
arate time points. The bottom panel shows the time course of the stimulus (red
line) and the activation pattern for two individual sites on the spherical surface.

For purposes of calculation of the forward EEG and MEG solutions, we use a
single layer head model (skull-brain) as defined in 2.5 and a spherical head shape.
The three-dimensional current distribution is defined on the folded cortical sur-
face located within the skull as illustrated on the bottom in figure 3 (upper skull
surface is not shown). The color coding on the cortical surface reflects the local
curvature at the vertices with blue and red indicating convex and concave curva-
ture, respectively. Note that the cerebellum is not part of these surfaces and has
been removed. Adjacent is plotted the three cross sections of the voxel distri-
butions showing the neural activity pattern color coded for t=200ms. The EEG
and MEG detectors are placed directly on the spherical skull surface, infinitely
close to each other. For the MEG we assume radial gradiometers measuring the
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radial component of the magnetic field B. We calculate the forward solutions of
the EEG and MEG measured by these detectors following (7),(8) and plot the
resulting EEG (top row) and MEG (second row) patterns for the selected times.
Note that the visualization is in the spherical system, the nose pointing to the
left, basically resembling the perspective shown in the picture on the bottom left
of figure 3. In both patterns, EEG and MEG, a dipolar structure emerges with
a maximum activity at around 280ms for the EEG and two maxima for MEG at
around 200ms and 360ms. From figure 2 it is clear that the neural current dis-
tribution is damped and flattens out as time evolves. However, the propagation
of the neural wave front along the cortical surface is such that the neuromag-
netic forward solution not only undergoes a spatial reorganization from 360ms
to 440ms, but also a temporal organization which does not map trivially on the
neural field activity.

Fig. 3. The EEG (top row) and MEG (second row) forward solutions calculated
at the same 6 time points as shown in figure2. The activation patterns are plotted
on a spherical head model used in the forward calculation (10 cm diameter). The
spherical head model is oriented such that the nose is to the left of the page and
the left side of the head is facing the reader. The location of the left cortical
hemisphere used here is given within both the head of the subject (bottom left)
and within the spherical model of the head (three views on the bottom right).
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Here we have presented the conceptual and methodological framework for the
development of a theoretical model of human brain function and behavior that
operates at multiple levels of description. Interconnected neural ensembles with
homogeneous connection represent a neural level, while a network or systems
level is defined by the interaction between heterogeneously connected cortical
regions. An even broader level is defined by the computation of the spatiotem-
poral dynamics of EEG and MEG generated by the model and the connection
of these data to behavior. For demonstration purposes we have presented the
simplest of examples, the propagation of activation at a single cortical site re-
sulting from a transient input. Even without the incorporation of heterogeneous
connections however, it is evident that a simple stimulus produces elaborate dy-
namics on the folded cortical surface that translate into time varying patterns in
the EEG and MEG which would not be predicted by inverse solution techniques.
At the same time the distributions described on the spherical head model are
still consistent with what has been described in the literature using, for example,
simple tactile stimulation or the generation of a simple self paced motor response
[27,11].

Elaboration of this model will proceed not only at the neural level or even
at the macroscopic EEG and MEG level, but also at the behavioral level. That
is, the goal is not to simply reproduce observed spatiotemporal data sets by
activating specific cortical regions, but to describe and explain behavioral phe-
nomenon via the dynamics within and between interconnected cortical and sub-
cortical areas. For instance, several properties of spatiotemporal cortical activ-
ity, as measured by EEG and MEG, have been shown to accompany behavioral
transitions in coordinative states [12,17,25,34]. At present the link between these
specific neural events and the resulting behavioral dynamics is unknown in gen-
eral, except for special cases such as rhythmic coordination [11]. This is despite
the fact that much is known about the neural structures involved in produc-
ing coordinated movements and how they are connected to one another. Similar
phenomena have been investigated using a one dimensional model of neural field
dynamics [19,18,21] and it is expected that the application of the current model
in its present and future forms will continue to provide insight into these and
other behavioral phenomena.

It should be emphasized that the model presented here is not a form of
inverse solution that defines putative neural sources associated with a particular
experimental design and set of data. The mapping of neural fields onto the folded
cortex and the calculation of the forward solution are performed for the purpose
of connecting cortical dynamics with neurophysiological and behavioral results.
The data that result from the model are purely a function of the dynamics of
the defined system, and are not constrained by observed data. It is possible
therefore, to define a single dynamical model that can explain several different
phenomena that may arise by changing input/output patterns. That is, the
same model may generate qualitatively different data given different types of
inputs or different output constraints. Such a system may also explain changes
in perceptual phenomena despite the constancy of a stimulus (so-called bistable
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stimuli). This model then represents a powerful tool capable of representing the
complexities that define human brain and behavior.
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