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Abstract
Many lines of evidence indicate that consid-

ering visual perception as a passive, stimulus-
driven, feedforward decoding process is no
longer tenable. Visual perception naturally occurs
within the context of an integrated array of ongo-
ing cognitive processes involving memory, per-
ception in other modalities, and motor control.
In many situations, these processes allow expec-
tations to be formed for likely visual events. This
article explores the idea that the formation of
visual expectations involves the active organi-
zation of visual cortical areas, providing a frame-
work of contextual information within which
expected events are interpreted. Retinal inputs
are treated as constraints that feed into a complex
system of interacting visual cortical areas and
thalamic nuclei, which are concurrently impos-
ing constraints on one another. Although the
nature of expectational organization in the visual

cortex is not well-understood, a reasonable
hypothesis is that expectation involves the
mutual constraint of spatiotemporal activity pat-
terns in multiple visual cortical areas. In this sce-
nario, expectation is instantiated by a set of
activity patterns in high-level visual cortical areas
that impose constraints on one another as well as
on low-level areas according to the partial infor-
mation that is available about expected retinal
inputs. One approach to testing this proposal is
through the analysis of simultaneously recorded
local field potentials (LFPs) from local neuronal
assemblies in multiple visual cortical areas.
Analysis of LFPs by multivariate autoregressive
modeling is showing promise in revealing the
organization of expectation in visual cortex.

Index Entries: Visual perception; visual cor-
tex; inference; expectation; context; constraint
set; coherence; local field potential; Granger
causality.

Introduction

Indeterminacy, or uncertainty, is a funda-
mental property of the sensory environment

with which the informational systems of the
brain must contend. This indeterminacy
suggests that perceptual processes in the cere-
bral cortex are inferential rather than strictly
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analytical (Pouget et al., 2003; Kersten and Yuille,
2003). The visual system, for example, must
detect invariant structure in retinal activity that
by itself does not specify what constitutes the
invariance (Bressler, 1999). Theoretical consid-
erations imply that the visual system must
actively construct the structure of visual space
by a process that is inherently inferential in
order to operate within an arena of ever-
changing contexts (Mumford, 1992; Barlow,
2001; Friston, 2002). A common view is that
inferential processing in visual perception
involves interactions of top-down influences,
providing contextual information, with bot-
tom-up influences from the sensorium
(Desimone and Duncan, 1995; Rao, 1999; Lee,
2002; Yu and Dayan, 2002).

Young (2000) convincingly argues that the
synaptic connectivity of the mammalian visual
cortex is especially conducive to inferential
processing. For example, geniculo-recipient
neurons in cortical area V1 typically receive
only around 5% of their excitatory synapses from
the lateral geniculate nucleus (LGN), but 30–40%
from distant cortical areas and thalamic nuclei.
This strongly suggests that processing in V1
depends heavily on constraints originating in
multiple other areas and that direct sensory
input serves as only one constraint of many.
The same is even more likely to be true for high-
level visual and non-sensory-specific cortical
areas (Galuske et al., 2002).

That top-down constraints play an important
role in the processing of visual stimuli is sup-
ported by a number of recent studies. Pascual-
Leone and Walsh (2001), for example, used
transcranial magnetic stimulation to demon-
strate a crucial role for top-down influences in
the awareness of visual motion. Murray et al.
(2002) reported that blood flow in V1 was low-
ered, and that in higher areas of the lateral
occipital complex (LOC) was elevated, when
visual scene elements were structured as com-
pared to random, perhaps reflecting greater
activation of LOC areas by structured than by

random inputs. The imposition of top-down
constraints by these LOC areas on V1 neurons
may have eliminated irrelevant V1 activity,
resulting in lowered V1 metabolic demand and
the observed decrease in blood flow.

Acritical problem for cognitive neuroscience
is thus to understand the nature of inter-areal
interactions in the visual cortex. A popular
approach to this question has been to consider
these interactions from the perspective of
Bayesian inference: top-down effects imple-
ment contextual priors, whereas bottom-up
effects provide observations, with concurrent
Bayesian inference occurring at multiple lev-
els in the visual hierarchy (Lee and Mumford,
2003). A related proposal (Bressler, 1996, 2002,
2003) is that top-down, bottom-up, and lateral
influences, although different in the specific
nature of their effect, all combine to constrain
the local processing in individual visual corti-
cal areas. The joint satisfaction of consistent
constraints, according to coherence and inco-
herence relations (Thagard and Verbeurgt,
1998), leads to a unified consensual state in
multiple interconnected areas.

Perceptual inference involves the expecta-
tion of impending sensory events as well as the
interpretation of current events. Inferential top-
down constraints from high-level to low-level
visual cortical areas should be active not only
in processing visual stimuli, but also in visual
processing prior to stimulus presentation,
when there is an expectation of stimulus prop-
erties. Kastner et al. (1999) showed elevated
blood flow in area V1 and higher visual corti-
cal areas with covert visual attention to spatial
location prior to visual stimulus presentation.
Elevated blood flow in higher areas may have
been owing to activations related to expectation
of the impending visual stimuli, and that in V1
by the top-down imposition of constraining
influences from those higher areas.

The highly distributed and hierarchical
anatomical organization of the visual cortex
implies that the expectation of visual stimulus
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events should involve multiple high-level areas
mutually constraining one another while also
constraining activity in low-level areas. The spe-
cific visual cortical areas involved in support-
ing the set of active constraints in any given
context will depend on the particular visual fea-
tures about which information is available. For
example, a constraint set would involve areas
that express shape information if the situation
allowed inference about impending shape fea-
tures, whereas it would involve motion-related
areas if only motion features could be inferred.
The rest of this article is concerned with the issue
of how inferential constraint sets may operate
in visual expectation.

Structural and Functional Bases
of Inferential Constraint
The anatomical structure of the visual cortex

involves more than twenty-five areas with
multiple bottom-up, top-down, and lateral
connections between them (Felleman and Van
Essen, 1991). It has been shown that visual cor-
tical areas are organized within this structure
in strongly interconnected clusters that are crit-
ical for their function (Hilgetag et al., 2000). For
each area, there is a unique set of other areas,
called a connection set, to which that area is
preferentially connected (Bressler, 2002). The
connection set of a visual cortical area repre-
sents a structural complex of connected areas
at lower, higher, and equivalent hierarchical
levels, with which that area interacts before
and during visual stimulus processing.
Statistical analysis has shown that each area’s
connection set is unique, suggesting a unique
functional role (Passingham et al., 2002).

This section focuses on the idea that cortical
processes underlying visual expectation involve
the imposition of constraints between different
visual cortical areas. Partial information about
expected visual stimuli will be distributed across
high-level visual cortical areas at different hier-
archical levels, with different areas expressing
different aspects of that information. An area

that is specialized for processing a particular
visual stimulus feature will express information
relating to the impending stimulus with a degree
of certainty allowed by the information avail-
able about that feature. (A putative mechanism
by which certainty could be represented in a cor-
tical area is presented later.) The expression of
specialized information in one area will occur
not only locally within this area but will also be
transmitted to the other areas to which it has
axonal projection paths. 

The transmission from one (transmitter) area
to another (target) area is envisioned as caus-
ing the constraint of ongoing activity in the tar-
get (Bressler, 1987a,b). Long-range projection
neurons, although excitatory, may synapse on
both inhibitory and excitatory target neurons.
Thus, the effect of transmission from the trans-
mitter area to its target may be a mix of feed-
forward excitation and inhibition, and
projection neurons may both enhance and sup-
press ongoing activity in the target area.
Projection neurons may exert effects of vary-
ing strength on the target area, depending on
the number of axon branches, the strengths of
their synapses on target neurons, and the rela-
tive numbers of target excitatory and inhibitory
cells. Target neurons may receive influences of
varying strength, depending on the number,
strength, and timing of their synaptic activa-
tions. The number of active synapses at any
time may in turn depend on the degree of con-
vergence of input fibers from different projec-
tion neurons, as well as the degree of
synchronicity in the pulse activity on those
input fibers. The result is that, in the projection
of activity from a transmitting cortical area to
its target, there is likely to be spatial variation
in the strength of influence in the target area.
This may result in a complex spatiotemporal
interaction between an imposed pattern of
excitation/inhibition and ongoing activity in
the target area. In general, the imposed pattern
may be considered to constrain the ongoing
target activity pattern.

Bressler.qxd  17/07/2004  1:11 pm  Page 229



230 _________________________________________________________________________________Bressler

Neuroinformatics _______________________________________________________________ Volume 2, 2004

Consider next that, during expectation of an
impending visual stimulus, multiple inputs
arrive in a target visual cortical area over con-
verging projection pathways from the multiple
areas of its connection set. This multiplicity of
converging inputs would appear to dictate that
the ongoing activity in that target area be con-
strained by a combination of inputs, and not
by any single input. These inputs, particularly
in the case of top-down inputs to low-level
areas, may mainly play a modulatory role, with
synapses terminating primarily in the supra-
granular layers where NMDAreceptors, having
slow dynamics, are located (Friston, 2002).
These modulatory constraints could limit the
range of variability of the membrane potential
in the postsynaptic target neurons, thus limiting
the range of response of these neurons when
the stimulus is presented.

We now examine the relation of high-level
visual cortical areas to their connection sets
during visual expectation. Allowing that the
cortex has a history of exposure to stimuli of a
particular class, areas that express stimulus-
related information will have previously been
activated by stimuli of that class. It is usually
assumed that cell assemblies are formed in
those areas by local Hebbian learning. Then,
when partial information is available about the
impending stimulus, local Hebbian assemblies
in those areas will manifest activity patterns
that are expressions of their local associative
memories, and those activity patterns will crit-
ically depend on inputs from their connection
sets (Miller, 1996). In other words, visual cor-
tical areas express information about an
impending visual stimulus by manifesting
activity patterns that reflect their stored asso-
ciative memories under constraint by inputs
from their connection sets.

Figure 1 illustrates the situation in which a
given area (A) receives inputs from the areas of
its connection set in expectation of an impend-
ing stimulus. Some of these areas (light shading)
express information about the impending stim-

ulus since they have previously been co-acti-
vated by that class of stimulus, and some (dark
shading) do not. Through Hebbian learning,
which is thought to involve the strengthening
of synaptic connections between neurons in dif-
ferent areas as well as within single areas
(Pulvermuller, 1999; Fuster, 2000), the synaptic
connections that area A receives from these co-
active connection set areas have previously been
strengthened. Area A thereby receives inputs
from the areas of its connection set that express
stimulus-related information, and these inputs
exert constraints which reinforce a consistent
stimulus-related activity pattern in area A.

Furthermore, projection pathways between
areas in the visual system are most often bi-
directional (Felleman and Van Essen, 1991).
Allowing that two areas may be both trans-
mitter and target concurrently, the imposed
patterns from each may concurrently constrain
the ongoing patterns of the other (Sommer and
Wennekers, 2003). Initially after the introduc-
tion of information about an impending stim-
ulus, the activity patterns of an area (e.g., A in
Fig. 1) and its connection set areas may be
inconsistent. However, as the area and its con-
nection set areas interact over projection path-
ways that are largely bi-directional, they
impose constraints on one another. It has been
postulated (Bressler, 2002, 2003) that under
these conditions, cortical interactions lead to
some areas (light shading in Fig. 1) relaxing
into consistent patterns that satisfy coherence
relations, where the term “coherence” here is
used in the sense of informational consistency
(Thagard and Verbeurgt, 1998). The lack of pat-
tern consistency between other areas (dark
shading in Fig. 1) may satisfy incoherence rela-
tions. The result is proposed to be a distributed
set of visual areas expressing consistent activity
patterns, representing in its entirety the visual
cortical organization of expectation for the
anticipated stimulus (Engel et al., 2001).

The prior discussion has been intentionally
vague about the form in which activity patterns
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are manifested in the visual cortex, and the way
that they may interact. This is because rela-
tively little evidence exists on these critical
questions. Those studies that have addressed
these questions suggest that cortical areas sus-
tain time-varying, spatially coherent, oscilla-
tory activity patterns that carry information in
their spatially modulated amplitude pattern-
ing (Arieli et al., 1995; Bullock et al., 1995;
Miltner et al., 1999; Meador et al., 2002; Cossart
et al., 2003). Here, unlike previously, the term
“coherence” refers to frequency-specific phase
synchronization of neural activity across the
spatial extent of a cortical area. Coherence has
previously been proposed as an ongoing prin-
ciple for cortical operations (Singer, 1994), and
has been suggested to play a role in predictive
processing (Engel et al., 2001).

What part might spatial coherence play in
visual expectation? I have discussed the idea that
the features of an expected visual stimulus are

represented by spatial activity patterns in dis-
tributed visual cortical areas. It is generally
believed that expectation may have associated
with it different degrees of certainty (Yu and
Dayan, 2002). Therefore, some features of the
expected stimulus may have a higher degree
of certainty than others. For example, infor-
mation that an image of a book will appear on
a currently blank display screen will likely
entail more certainty about the expected
shape than about the expected color. It thus
appears reasonable to assume that the various
representations of expected features in different
visual cortical areas will have differing levels
of certainty. I propose spatial coherence of activ-
ity patterns within a cortical area as the basis
for its local certainty. Consider the findings of
Freeman and colleagues showing that sponta-
neous LFP activity in sensory cortical areas is
often organized as oscillatory “wave packets”
(Freeman and Rogers, 2002). Spatial coherence

Fig.1. Schematic representation of a cortical area (A) and its connection set. The cortex is idealized as a
two-dimensional sheet lacking laminar organization.Area A interacts with the areas of its connection set in
expectation of an impending stimulus. For simplicity, possible connections among the connection set areas are
not represented. Some areas (light shading) express stimulus-related activity patterns through mutual impo-
sition of consistent constraints (solid arrows) satisfying coherence relations. Other areas (dark shading),
although anatomically connected (dashed arrows) to area A, do not express consistent patterns, and thus
satisfy incoherence relations. (Patterned after Houk and Wise, 1995.)
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may be viewed as a quantity that measures the
degree of spatial phase dispersion of LFP oscil-
lations within a cortical area. Expected stimu-
lus features about which a high level of
certainty exists are represented, then, by wave
packets with a high degree of spatial coher-
ence, and those with a low level of certainty
have a correspondingly low spatial coherence.
An advantage of this putative mechanism
would be that when a high-level transmitter
area constrained the activity of a target area,
as described previously, the level of spatial
coherence in the transmitter would directly
dictate the strength of its constraint on target
neurons. The greater the degree of spatial
coherence in the transmitter area, the greater
would be the number of transmitter neurons
providing in-phase inputs over converging
projection fibers onto the dendrites of target
neurons, and the stronger would be the driving
effect in the target area.

The result of this would be that high-level
areas which manifested wave packets having
the highest spatial coherence would have the
greatest influence in organizing states of expec-
tation in the visual cortex, and those with pro-
gressively lower spatial coherence would have
progressively less influence. This form of
dynamic organization in the visual cortex
would presumably be advantageous for stim-
ulus recognition: top-down constraints on V1
and other low-level visual cortical areas would
be dominated by expectations having the
greatest certainty. For the numerous situations
in which those expectations were valid, these
constraints could enhance the speed and effi-
ciency of early stimulus processing, and, when
expectations were invalid, could play a role in
signaling the occurrence of an unexpected
stimulus.

Experimental Evidence for Visual
Constraint Sets
Experimental investigation of the operation

of constraint sets in the visual cortex ideally

would require simultaneous high-density spa-
tiotemporal recording of neuroelectric activity
from two or more visual cortical areas in sub-
jects expecting visual stimuli. However,
although the spatiotemporal patterning of
spontaneous activity in visual cortical areas has
been investigated (Freeman and van Dijk, 1987;
Arieli et al., 1995; Barrie et al., 1996; Chiu and
Weliky, 2001; Warren et al., 2001; Leopold and
Logothetis, 2003), there have been no detailed
studies, to my knowledge, relating simultane-
ous spatial activity patterns in different visual
cortical areas in a well-controlled visual per-
ceptual task. A more limited approach to the
problem is to measure the phase synchroniza-
tion of simultaneously recorded LFPs from dif-
ferent visual cortical areas in relation to visual
stimulus expectation and processing. This
approach is based on the idea that LFP oscil-
lations from different cortical areas become
phase synchronized when, during the course
of visual task processing, those areas reach con-
sensual informational states (Bressler and
Kelso, 2001).

Recent work in my laboratory has focused
on the study of simultaneously recorded LFPs
from different areas in the visual cortex of
macaque monkeys as they waited for the
appearance of a visual stimulus in a visual pat-
tern discrimination task (Bressler et al., 1993).
The task required discrimination between two
types of four-dot images in a stimulus set con-
sisting of four such images. Since the monkeys
performed the task thousands of times prior
to the sessions that were analyzed, they had a
high degree of certainty about the nature of the
impending stimulus during the wait period.
We have observed that, in this period, LFP
oscillations from specific sets of sites located
in different visual cortical areas are phase-syn-
chronized in the beta-frequency range (15–30
Hz). These results were obtained by spectral
analysis of LFP time series using the technique
of multivariate autoregressive (MVAR) mod-
eling (Bressler et al., 1999; Ding et al., 2000).
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MVAR modeling has also been successfully
applied to human electroencephalographic
(Franaszczuk et al., 1985; Moller et al., 2001)
and functional magnetic resonance imaging
(Harrison et al., 2003) data.

What is particularly relevant is that beta-
frequency phase synchronization appears to
support top-down inter-areal constraints in the
wait period of the visual discrimination task.
To study inter-areal constraints, we measured
causal influences between cortical areas using
Granger causality analysis. Granger (1969)
defined causality in terms of a bivariate autore-
gressive model: one stochastic process is causal
to a second if the predictability of the second’s
autoregressive model at a given time point is
improved by including measurements from the
immediate past of the first. In our application,
stochastic processes are considered to generate
LFP time series at different cortical sites. Two
important asymmetries in this definition should
be noted. First, the Granger causality measure
is asymmetric in time: past time values pre-
dict the present, and not vice versa. Second,
it is asymmetric in space: the stochastic
process at one cortical site may causally influ-
ence that at a second site without that second
site causally influencing the first. Following
the lead of previous authors (Bernasconi and
König, 1999; Baccala and Sameshima, 2001;
Hesse et al., 2003), we implemented Geweke’s
(1982) decomposition of Granger causality in
the frequency domain.

The interpretation of causal influence as
measured by Granger causality is very much
in keeping with the concept of inter-areal con-
straint: one area exerts an effect that limits or
confines the ongoing activity in another area.
However, a drawback of using Granger causal-
ity to measure inter-areal constraint is that it
does not indicate whether the effect is exerted
by direct or indirect pathways. Nonetheless,
Granger causality analysis can be used to dis-
tinguish among four general types of relation
between any pair of sites (e.g., x and y): (1) x is

causal to y, but y is not causal to x; (2) y is causal
to x, but x is not causal to y; (3) x and y are both
causal to each other; and (4) neither x nor y is
causal to the other.

Initial Granger causality analysis of LFPs
from the visual cortex of one monkey has pro-
vided provisional evidence for top-down inter-
areal constraints in visual expectation. LFPs
from three sites in striate cortex (V1), two in
prestriate cortex, and one in inferior temporal
cortex were included in the analysis, thus yield-
ing 30 Granger causality spectra (15 pairwise
combinations of these 6 sites x 2 directions
per pair). Figure 2 presents four representative
sets of Granger causality spectra, each from a
different site pair. The two Granger causality
spectra in each set represent the two directions
of causal influence between the two sites of the
pair. Each spectrum is displayed as a function
of frequency from 5 to 50 Hz, and represents
the mean Granger causality from recording
sessions on four different days (with error bars
representing the inter-session variability).

The two upper panels in Fig. 2 present
Granger causality spectra from site pairs show-
ing significant top-down influence in the beta
frequency range. The upper left panel illus-
trates the relation between a striate (Striate3)
and a prestriate (Prestriate2) site. It indicates
that a top-down causal influence exists from
the prestriate to the striate site (with a peak at
17 Hz) that is significantly larger than the bot-
tom-up (striate-to-prestriate) influence. The
upper right panel shows a top-down influence
from the inferior temporal (InfTemporal) site
to this same prestriate (Prestriate2) site (also
with a peak at 17 Hz) that is also significantly
greater than its bottom-up counterpart.

For comparison, the two lower panels in
Fig. 2 present examples of site pairs having rel-
atively little Granger causality in either direc-
tion. The lower-left panel shows that site
Prestriate2 exerts a top-down influence on
another striate site (Striate2) with a 17-Hz peak,
but with an exceedingly low magnitude. Also
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for comparison, the lower right panel shows
the causal influences between the InfTemporal
site and another prestriate site (Prestriate1).
Here, the bottom-up influence is slightly
stronger than the top-down, but the influences
in both directions have low magnitude and are
not significantly different.

Although preliminary, our Granger causality
analysis thus far suggests some tentative con-
clusions that may relate to inter-areal constraint
in visual expectation. First, considering all
pairwise combinations of striate, prestriate, and
inferior temporal sites, the preponderance of
significant causal influence during the wait
period of the visual discrimination task was
top-down. This finding suggests that expec-
tation may largely involve the constraint of
low-level areas by high-level areas expressing
stimulus-specific information.

Second, a pronounced path of top-down
influence was observed from the inferior tem-
poral site to a single prestriate site (Prestriate2),
and from there to a single striate site (Striate3).
A possible interpretation of this finding is that
this striate site contained neurons having recep-
tive fields that covered the most likely location
of one of the dots in the stimulus images. Given
the high level of certainty about the stimulus
set in this task, the observed path of top-down
influence may correspond to the constraint
of those striate cortical neurons by specific
prestriate and inferior temporal neurons that
represented the dot features.

Athird conclusion suggested by these results
is that oscillations in the beta frequency range
may represent a general cortical mechanism
that mediates top-down causal effects. Bekisz
and Wróbel (2003) have presented evidence

Fig. 2. Four representative sets of Granger causality spectra are displayed, each set from a different pair of cor-
tical sites in one monkey.The two Granger causality spectra in each set represent the causal influences exerted
in both directions between cell assemblies at the two sites. Each Granger causality spectrum is displayed as a
function of frequency from 5 to 50 Hz.At each frequency, the mean Granger causality over recording sessions
from four different days is displayed, with the inter-session standard deviation shown by the error bars.
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suggesting that beta-frequency oscillations in
descending cortico-geniculate pathways selec-
tively lower the threshold of LGN neurons,
thereby increasing the gain of lateral geniculate
inputs to primary visual cortex. It is reasonable
that similar beta-frequency-dependent facilita-
tory mechanisms could be used by descending
cortico-cortical pathways during expectation to
enhance the sensitivity of striate cortical cells
even before geniculo-striate inputs arrive. This
conclusion is consistent with the view of Phillips
and colleagues that top-down contextual mod-
ulation can strongly affect the processing of neu-
rons in low-level visual cortical areas by
changing their sensitivity to the primary inputs
they receive from their receptive fields (Phillips
and Singer, 1997; Phillips, 2001).

Clearly, there is a pressing need for more
extensive studies of inferential processing in
visual expectation. Technologies are currently
being developed to allow the simultaneous
recording of LFP and unit activity from far
greater numbers of electrodes than previously
possible. These methods are allowing the meas-
urement of activity patterns with greater spatial
resolution from greater numbers of cortical
(and subcortical) areas in alert, behaving mon-
keys. The MVAR methodology, including
Granger causality analysis, is potentially scal-
able to accommodate the larger numbers of
simultaneous recordings envisioned. When
used in conjunction with well-controlled
behavioral paradigms, these hardware and
software developments should make it possi-
ble to test detailed hypotheses about the nature
of inferential constraint sets in the visual and
other sensory systems. It is to be hoped that
the capacity for such detailed hypothesis test-
ing will, in turn, lead to deeper understanding
of the basic functionality of these systems.
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