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Abstract

Almost all processes that are quantified in neurobiology are stochastic and nonstationary.

Conventional methods that characterize these processes to provide a meaningful and precise

description of complex neurobiological phenomenon may be insufficient. Here, we report on the

use of the data-driven empirical mode decomposition (EMD) method to study neuronal activity in

visual cortical area V4 of macaque monkeys performing a visual spatial attention task. We found

that local field potentials were resolved by the EMD into the sum of a set of intrinsic components

with different degrees of oscillatory content. High-frequency components were identified as gamma

band (35–90Hz) oscillations, whereas low-frequency components in single-trial recordings

contributed to the average visual evoked potential (AVEP). Comparison with Fourier analysis

showed that EMD may offer better temporal and frequency resolution. The EMD, coupled with

instantaneous frequency analysis, may prove to be a vital technique for the analysis of neural data.
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1. Introduction

In neurobiology, one often has to deal with time series data that are
nonstationary. Fourier-based methods are only designed for the frequency analysis
of stationary time series, and thus have limited use in revealing the underlying
neurophysiological variations in such data. The major drawback of Fourier-based
approaches is that the basis functions are fixed, and therefore cannot capture any
time-varying characteristics of neural signals.

In the present analysis, we use a new method, called empirical mode
decomposition (EMD), that was first introduced by Huang et al. [2]. The
decomposition is based on direct extraction of the signal energy associated with
various intrinsic time scales. The technique adaptively decomposes nonstationary
signals into a set of intrinsic oscillatory modes. The components, called intrinsic
mode functions (IMFs), allow the calculation of a meaningful multi-component
instantaneous frequency by virtue of the Hilbert transform. Thus, one can
potentially localize events in time and frequency. Here, we explore the use of
EMD to study neuronal activity in the visual cortical area V4 of macaque monkeys
performing a visual spatial attention task [1].

Local field potentials (LFPs) and multiunit activity were simultaneously recorded
from multiple V4 sites with overlapping receptive fields (RFs). The monkey fixated a
central spot, and after a short delay, two stimuli were presented at equal eccentricity,
one inside and one outside the RFs. On separate trials, the monkey was required to
attend to the stimulus at one (target) location, and was rewarded for responding
when the target changed color, ignoring changes at the other (distracter) location.
Target and distracter color changes were equiprobable and distributed uniformly
between 0.5 and 5 s after stimulus onset. The result was two attention conditions:
attention inside the RF vs. attention outside the RF. The analysis described here
used LFPs from one V4 site on 300 trials correctly performed by a monkey whose
attention was directed within the RF of that site.

In the sections below, we begin with a brief introduction to the EMD method, then
describe the results of its application to V4 LFP data, and finally discuss the
neurophysiological processes that it suggests.
2. Methods

Huang’s data-driven EMD method was initially proposed for the study of ocean
waves [2], and found immediate applications in biomedical engineering [3,4]. The
major advantage of EMD is that the basis functions are derived directly from the
signal itself. Hence the analysis is adaptive, in contrast to Fourier analysis, where the
basis functions are fixed sine and cosine waves.

The central idea of this method is an iterative sifting process that decomposes a
given signal into a sum of IMFs, those basic building blocks that make up data
complex time series. A signal must satisfy two criteria to be an IMF: (1) the number
of extrema and the number of zero crossings are either equal or differ at most by one;
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and (2) the mean of its upper and lower envelopes equals zero. The first criterion is
similar to the narrow-band requirement. The second criterion modifies a global
requirement to a local one, and is necessary to ensure that the instantaneous
frequency will not have unwanted fluctuations as induced by asymmetric waveforms.
To make use of EMD, the signal must have at least two extrema—one maximum and
one minimum to be successfully decomposed into IMFs.

Given these two definitive requirements of an IMF, the sifting process for
extracting an IMF from a given signal x(t) is described as follows:
1.
 Two smooth splines are constructed connecting all the maxima and minima of x(t)
to get its upper envelope, xup(t), and its lower envelope, xlow(t); The extrema can
be simply found by determining the change of sign of the derivative of the signal.
Once the extrema are identified, all the maxima are connected by a cubic spline
line as the upper envelope. The procedure is repeated for the local minima to
produce the lower envelope. All the data points should be covered by the upper
and lower envelopes.
2.
 The mean of the two envelopes is subtracted from the data to get their difference
dðtÞ ¼ xðtÞ � ðxupðtÞ þ xlowðtÞÞ=2:
3.
 The process is repeated for d(t) until the resulting signal, c1(t), the first IMF,
satisfies the criteria of an intrinsic mode function.

The residue r1ðtÞ ¼ xðtÞ � c1ðtÞ is then treated as new data subject to the sifting
process as described above, yielding the second IMF from r1ðtÞ: The procedure
continues until either the recovered IMF or the residual data are too small, in the
sense that the integrals of their absolute values or the residual data have no turning
points. Once all of the wavelike IMFs are subtracted from the data, the final residual
component represents the overall trend of the data.

At the end of this process, the signal x(t) can be expressed as follows:

xðtÞ ¼
XN

j¼1

cjðtÞ þ rNðtÞ,

where N is the number of IMFs, rN ðtÞ denotes the final residue (signal trend), and
cj(t) are nearly orthogonal to each other, and all have zero means. Due to this
iterative procedure, none of the sifted IMFs is derived in closed analytical form.

In practice, after a certain number of iterations, the resulting signals do not carry
significant physical information, because, if sifting is carried on to an extreme, it
could result in a pure frequency modulated signal of constant amplitude. To avoid
this, we can stop the sifting process by limiting the standard deviation, computed
from two consecutive sifting results, which is usually set between 0.2 and 0.3. By
construction, the number of extrema is decreased when going from one residual to
the next, and the whole decomposition is guaranteed to be completed with a finite
number of modes.

By the sifting process, the data are represented by intrinsic mode functions, to
which the Hilbert transform can be applied. The Hilbert spectrum enables us to
represent the amplitude and the instantaneous frequency as functions of time in a
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three-dimensional plot. The resulting time–frequency distribution of the amplitude is
called the Hilbert amplitude spectrum. The two-step procedure, EMD and its
subsequent Hilbert spectral analysis, is called the Hilbert–Huang transform (HHT)
[2]. The HHT method provides not only a more precise definition of particular events
in time–frequency space than wavelet analysis, but also more physically meaningful
interpretations of the underlying dynamic processes.
3. Results

Fig. 1 shows two single-trial LFP recordings (having different lengths) from area
V4 in the macaque, their IMFs, and the instantaneous frequencies of IMF
components. Although there is variation from trial to trial in the number of
components produced by EMD, two general features are quite similar for individual
trials: (1) strong gamma-band oscillations are observed to dominate the highest
frequency (C1) component; and (2) the instantaneous frequencies reveal clear
frequency variation of each component as a function of time, reflecting the fact that
the data are not stationary.

The Hilbert transform of all IMF components gives a Hilbert spectrum. Fig. 2
(right) shows such a Hilbert energy spectrum averaged across all the trials for
attention inside the receptive field. As a comparison, the short-time Fourier
transform (spectrogram) [5] of the same data is shown in Fig. 2 (left). Both the
Hilbert spectrum and the spectrogram show general agreement about the
concentration of gamma-band energy in time and frequency. However, the Hilbert
spectrum gives a sharper and more refined definition of the energy contour, whereas
the spectrogram spreads energy over a much wider frequency range. It is evident
from Fig. 2 (right) that the Hilbert spectrum clearly depicts fluctuations of the
gamma frequencies (40–70Hz) over time.

By averaging the low-frequency components (the last three components) over
single trials, we obtain the average visual evoked potential (AVEP), as shown in
Fig. 3 at long (left) and short (right) time scales. Computing the AVEP by the EMD
(Fig. 3, dark lines) offers a striking contrast to that obtained by directly averaging
the single-trial data (Fig. 3, gray lines). The difference between these two approaches
becomes less pronounced as more trials are averaged. By verifying that a realistic
average can be computed from single-trial EMD components, it is suggested that the
analysis of these single-trial components may also prove useful in some applications.
4. Discussion and conclusions

In this paper, we have presented a novel method for the analysis of
neurobiological time series using empirical mode decomposition (EMD). We have
shown that, by using EMD, LFPs from cortical area V4 are resolved into the sum of
a set of intrinsic components having different degrees of oscillatory content. The
high-frequency components are identified as gamma band (35–90Hz) oscillations,
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Fig. 1. Two typical trials of LFP recordings (top) with different lengths, IMFs (middle), and their

smoothed instantaneous frequencies as functions of time (bottom). Left shows the result from a short

recording having seven IMFs, and right from a long recording having nine IMFs. Time 0 indicates the

stimulus onset. Note that both trials show the C1 components in the gamma frequency range. The large

variation of instantaneous frequencies of IMF components indicates that the data are not stationary. The

highest-numbered components (lowest frequency) are equivalent to the trends in the data, suggesting that

another benefit of EMD may be trend removal.
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whereas the low-frequency components are the major contributions to AVEP. The
EMD, coupled with instantaneous frequency analysis, may prove to be a vital
technique for the analysis of neural data.
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Fig. 2. Comparison between the short-time Fourier spectrum (spectrogram) and the Hilbert spectrum.

Left: The short-time Fourier spectrum for V4 recording site 1 for attention inside the receptive field. Right:

The ensemble averaged Hilbert spectrum of the same data, where the spectrum is smoothed by a 21� 21

Gaussian filter. We see that there is a wider energy smearing in the frequency space in the short-time

Fourier spectrum, which fails to give the detailed gamma frequency variations.

Fig. 3. AVEPs (left) and their expansions from 100ms prestimulus to 500ms poststimulus (right) obtained

from the EMD method (dark line) by selecting the low-frequency IMFs and that obtained directly from

data by direct ensemble averaging (gray line). We see that there is a close match between these two

approaches. The single-trial low-frequency components that went into the average might also prove useful

for applications requiring single-trial analysis.
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The decomposition technique is based on the local characteristic time scale of the
data, whose basis functions (or IMFs) used to represent the given signal are
nonlinear functions that are directly extracted from the data. Therefore, the time
scale is defined by the data per se, rather than by a pre-determined value. Fourier
analysis cannot separate these IMFs without using pre-assigned cut-off frequencies.
This is the crucial difference between EMD and Fourier-based filtering. Comparison
with Fourier analysis has shown that EMD offers much better temporal and
frequency resolution.
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In applying EMD to local field potentials in the spatial attention task, we have
found that gamma-band activity is mostly concentrated in the highest frequency
component (C1). We have also observed in some trials that the gamma activity is not
exclusively found in the C1 component due to the trial-to-trial variability. This
observation underscores the need for all of the relevant IMF components to be
interpreted together if the data being investigated do not possess a clear, physically
meaningful separation of scales.

To summarize, we have introduced here a new method for analyzing local field
potential data. The EMD offers an alternative and advantages over Fourier-based
methods. We feel that that this new technique deserves to be further tested for its
utility in the field of neural data analysis.
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