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Variability and interdependence of local "eld potentials:
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Abstract

Cortical potentials following sensory stimulation are widely analyzed as the linear combina-
tion of an invariant evoked response component, time-locked to the stimulus, and an indepen-
dent, ongoing noise component. We consider two alternative models and compare their
predictions with data. In the "rst model, neuronal populations coupled through nonlinear
sigmoid functions have their e!ective connectivity modulated by the evoked response. This
leads to fast changes in the ongoing activity measured by ensemble variance, cross-correlation,
spectral power, or coherence time functions. In the second model, trial-to-trial amplitude
variability of a stereotyped evoked response leads to similar modulation in ongoing activity.
Speci"c predictions from both models are tested against local "eld potentials recorded
intracortically from monkeys performing a visuomotor task. � 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

At least since the time of Dawson [3], cortical potentials following sensory stimula-
tion have been commonly understood as the linear combination of a stimulus-evoked
invariant response, which is time-locked to the stimulus onset, and independent,
ongoing, broadband noise activity. The trial-to-trial variability of cortical potentials is
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thus attributed to the variability of the ongoing component. We call this the signal
plus noise (SPN) model, which can be formally expressed as

Z�(t)"E(t)#��(t),

where Z�(t) is the recorded cortical potential at time t for the rth trial, with the
stimulus onset at t"0; E(t) is the stereotyped deterministic stimulus-evoked re-
sponse, and ��(t) is a `noisea component re#ecting ongoing activity that is indepen-
dent of the evoked response E(t). In practice, the average �Z�(t)�, taken over an
ensemble of trials, is considered an approximate representation of E(t) and is referred
to as the average event-related potential (AERP). Accordingly, the ongoing activity
can then be estimated by the residual time series computed by subtracting the
ensemble mean from each trial: ��(t)"Z�(t)!�Z�(t)�.
The SPN model predicts that statistical quantities computed on the residuals ��(t)
do not display temporal modulations that are event-related. Examples of such
quantities are the time-varying ensemble variance �(��(t))��, power spectral density
����( f, t)���, lagged cross-correlation ���

�
(t)��

�
(t#�)�/(�[��

�
(t)]���[��

�
(t#�)]��)���,

and coherence, the frequency-domain analogue of the cross-correlation. However,
experimental evidence from behaving animals indicates that stimulus-related modula-
tion of these quantities on a time scale of &100 ms do in fact occur [1]. It is not
clear how these temporal modulations arise or whether they relate systematically
to di!erent phases of the AERP. In this paper we explore the origins of these
modulations by studying models in which the assumptions of the SPN model are
no longer maintained. In models of neuronal populations with sigmoid activation
functions, such modulatory e!ects on the ongoing activity can arise frommodulations
of the input-output gain (local slope of the sigmoid function) that depend on the
evoked response. Predictions derived from this nonlinear model are tested on a
data set of local "eld potentials (LFPs) recorded from intracortical electrodes im-
planted at distributed cortical sites in macaque monkeys performing a visual
pattern discrimination task. In another model, the e!ect of trial-to-trial nonstationar-
ity of the stimulus response amplitude on the referredmeasures is examined and tested
on the same experimental data.

2. Methods

2.1. Experiments

All experiments were performed by Dr. Richard Nakamura in the Laboratory of
Neuropsychology at the National Institute of Mental Health. Visual evoked re-
sponses were sampled at 200 Hz from chronically implanted surface-to-depth bipolar
electrodes, in four macaque monkeys, at several (11}15) cortical sites in one hemi-
sphere. The monkeys performed a visual pattern discrimination task. The pre-
stimulus stage began when the monkey, while viewing a computer screen, depressed
a hand lever with the preferred hand. Following a random interval from 0.5 to 1.2 s,
a visual stimulus appeared for 100 ms on the screen. Two types of visual patterns were
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presented: four dots arranged as a diamond or as a line. The monkey was rewarded for
lifting the hand in response (GO) to one pattern type, while maintaining pressure
(NO-GO) to the other pattern type. The contingency between stimulus pattern and
response type was reversed on successive sessions. The present study focuses on the
initial stages of the visual evoked response to presentation of one of the stimulus
patterns (line). For each subject, an ensemble of trials, taken from multiple sessions,
was balanced for response type (GO and NO-GO). A detailed description of the
experiment and data preprocessing have been presented elsewhere [1,4].

2.2 Cross-correlation time function

The lagged cross-correlation at time t between time series from two electrodes
Z

�
and Z

�
, in an ensemble of N trials, was computed as

C
����
(t,�)"�

�
�
���

��
�
(t)��

�
(t#�)���

�
�
���

[��
�
(t)]�

�
�
���

[��
�
(t#�)]��

���
.

The cross-correlation was computed on the "ltered residual time series (lowpass,
!3 db at 22 Hz). Zero-phase forward and reverse digital "ltering was employed to
prevent phase distortion (MATLAB FIR2 and FILTFILT functions with "lter order
of 7).

2.3. Absolute phase histograms

In Section 4 a prediction is made about the phase of the Fourier component �( f, t) at
a speci"c frequency f for a time segment around t during the evoked response period.
To test this prediction, absolute phase histograms were computed as a function of
time. Speci"cally, an analysis window of 80 ms (16 data points) in length, centered at
time t, was shifted one data point at a time, starting from 50 ms before the stimulus
onset to 350 ms after. The single-trial time series within each window was Fourier
transformed (FFT) and phase was computed at the 12.5 Hz Fourier component.
A phase histogram was constructed from the ensemble of trials for each window,
channel and subject. The histogram's bin width was 2�/100. The choice of the 12.5 Hz
component was motivated by the fact that, for many of the electrodes with signi"cant
evoked response, the AERP showed a very clear characteristic oscillation with
a period around 80 ms (12.5 Hz).

2.4. AMVAR spectral estimation

Power and coherence time functions were estimated by the application of adaptive
multivariate autoregressive (AMVAR) analysis to the residual time series. Each
single-trial residual (600 ms long) was divided in 110 consecutive (shifted by one data
point) windows of 10 points (50 ms) each. A detailed description of the technique is
found in [4]. AMVAR models were "tted on time series following both temporal and
ensemble normalization.
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Before computation of the ensemble mean (AERP) and variance, each single trial
was normalized by mean subtraction and standard deviation division. For this reason,
the AERP, ensemble variance, and power spectral density are dimensionless quantities.

3. Event-related gain modulation: nonlinear model perspective

Dynamical models of neuronal population activities [5,6] relate the "eld potentials
and the pulse density (the number of spikes per unit volume) in a local neuronal
population by a nonlinear function of a sigmoid type. A resulting property of
networks of such populations is the dynamic modulation of gain and e!ective
connectivity by the network's mean activity level [10]. This modulation can a!ect
both the local population properties and the interactions among local populations.
First, transient changes in the population's mean level of activity, like that produced
by stimulus-evoked responses, can place the system at regions of di!erent gain levels
in their output sigmoid function, resulting in ampli"cation or attenuation of the
ongoing activity leading to transient changes in the time course of the ensemble
variance and power spectral density time functions of the residuals �(t). Second, the
residual time series from di!erent populations, through the transient modulation of
their shared variances, can exhibit an event-related modulation of their statistical
interdependence leading to fast transients in the time course of the cross-correlation
(or coherence) time functions.
The main predictions of the nonlinear model are twofold. First, if in the ensemble of
trials, the mean level of activity represented by the AERP tends to #uctuate beyond
the near linear range of the sigmoid function, the ensemble variance time function
�(��(t))�� will show peaks that coincide with the extrema of the AERP. The power
spectral density time function, ����( f, t)���, will show peaks in its time course and
should be more smoothed than the variance time function because of its computation
in a sliding time window. Second, this temporal modulation e!ect should occur for
a broad range of frequencies f, especially if the pre-stimulus activity is itself broad-
band. Temporal modulation of the lagged cross-correlation, ���

�
(t)��

�
(t#�)�/

(�[��
�
(t)]���[��

�
(t#�)]��)���, and spectral coherence time functions for interacting

cortical sites will be expected to exhibit peaks that coincide with peaks in the variance
time function, and with peaks in the power time function, respectively.
To check these predictions, we performed analysis on LFP data (see Methods).
Fig. 1 shows examples from four monkeys of time functions of the AERP, the
ensemble standard deviation and 12 Hz power.
It is quite apparent that the peaks of the ensemble variance and power functions
tend to coincide with extrema of the AERPs near 100 ms (negative for monkeys GE,
LU, and PE, positive for monkey TI). The 12 Hz power was employed because of
a narrow-band peak at this frequency in the power spectra for many of the recorded
sites (see Fig. 3).
Peaks in the cross-correlation functions for many pairs of cortical sites also were
temporally related to peaks in variance and to the "rst extrema of the relevant AERPs
as illustrated in Fig. 2 for one monkey. Furthermore, peaks in the post-stimulus
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Fig. 1. Examples from four monkeys of time functions of ensemble mean (AERP), variance (��) and 12 Hz
power from striate (str) and pre-striate (pstr) sites. To facilitate the comparison between the shapes, all
quantities were further normalized by their own maximal amplitude. Stimulus onset is at time 0 ms.

Fig. 2. Relations between AERP, variance, cross-correlation and coherence.
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Fig. 3. Contour plots of power and coherence time functions for a striate and pre-striate site in one of the
monkeys. Note the high levels of post-stimulus power in the 12 Hz range for the striate and pre-striate sites,
as well as the high level of post-stimulus coherence between them in the same range.

spectral coherence time function at 12 Hz showed a strong tendency to coincide in
time with the 12 Hz power peaks (Fig. 3). The time course of the 12 Hz coherence
resembles a smoothed version of the cross-correlation time function.
Thus far the predictions of the nonlinear model seem to agree with the data.
However, more careful examination of the frequency dependence of the power
modulation reveals this model's shortcomings. Fig. 4 shows the power functions in the
beta and gamma bands (lower two panels) over several of the recorded sites in
addition to the power function at 12 Hz (second panel from top). Contrary to the
prediction that the gain modulation e!ect will be similar for all frequencies, the power
functions in the high frequency bands actually decrease during the evoked response
period. Another example of this abrupt decrease in high frequency power, from the
pre-stimulus to post-stimulus period, is the strong perturbation, followed by abolish-
ment of a pre-stimulus narrow-band (&20 Hz) oscillation, resulting in lowered power
at this frequency at a parietal site (Fig. 5). This event is also associated with decreases
in coherence among several sites. Overall our results indicate that the modulation,
especially in the power of beta and gamma frequencies, could be the result of gain
modulation. However, this modulation seems to exhibit a more complex nature than
the one presented by the current nonlinear model.

4. Nonstationarity of evoked responses: Amplitude variability

The frequency speci"c nature of the observed ongoing activity modulation, coupled
with the fact that the modulation frequency is close to that of the AERP, led us to

988 W.A Truccolo et al. / Neurocomputing 38}40 (2001) 983}992



Fig. 4. Example of an AERP function and power functions from a pre-striate site. The top plot shows the
AERP. In the three bottom plots, the power spectral density function is shown. Each line represents the
power at a speci"c frequency computed from a short (50 ms) moving window (see Methods). In the second
plot (from top to bottom): 9}12 Hz (peak in power at 12 Hz); third plot: 20}24 Hz; and fourth plot:
40}50 Hz. In the last two plots, power decreases with increasing frequency.

investigate an alternative explanation for the observed modulations in variance and in
the &12 Hz power and coherence. This alternative abandons the assumption in the
SPN model that the stimulus-evoked response is invariant over trials. It is known, for
example, that the amplitude of evoked responses can vary according to states of arousal
and attention [9]. Thus, spontaneous #uctuations in these factors, could lead to
trial-to-trial nonstationarity of the evoked responses. If we assume that the evoked
response has a stereotyped shape, this variation may occur as amplitude variability
across trials, increasing the ensemble variance during the evoked response period.
The alternative model incorporating this trial-to-trial amplitude variability [2,7], refer-
red to as the Variable amplitude Signal Plus Noise (VSPN) model, can be expressed as:
Z�(t)"��E(t)#	�(t), where the variable �� represents the amplitude variability of the
response and is assumed to be time independent for a given trial; and the component
	�(t) is the ongoing activity. The terms �� and 	� are assumed to be independent.
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Fig. 5. Top plot shows a single-trial example of abrupt perturbation of ongoing &20 Hz oscillation at
a parietal site with the advent of the stimulus-evoked response (the AERP appears in the thicker line). The
single-trial amplitude has been subtracted by its own mean and normalized by its standard deviation. The
bottom panel shows the corresponding contour plot of the power spectral density time function for the
whole ensemble of trials. Peaks in power are represented by the centers. Note the shift of the peak from
&22 to &12 Hz.

Fig. 6. Examples of absolute phase histograms from the four monkeys. Abscissa: phase in radians.
Ordinate: number (N) of occurrences.
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Recast the VSPN model as Z�(t)"�Z�(t)�#��(t) where �Z�(t)�"����E(t). The
residual term then becomes: ��(t)"��E(t)!�Z�(t)�#	�(t)"(��!����)E(t)#	�(t). It
contains two components: a stimulus time locked component, S�(t)"(��!����)E(t),
and the ongoing activity 	�(t). The ensemble variance as a function of time can be
evaluated as �(��(t))��"�(��!����)��E�(t)#�(	�(t))��.
It is clear that the variance of the residual follows the shape of E�(t). In particular,
the peaks of the variance function should occur at the same time as the extrema of the
AERP. Moreover, since E(t) often resembles a damped oscillation with a clear
characteristic frequency component, the power spectrum time function, ���( f, t)���, at
this characteristic frequency will be similarly modulated, also exhibiting a signi"cant
increase during the evoked response time period, a feature that is consistent with the
data.
The validity of the VSPN model can be tested by way of a prediction that can
distinguish it from the SPN model. Speci"cally, since (��!����) #uctuates between
positive and negative values in the VSPNmodel, it predicts that the Fourier compon-
ent �( f), computed for each single trial at the main characteristic frequency f of the
AERP, will exhibit a bimodal phase distribution with the two modes separated by the
value of �. In contrast, if there is no time-locked component in the residual, as in
the SPN model or during the pre-stimulus period, a uniform phase distribution is
expected.
In fact, the computed histograms from the LFP data set (see Methods) signi"cantly
departed from the uniform distribution during the initial stages of the evoked
response, presenting strongly bimodal distributions. Typical examples are shown in
Fig. 6 for four monkeys. This result is clear evidence for the presence of the amplitude
variability proposed in the VSPNmodel. The VSPNmodel also predicts modulations
of ensemble variance and power according to the shape of the AERP, and for
interacting cortical sites, AERP-related modulations of cross-correlation and coher-
ence. A detailed analysis of these e!ects is presented elsewhere [11].

5. Conclusions

Many computational theories of brain function hypothesize fast transient stimulus-
or task-dependent changes in the interdependence between neuronal populations
[8,12]. Usually those changes are thought to be caused by fast transient changes in
connectivity strength both at short and long ranges. The common way to search for
supporting evidence for these theories is to look for event-related changes in the
ensemble variance, power spectral density, and interdependency measures like cross-
correlation and coherence. The interpretation of the causes of event-related modula-
tions of these statistical measures becomes then a fundamental problem in system
neurosciences. In this paper we have explored a nonlinear interaction perspective
where the interdependence between neuronal populations is modulated by their mean
activity levels. We have shown that nonstationarities due to amplitude variability of
evoked responses can also be a signi"cant contributor to event-related modulation of
statistical measures, even though they do not relate to changes in connectivity
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strength. We have also presented evidence that appears to contradict a main assump-
tion of the classical SPN model. Thus the standard interpretation of the AERP and of
the residual time series may require re-evaluation.

Acknowledgements

Supported by grants from CNPq (Brazil), NIMH and ONR.

References

[1] S.L. Bressler, R. Coppola, R. Nakamura, Episodic multiregional cortical coherence at multiple
frequencies during visual task performance, Nature 366 (1993) 153}156.

[2] C.D. Brody, Correlations without synchrony, Neural Comput. 11 (1999) 1537}1551.
[3] G.D. Dawson, A summation technique for the detection of small evoked potentials, Electroen-
cephalogr. Clin. Neurophysiol. 6 (1954) 153}154.

[4] M. Ding, S.L. Bressler, W. Yang, H. Liang, Short-window spectral analysis of cortical event-related
potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation,
and variability assessment, Biol. Cybernet. 83 (2000) 35}45.

[5] F.H. Eeckman, W.J. Freeman, Asymmetric sigmoid nonlinearity in the rat olfactory system, Brain
Research 557 (1991) 13}21.

[6] W.J. Freeman, Mass Action in the Nervous System, Academic Press, New York, 1975.
[7] K.J. Friston, Neuronal transients, Proc. Roy. Soc. London Ser. B Biol. Sci. (1995) 401}405.

[8] C.M. Gray, The temporal correlation hypothesis of visual feature integration: still alive and well,
Neuron 24 (1999) 31}47.

[9] G.R. Mangun, S.A. Hillyard, Modulations of sensory-evoked brain potentials indicate changes
in perceptual processing during visual spatial priming, J. Exp. Psychol. Human Perception and
Performance 17 (1991) 1057}1074.

[10] W.A. Truccolo, M. Ding, S.L. Bressler, Dynamical analysis of an oscillatory neural network,
IEEE-INNS-ENNS International Joint Conference on Neural Networks, The Institute of Electrical
and Electronics Engineers, Inc., Como, Italy, 2000.

[11] W.A. Truccolo, M. Ding, S.L. Bressler, Variability of cortical evoked responses: implications for the
analysis of functional connectivity (2001), submitted for publication.

[12] C. von der Malsburg, The correlation theory of brain function, in: E. Domany, J.L. van Hemmen, K.
Schulten (Eds.), Models of Neural Networks II, Springer, New York, 1994, pp. 95}119.

Wilson A. Truccolo-Filho is a graduate student in the Center for Complex Systems and Brain Sciences at
Florida Atlantic University. His main research interests are in the "eld of theoretical neuroscience and
functional specialization and integration in the visual cortex.

Mingzhou Ding is Professor in the Center for Complex Systems and Brain Sciences and the Department of
Mathematical Sciences at FAU. His research interests are dynamical system theory, random processes, time
series analysis and cognitive neurobiology. He has written more than 50 research papers covering a range of
topics including Hamiltonian dynamics, nonlinear oscillators, control of chaos, speech perception, and
motor coordination.

Steven L. Bressler is Professor in the Center for Complex Systems and Brain Sciences and the Department
of Psychology at FAU. He has been investigating the spatial and temporal aspects of information
processing in neuronal populations for the past 20 years. He has written more than 40 research articles and
books chapters relating to recording and analysis of electrocortical activity, both in animals and humans.

992 W.A Truccolo et al. / Neurocomputing 38}40 (2001) 983}992


