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Abstract

To track and characterize the temporal dynamics of functional interdependence among
cortical areas, we developed an adaptive multivariate autoregressive (AMVAR) modeling
approach to the analysis of multichannel event-related local "eld potentials (LFPs) in macaque
monkeys. We demonstrate the e!ectiveness of the approach by showing event-related dynamic
change of power, coherence and directed transfer functions derived from the AMVAR models
during a cognitive task. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is commonly accepted that perceptually and behaviorally relevant events are
re#ected in changes of the activity in large-scale distributed neuronal networks [2].
However, it is much less clear how these networks organize dynamically to cope with
momentary computational demands. To extract information about the many process-
ing functions arising in a cognitive task from a single or a few recording sites is
di$cult, since at any instant only a small fraction of the brain's hundreds of simulta-
neously active major cortical areas might be performing processing related to the
function of interest. The situation is further complicated by the fact that the state of
any particular cortical area and the relation between cortical areas can shift rapidly on
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a time scale of tens of milliseconds. Thus, tracking and characterization of the
temporal and spatial interactions among various cortical areas is required for
a greater understanding of the information processing of the brain. In order to
decipher the dynamic organization of cortical ensembles, we utilized a suite of tools
for event-related potential (ERP) analysis based on a recently developed technique
called adaptive multivariate autoregressive (AMVAR) modeling that has been proven
to be useful for studying short-term cognitive processing [3].

The event-related local "eld potentials (LFP) data used in this paper were recorded
from one monkey by using 15 transcortical electrodes distributed in striate, prestriate,
parietal, inferior temporal, motor and frontal areas in the right cerebral hemisphere.
The monkey performed a visuomotor pattern discrimination task with GO/NOGO
motor response of the left hand. The computer-generated stimulus set consisted of
four-dot patterns forming a diamond or line. Each pattern could be either right- or left
slanted. The LFPs were sampled at 200 Hz from around 115 ms prior to stimulus
onset to 500 ms after stimulus onset in each trial of a session. A data set of 888 trials
balanced for stimulus direction (right vs. left) was used in the analysis described below.
For a more detailed description of the recordings, see [1].

We shall show that, on a time scale of 80 ms (or even shorter), the temporal
dynamics of regional activity and inter-regional functional coupling can be clearly
revealed during the di!erent stages of visuomotor pattern discrimination. We shall
then show that the strength of the coupling and especially the direction of in#uence
between two cortical areas can be directly observed. This very remarkable observa-
tion could contribute to the understanding of signal transmission between di!erent
regions of the brain.

2. Methods

In this section we brie#y review the AMVAR modeling technique introduced in [3]
and describe powerful spectral quantities that can be derived from the AMVAR
models.

Suppose that X
t
"[x(1, t),x(2, t), ) , x(p, t)]T are p channels of LFPs. The multi-

variate autoregressive (MVAR) model is given by
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where E
t
is uncorrelated noise with covariance matrix R, and A

k
are p]p coe$cient

matrices which can be obtained by solving the multivariate Yule}Walker Equations
(of size mp2) using the Levinson, Wiggins and Robinson (LWR) algorithm [7]. The
model order m is determined by the akaike information criterion (AIC) [6].

The AMVAR analysis was applied in an 80-ms analysis window that was stepped
point by point through the task. In each window, data from all trials were used to
estimate the MVAR model. Once having obtained the model coe$cients A

k
and R, the

spectral matrix can be written [3] as

S( f )"H( f )RHH( f ), (2)
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where the asterisk denotes matrix transposition and complex conjugation. Based on
the spectral matrix, a suite of tools for spectral analysis can be derived [4] as follows:

f Auto power and partial power spectrum: The auto power spectrum of channel
i, S

ii
( f ), is the ith diagonal element of the spectral matrix S( f ). The partial power

spectrum of channel i is de"ned by

Sp
ii
( f )"DS( f )D/DM

ii
( f )D,

where M
ii

is the minor of S( f ) corresponding to S
ii
( f ).

f Ordinary coherence: The ordinary coherence between channel i and channel j is
given by
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f Directed transfer function [5]: The directed transfer function is de"ned as

c
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which measures the information #ow from channel j to i.

3. Results

The application of the tools described above to reveal the dynamic aspects of LFP
activity will be illustrated in this section.

The simplest yet most used measure is the estimate of power as a function of
frequency at each site. Thus, the power spectrum reveals how the activity at a site is
distributed in frequency. Fig. 1 demonstrates the power spectrum as a function of time
for a site in the parietal cortex. Its dynamical characteristic is starkly resolved: there is
preferred resonance around 22 Hz during the pre-stimulus period, but it shifts to
12 Hz during the early stimulus processing. Here the switch occurs in response to
stimulus presentation.

Whereas, the power spectra re#ects the regional activity of neuronal assemblies, the
ordinary coherence re#ects the inter-regional functional coupling of neuronal activity
between two cortical areas. An example of a dynamic ordinary coherence pro"le
between striate and inferotemporal sites is shown in Fig. 2, where the larger coherence
(darker region), corresponding to stronger association, occurs at around 120 ms
and 12 Hz.

A topographic map of the overall inter-site coherence is plotted in Fig. 3 which
shows a large-scale network coordinated at 12 Hz around 120 ms. The lines connect-
ing cortical sites have signi"cant coherence, with line thickness proportional to their
values.

To characterize the direction of in#uence between cortical areas, we show an
example of the DTF in Fig. 4, where the feedforward in#uence (dashed line) from
lower (striate) to higher (inferotemporal) visual cortical areas typically begins earlier
than the feedback in#uence (solid line) in the opposite direction. The signi"cance of
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Fig. 1. Power spectrum time}frequency plot for a site in the parietal cortex (E). During the pre-stimulus
period, the power is largely distributed at 22 Hz. Following stimulus presentation, it shifts to 12 Hz. The
vertical solid line indicates the stimulus onset.

Fig. 2. Ordinary coherence time}frequency plot between striate B and inferotemporal sites. The vertical
solid line indicates the stimulus onset.
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Fig. 3. Ordinary coherence reveals a large-scale coordinated 12 Hz network during visual feature extrac-
tion, demonstrating the functional coupling among multimodalities. The lines connect site pairs having
signi"cant coherence values with line thickness proportional to the values.

Fig. 4. Feedforward and feedback DTFs at 12 Hz with error bar obtained by boot-strap method. The
feedforward in#uence (dashed line) from striate site B to an inferotemporal site occurs earlier than the
feedback in#uence (solid line) in the opposite direction. The vertical lines indicate the onset times of these
in#uences; the horizontal thick bar shows the stimulus duration.

the DTF measure is shown by the error bars which were obtained by the bootstrap
resampling method [3]. An automatic procedure was developed, based on these
statistics, to identify the onset times of the in#uences (two vertical lines).
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We note that the di!erential onset times seen above are generally observable for all
pairs involving visual cortical areas. Moreover, the feedforward in#uences from lower
to higher areas always precede those of the feedback.

4. Conclusions

In summary, a suite of tools for ERP analysis was utilized to analyze multichannel
LEPs during cognitive processing. Viewed as a function of time, they allows us to
reveal various aspects of cortical dynamics. The temporal description of a cognitive
process was demonstrated by dynamic power, coherence and DTFs. The results
clearly show the e!ectiveness of the techniques by revealing task-relevant patterns of
cortical interdependency during di!erent stages of cognitive processing.
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