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Abstract

The stability of the equilibrium point (background activity) of oscillatory neural networks is
an important property for computational applications that explore the switching between
background activity and oscillatory states. Here we consider a general approach to this
problem for networks of arbitrary size. For symmetric coupling, often the case in associative
learning algorithms, we derive the stability constraints and establish explicit results for the
coupling strengths to satisfy in order that the equilibrium state is stable. ( 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Computational properties of oscillatory networks have been a focus of research
partly because their dynamics resemble the behavior often observed in the cortex and
other brain regions. Many studies explore the property that these networks can switch
between a background activity state and oscillatory states as the level of input varies
[5,6,9]. Important in those applications is the fact that, once the input pattern has
been removed, the network returns to its background or equilibrium state. This allows
a natural form of resetting, making the network ready for the next computational
cycle. To perform the requisite computations, the network is often subjected to
associative learning, which leads to changes of the coupling strengths between its
units. It becomes then fundamental to establish the range of variation of the coupling
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values that preserve the stability of the background state. We investigate this stability
problem by employing a general approach that can enable us to derive explicit
stability conditions for the coupling strengths. Our main result states that the stability
of the equilibrium state will be preserved if the individual coupling is con"ned in an
interval that can be derived following a general procedure for a given system.

2. Network model

The basic unit in our network is a neuronal population consisting of either
excitatory cells or inhibitory cells [2,8] that are organized in cortical columns. To
facilitate our analysis, we only consider mutually excitatory interactions between
columns. The equations for the N-column model read:
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Here x and y represent the local "eld potentials of the excitatory and inhibitory
populations, respectively, k

*%
'0 gives the coupling gain from the excitatory (x) to the

inhibitory (y) population and k
%*
'0 the strength of the reciprocal coupling, and

Q(x,Q
.
) is a sigmoid function [1,3], representing pulse densities converted from

x controlled by a modulatory parameter Q
.

, with Q(0,Q
.
)"0 and Q@(0,Q

.
)"1. For

simplicity, we have assumed that the inhibitory and excitatory populations have
identical rate constants a and b. The columns are indexed by n"1,2,N and the
coupling strength k

np
is the gain from the excitatory population of column p to the

excitatory population of column n, with k
np
"0 for n"p.

3. Stability of the equilibrium point for N coupled columns

From (2.1), it is easy to verify that the origin, when the input is zero, is a "xed point
which will be assumed here to be the background or equilibrium state. Below we "nd
the constraints for the origin to be stable. For a single column, the application of the
Routh}Hurwitz criterion to the linearized equation gives the following stability
condition k

*%
k
%*
(ab(a#b)2 which we assume to be always satis"ed. For the N sym-

metrically coupled columns our main result can be stated as follows: there exists
a K.!9(a, b, k
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ensures that the equilibrium point is stable. We establish this result in two steps that
include the procedure for obtaining the K.!9 for a given system.
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Step 1. The linearization of Eq. (2.1) can be written as: dS/dt"AS#KSC where S
is a 4xN matrix containing the state variables of the model and A is the linearization
matrix around the origin for a single column, i.e.,
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The 4]4 matrix K, whose only nonzero entry is k

21
"1, speci"es the connectivity

pattern and C is a N]N matrix containing the coupling values between the columns,
i.e.,

C
np
"
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The above linear system can be rewritten as: dS/dt"AS#KS[E"E~1], where E and
" are the eigenvector and eigenvalue matrices of C, respectively. Let e(n) be one of the
eigenvectors of E and k(n) its associated eigenvalue. Introducing a new vector
u(n)"Se(n) we have for each decoupled eigenmode

du(n)

dt
"[A#Kj(n)]u(n). (3.2)

The characteristic equation of A#Kj(n) is (r#a)2(r#b)2!j(n)[r2#(a#b)r#ab]
#k
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"0. Applications of the Routh}Hurwitz criterion yield a set of inequalities

for j(n). Examination of these inequalities reveals that there is a K.!9(a, b, k
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, k
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) such

that for j(n)(K.!9(a, b, k
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) the eigenmode is stable. Let j.!9 denote the largest

eigenvalue of C. Thus, the stability constraint for the entire system becomes
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We note that once the values of a, b, k
*%
, and k
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are given the value of K.!9(a, b, k
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, k
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)

is easily determined from the Routh}Hurwitz inequalities.
Step 2. To obtain the stability constraint on the coupling strength k

np
we apply

results from the theory of nonnegative matrices [4]. Let A and B be two N]N
matrices and 04A(B with the inequality de"ned in terms of entry wise comparison.
Then it can be shown that j.!9(A)(j.!9(B). Let B be the coupling matrix with all the
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entries equal to
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It is clear that j.!9(B)"K.!9(a, b, k
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, k
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). If A is any coupling matrix with
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), then j.!9(A)(K.!9(a, b, k
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). We thus establish the

main result, the stability constraint (3.1), stated at the beginning of this section.

4. Conclusions

A principled way of establishing stability conditions for large neural networks was
presented. The approach was applied to derive explicit stability constraints for the
coupling strengths in the case of an oscillatory network where each unit is described
by a second-order nonlinear ODE. The extension of the same approach to the case of
asymmetric coupling and to more general types of network units is developed in [7].
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