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Optimal human behavior depends on the expectancy of future events based on perceptual
analysis of an individual’s present situation using knowledge gained from past experience.
This article explores the proposition that the neural processes underlying perceptual
analysis, knowledge retrieval, and expectancy are all integrated through the coordination
of large-scale networks of the cerebral cortex. It is proposed that expectancy is created
when local networks expressing knowledge of the likely future events associated with an
individual’s present situation are coordinated as part of large-scale networks expressing
the totality of knowledge relations concerning the situation.
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1. Knowledge Relations in the Cerebral Cortex

The behavioral responses of simple organisms are bound to evoking stimuli. In
humans and other mammalian species, behavior has been freed from enslavement
to the immediacy of the reflex response. Although a stimulus may not lead to
an immediate response in mammals, it may nonetheless have a strong effect on
subsequent behavior by modifying knowledge relations that are stored in the brain.
These knowledge relations may then be used to guide behavior in the future.

It is generally accepted that complex large-scale anatomical networks of the
cerebral cortex, comprised of a multitude of interconnected local area networks,
provide a structural framework for the perceptual analysis of events in the external
and internal environments, the retrieval of knowledge about meaningful attributes
of those events, and the use of perception and retrieved knowledge to form expectan-
cies of future events.1–3 Yet, the manner in which the neural processes underlying
perception, knowledge retrieval, and expectancy are integrated, and in particular
how expectations arise from the interaction of perception and retrieved knowledge, is
not well understood. The premise for this article derives from: (1) evidence showing
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that perception and knowledge retrieval are complementary operations occurring in
the same cortical networks;4, 5 (2) the understanding that expectancy comes about
as the result of perceptual and knowledge retrieval operations in cortical networks;
and (3) the postulate that the coordination of local area networks, interconnected
in large-scale anatomical cortical networks, offers an attractive mechanism for inte-
grating the operations underlying expectancy with those underlying perception and
knowledge retrieval. The proposal is considered that expectations occur in coordi-
nated large-scale cortical networks as the expression of knowledge of events that
are likely within the overall context of knowledge relations evoked by perceptual
analysis of the individual’s present situation. It is proposed that the situation, con-
sisting of entities and events of the external and internal environments as well as
cognitive and emotional states of the brain, creates a situational context, and in
response the brain creates a corresponding neural context for processes within the
cerebral cortex.6

Knowledge resulting from perceptual analysis is generally thought to be stored
in the form of modified synaptic connections within local neuronal networks of the
cortex in extended large-scale cortical networks.7–10 Knowledge storage depends on
the creation of preferred pathways of communication between cortical neurons by
way of the modulation of synaptic transmission at, and changes in the numbers of,
active synapses.11 By the principle of synchronous convergence,12, 13 co-activation
in close temporal proximity of cortical neurons during perception causes them to
form functionally associated networks, so that subsequent activity in one part of
the network facilitates activity throughout the network.

Functionally associated networks are formed at different spatial scales through-
out the cortex, storing knowledge of many different kinds. In occipital, parietal
and temporal cortices, cortical networks are formed for the storage of perceptual
knowledge, and in the frontal cortex for the storage of executive knowledge. These
networks store knowledge hierarchically within the different sensory systems: con-
crete, elementary sensory knowledge is stored in low-level unimodal networks, and
knowledge of abstract facts and concepts resides in transmodel networks that sit at
the highest synaptic levels of sensory-fugal processing in anterior temporal, poste-
rior parietal, limbic, and paralimbic cortices.14, 15 A similar hierarchical structure
is thought to exist for the storage of knowledge relations in the executive system of
the frontal cortex.

2. Large-Scale Coordination of Cortical Knowledge Networks

It has been proposed that the coordination of large-scale cortical networks is critical
for normal cognitive function.3, 16 Cortical network coordination refers to the har-
monious and effective interaction of interconnected local neuronal networks. Local
cortical networks have the ability to rapidly become engaged in cooperative actions
lasting fractions of a second, and then to rapidly disengage to terminate those
actions.17 The large-scale dynamics of coordination controlling this propensity to
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rapid engagement and disengagement may result from maintenance of the cerebral
cortex in a state of self-organized criticality.18, 19 Coordination is thought to involve
both coherent activity across distributed cortical local area networks, as well as the
expression of informationally coherent spatial amplitude patterns of locally gener-
ated wave activity in those local area networks.20, 21

In the case of perception, it has been proposed that sensory input is processed
within the context of pre-existing knowledge networks,22 with the coordination of
networks occurring in hierarchical and heterarchical spatial configurations relevant
for the pattern and modality of the input. In conversation, for example, a listener
views the face and hears the speech of a speaker. Visual and auditory networks are
coordinated, as well as transmodal networks relating to the conceptual content of
the speech. The coordination of these networks expresses the knowledge used for
interpreting the speech.

There is evidence that the same distributed networks that are involved in per-
ception are also involved in knowledge retrieval.4, 23 For example, retrieving knowl-
edge concerning a previous conversation involves the same networks that were
involved in originally perceiving the conversation. According to the theoretical
framework of Damasio and colleagues,24–26 high-level transmodal networks store
conceptual knowledge in a non-explicit dispositional form. A high-level network
that stores knowledge of a concept, catalyzes knowledge retrieval by activating
lower-level sensory and motor networks that contain specific, concrete knowledge
items associated with the concept. The conceptual knowledge stored in higher-
level networks is seen as a “code” for the particular lower-level areas that must
be activated to re-establish the same patterns existing in the original percep-
tion. In keeping with this framework, but with knowledge retrieval described in
terms of “coordination” rather than “activation,” it is proposed here that the
retrieval of knowledge stored during perception involves the re-coordination of cor-
tical local area networks in the same spatial patterns that supported the original
perception.

Anatomical large-scale networks are interconnected and extended throughout
the cortex. Given that the interaction of a set of local area networks will tend to
spread to other connected networks, the coordination of that set may further coordi-
nate other assemblies that are associated with the original set.16 This property raises
the intriguing possibility that knowledge of the future may accompany knowledge of
the present. In general, knowledge retrieval occurs within the context of the present
situation of the individual. Certainly, the large-scale networks that are coordinated
for perception and action in that situation include local area networks represent-
ing entities existing in the environment. In addition, through extended association,
coordinated large-scale networks may encompass other local area networks repre-
senting knowledge associated with, but not representing, environmental entities,
including associated knowledge of likely future events associated with the present
situation. The coordination of local area networks expressing knowledge of likely
future events into large-scale networks reflecting the present situation expresses the
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expectation that such events will occur. The strength of coordination may index
the degree of likelihood of expectation.21

3. Expectancy and the Perception-Action Cycle

Among the transmodal areas at the highest synaptic levels of sensory-fugal process-
ing are regions of prefrontal and posterior parietal cortex.14 The prefrontal cortex
in particular has been implicated in the temporal organization of cognition and
the retrieval of memories required for future behavior.22, 27 Prefrontal and poste-
rior parietal cortex together have been implicated in control of the perception-
action cycle, whereby the brain creates hypotheses about the environment based
on perceptual analysis and then directs actions into the environment to test those
hypotheses.27, 28 The perception-action cycle emerges in the brain as the result of
the integration of perceptual analysis, occurring within the context of knowledge
relations stored in posterior areas including posterior parietal cortex, with the exe-
cution of action plans, transpiring within the context of knowledge relations stored
in frontal areas including prefrontal cortex.29

It often occurs in the perception-action cycle that only partial sensory infor-
mation is available about the individual’s situation, and additional information
is required before an action can be generated. In those cases, a sensory event
providing additional sensory information may be anticipated, and prior expe-
rience of the individual in similar situations may produce expectations of the
content of the anticipated sensory event. Although the neural events underly-
ing this process are not well understood, some inferences about them may be
made. First, we may assume that local area networks throughout the cerebral
cortex are coordinated for perceptual analysis, as well as for motor preparation
and execution, during the perception-action cycle. Next, from evidence that both
prefrontal and posterior parietal cortical regions exert top-down modulation on
sensory areas during the anticipation of a sensory event,30–33 we may infer that
these high-level regions serve to catalyze the retrieval of knowledge used in the
perception-action cycle by the top-down coordination of distributed local area net-
works that express specific, concrete sensory knowledge. Thus, networks in pre-
frontal and posterior parietal areas may be viewed as directing the coordination
of sensory cortical areas that perform perceptual analysis and retrieve associated
knowledge. This scenario is similar to Freeman’s proposal29 that “corollary dis-
charges [from high-level cortical control regions] prime the sensory areas by making
them selectively sensitive to . . . expected stimuli.” Critical to the present argu-
ment is the additional proposition that sensory areas are not only primed, but
also express knowledge about anticipated sensory events. Furthermore, the knowl-
edge of expected stimuli expressed in sensory areas is made consistent with the
overall context of knowledge relations underlying the perception-action cycle by
coordination of these sensory areas in the large-scale cortical networks driving that
cycle. A similar idea is found in Freeman’s proposal:29 “macroscopic self-organized
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goal states . . . include perceptions of present states [and] projections of future
states”.

4. Coordination by Phase Synchronization

Phase synchronization is a particular form of coordination in which the processes in
different cortical neuronal assemblies come into temporal registration. It has been
postulated that this temporal registration is functionally important for allowing
neurons in different assemblies to effectively interact.35–40 A large body of research
on olfactory,41–45 visual,46–51 somatosensory,45 auditory,45, 52 and motor53–57 sys-
tems suggests that the coordination of cortical neuronal assemblies occurs through
phase synchronization of neuronal assembly activity. Furthermore, extensive results
showing phase synchronization between systems has been found for somatosensori-
motor,58–60 visuomotor,61, 62 visuotactile,63 olfactorimotor,64 and limbic65, 66 func-
tion, as well as high-level cognitive function.67–69

Phase synchronization of distributed cortical neuronal assembly activity has
also been implicated in the anticipation of sensory stimuli.70, 71 Based on these
results, it was postulated that the anticipatory modulation of primary sensory cortex
by higher-level sensory areas is carried by oscillatory phase synchronization.21, 72

Supporting evidence for this postulate was found in the visual system of highly
trained macaque monkeys, that self-initiated each trial by pressing a hand lever,
indicating their readiness to perform the task. Synchronized assembly activity was
observed to carry top-down anticipatory influences from extrastriate areas to the
primary visual cortex (V1) in the prestimulus period.73

The observation of top-down anticipatory influences was based on spectral anal-
ysis performed in a 110ms prestimulus period during which the monkey attended
a blank display screen in anticipation of an impending visual stimulus. Figure 1(a)
shows the prestimulus coherence spectrum of visual Local Field Potential (LFP)
recordings from extrastriate and V1 cortical areas. Phase synchronization is indi-
cated by the peak in the beta (14–30Hz) frequency range. Figure 1(b) shows the
corresponding prestimulus Granger Causality spectra, representing top-down (from
extrastriate to V1) and bottom-up (from V1 to extrastriate) influences, with beta
peaks in both the top-down and bottom-up Granger Causality spectra correspond-
ing to the beta coherence peak. The correspondence between the highly significant
top-down Granger Causality peak and the coherence peak supports the idea that
top-down anticipatory modulation of primary visual cortex is carried by phase-
synchronized oscillations. The peak in the bottom-up Granger Causality spectrum
may be indicative of feedback from V1 to the extrastriate site.

The functional role of anticipatory top-down influences was tested by examining
the relation of prestimulus top-down Granger Causality to subsequent processing of
the visual stimulus in V1. The amplitudes of single-trial visual event-related poten-
tials (VERPs) in V1 were estimated with a template-matching procedure74 in which
the single-trial VERP waveforms were matched to the average VERP waveform
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Fig. 1. Prestimulus coherence (a) and Granger Causality (b) spectra for an extrastriate-V1 site
pair. The coherence spectrum shows a prominent peak in the beta (14–30 Hz) frequency range.
The Granger Causality spectra also show significant beta peaks in the top-down and bottom-up
directions. The p < 0.01 significance thresholds are denoted by dotted lines for both the coherence
and Granger Causality spectra.
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Fig. 2. A representative single-trial VERP (dashed line) from a recording site in primary visual
cortex (V1) is shown superimposed on the average VERP (solid line) computed over an ensemble
of trials from the same site. The average VERP was treated as the “template” for template
matching. The vertical lines mark the boundaries of the period used for the template-matching
procedure. The amplitude of the single-trial VERP is 32% greater than that of the average VERP,
and precedes it by 3ms. The single-trial VERP amplitude was normalized to remove possible gain
differences between the recording sessions that were combined to form the ensemble. Time zero is
the onset time of the visual stimulus, which lasted 100 ms.

(the “template”) in a 110ms window extending from 35ms to 145ms poststimulus
(Fig. 2). The ensemble of trials was then ordered according to the single-trial V1
VERP amplitude and divided into subensembles of 400 trials, with 75% overlap.
The top-down and bottom-up Granger Causality spectra and the mean V1 VERP
amplitude were calculated for each trial subensemble. The Spearman correlation
was then computed between the magnitude of top-down and bottom-up Granger
Causality peaks and the average V1 VERP amplitude over all subensembles.

Figure 3 shows the relation of top-down (a) and bottom-up (b) prestimulus beta-
range Granger Causality with poststimulus V1 VERP amplitude. The correlation
between Granger Causality and V1 VERP amplitude was found to be significant
in the top-down (ρ = 0.49, p < 0.005), but not the bottom-up (ρ = 0.20, p <

0.1), direction. The significant correlation for the top-down influence indicates that
the magnitude of prestimulus top-down beta-range Granger Causality to the V1
site predicts the early VERP amplitude at that site. Thus the magnitude of the
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Fig. 3. The relation of the mean subensemble VERP amplitude with the magnitude of the
subensemble top-down beta-range Granger Causality peak (a), and with that of the subensemble
bottom-up beta-range Granger Causality peak (b). The Spearman correlation is significant for the
top-down relation (ρ = 0.49, p < 0.005), but not for the bottom-up relation (ρ = 0.20, p < 0.1).
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top-down influence to a V1 neuronal assembly during anticipation of the visual
stimulus predicts the magnitude of that assembly’s response to the stimulus.

5. Conclusions

The main empirical conclusion here is that top-down anticipatory modulation of
sensory cortex is carried by phase-synchronized oscillatory activity of neuronal
assemblies. The result was derived from the study of coordinated LFP activity in
the visual cortex of monkeys that were highly trained to expect (and respond to) a
small set of visual stimuli. The limited examples demonstrated here reveal this coor-
dinated activity in the form of coherence and Granger Causality spectra between
extrastriate cortex and V1. Analysis of a more extended set of cortical recordings
from the same monkeys has revealed that this extrastriate-V1 coordination reflects
a large-scale coordinated network that encompasses sites in widely distributed cor-
tical areas. Because of the monkeys’ extended prior exposure to this stimulus set,
it can be inferred that they possessed knowledge that the stimuli in the set were
likely future events once they self-initiated the task trial. These empirical findings
are thus taken to support the main proposition of this report that expectancy of
the likely events associated with an individual’s present situation are coordinated
as part of large-scale cortical networks. It has previously been proposed that large-
scale networks in the cortex manifest global neurocognitive states.75 Although very
little work has been done to examine the dynamics of such large-scale neurocog-
nitive states in the cerebral cortex, we infer that expectation may be described
dynamically as a large-scale cortical state vector entering the vicinity of a stable
attractor in state space.76
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