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potentials and magnetic fields generated by ensembles of synchro-
nously active neurons, either spontaneously or in response to external
stimuli, provide information essential to understanding the processes
underlying cognitive and sensorimotor activity. Interpreting record-
ings of these potentials and fields is difficult because detectors record
signals simultaneously generated by various regions throughout the
brain. We introduce a novel approach to this problem, the differen-
tially variable component analysis (dVCA) algorithm, which relies on
trial-to-trial variability in response amplitude and latency to identify
multiple components. Using simulations we demonstrate the impor-
tance of response variability to component identification, the robust-
ness of dVCA to noise, and its ability to characterize single-trial data.
We then compare the source-separation capabilities of dVCA with
those of principal component analysis and independent component
analysis. Finally, we apply dVCA to neural ensemble activity re-
corded from an awake, behaving macaque—demonstrating that
dVCA is an important tool for identifying and characterizing multiple
components in the single trial.

I N T R O D U C T I O N

Neurophysiology relies on the analysis of electric potentials
or magnetic fields produced by the brain in response to sensory
stimulation or in association with its cognitive and/or motor
operations. These fields arise from transmembrane current flow
produced by multiple ensembles of synchronously firing neu-
rons. The underlying neural ensembles, also called generators
or sources, are often dynamically coupled in unknown ways
that are of interest to the experimenter. As a result of the
property of linear superposition of electric currents and mag-
netic fields, both invasive and noninvasive electroencephalo-
graphic (EEG) recordings and magnetoencephalographic

(MEG) recordings reflect linear mixtures of the activity from
these sources in addition to ongoing background activity and
sensor noise. Thus even in single-trial recordings, the individ-
ual responses of each of the sources are mixed within the
recorded signal, making it difficult to identify them and to
study their dynamical interactions. Furthermore, it is standard
practice to enhance the signal-to-noise ratio by averaging
event-related potentials (ERPs) or fields (ERFs) over experi-
mental trials. However, implicit in this construction is the
assumption that the evoked waveform is constant over trials
and that any variability represents noise. In this practice, the
possibility of assessing trial-dependent effects in the data is
unobtainable.

The last decade has seen great developments in blind source
separation (BSS) and independent component analysis (ICA)
techniques, such as Infomax ICA (Bell and Sejnowski 1995),
FastICA (Hyvärinen and Oja 1997), and second-order blind
identification (SOBI) (Belouchrani et al. 1993). These algo-
rithms have been useful in identifying sources in EEG and
MEG signals using both ensemble-averaged data (Makeig et al.
1997; Särelä et al. 1998; Vigário et al. 1999) and single trials
(Cao et al. 2000; Jung et al. 1999; Makeig et al. 2002; Tang et
al. 2002). However, along with its strengths, each technique
has limitations, and often these limitations can be addressed.
ICA, for example, allows reliable source (component) separa-
tion with minimal a priori assumptions and constraints. Its
limitation is that although trial-to-trial variability can assist in
separation, these effects are not explicitly considered and
quantified, and these are substantial opportunities missed.
Also, like many other techniques, ICA solves for maximal
independence of components, despite the fact that components
are often dynamically coupled. Thus although ICA may be
reasonable for source separation per se, it is not explicitly
designed to quantify the dynamical interactions between the
neuronal ensembles that generate the components. This is one
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of the most interesting and important aspects of the behavior of
brain function and a major focus of our efforts.

Here we describe a model of the sensory-evoked neural
response that is more realistic than previous models in that it
explicitly models trial-to-trial amplitude as well as latency
variability in single-trial responses. Using this model, we
derive the differentially variable component analysis (dVCA)
algorithm, and demonstrate how different variability patterns
in neural ensemble activity can be used to separate and identify
their component signals. Using simulations, we evaluate not
only the ability of dVCA to characterize single-trial responses,
but also its robustness to noise. We also compare the specific
capabilities of dVCA with two other popular decomposition
techniques: principal component analysis (PCA) and ICA.
Finally, we demonstrate how to apply dVCA by analyzing
neuronal ensemble responses recorded intracortically in ma-
caque V1. Throughout this paper we emphasize the ability of
the dVCA algorithm to 1) more accurately account for ob-
served trial-to-trial variability, 2) use differential variation in
the amplitudes and latencies to separate and identify sources,
3) avoid enforcing statistical independence of the sources, and
4) more accurately estimate the ongoing background activity. It
also merits emphasis that, in addition to its uses in ERP and
ERF source separation, the dVCA algorithm is a generally
useful instrument for defining and analyzing single-trial neural
responses.

M E T H O D S

Modeling evoked responses

Trial-to-trial variability of evoked responses can conceivably take
many forms: latency shifts, amplitude variation, and even waveshape
changes. Our earlier findings have shown that the observed variability
can be well described by amplitude and latency variations of stereo-
typic response waveshape components (Truccolo et al. 2002). Of
course, waveshape variability also exists, but robust single-trial am-
plitude and latency estimates are nonetheless obtainable with the
assumption of fixed component waveshapes. For this reason, we
model the response evoked from a single neural ensemble as a
stationary stereotypic waveshape that can vary in amplitude and onset
latency from trial to trial. We write the response evoked in a given
trial mathematically as �s(t � �), where the function s� represents
the waveshape of the response as a function of elapsed time t, �
represents the trial-specific amplitude scaling factor of the response,
and � represents the trial-specific onset latency shift. Furthermore,
when multiple neural ensembles are engaged in the response to a
stimulus, the activity of each ensemble is represented in the model as
a separate waveform with a distinct trial-specific amplitude and
latency shift. It is important to note that by modeling both the
waveshape and its amplitude and latency, there is degeneracy in
the model because an overall change in amplitude scale or latency
shift can be described either by the amplitude and latency param-
eters or by the overall scale and shift of the waveshape. To
eliminate this degeneracy, we take as a convention that the ensem-
ble average amplitude scaling factor of the response over the
recorded trials is unity, ��� � 1, and the ensemble average latency
shift is zero, ��� � 0.

In many experimental paradigms, investigators use several detec-
tors positioned at different locations to measure the evoked responses
of neural ensembles. The degree to which a detector records a signal
evoked by a particular source depends on many factors including the
position and orientation of the source relative to the detector. To
describe this source–detector coupling, we introduce a coupling

matrix C, where the matrix element Cmn describes the degree to which
the mth detector detects the nth source. This coupling matrix is known
as the mixing matrix in the source separation literature and as the
lead-field matrix in electrophysiology.

During the course of an experiment the investigator records re-
sponses to multiple presentations of a stimulus. Each presentation is
typically called a trial. For the rth recorded trial, we model the data
x(t) recorded by the mth detector in component form as

xmr�t� � �
n�1

N

Cmn�nrsn�t � �nr� � �mr�t� (1)

where n indexes the N neural sources activated by stimulus presen-
tation, Cmn is the coupling between the mth detector and the nth
source, �nr is the amplitude scale of the nth source during the rth trial,
�nr is the latency shift of the nth source during the rth trial, sn� is the
waveshape of the nth source, and �mr(t) is the unmodeled part of the
data recorded in the mth detector during the rth trial. The unmodeled
part of the data record is typically a combination of the recorded
background activity along with any noise in the detector. For sim-
plicity, we assume that �mr(t) has zero mean. Thus Eq. 1 describes the
data recorded in a given detector during a given trial as a sum of the
signals generated by each of the N neural sources appropriately scaled
in amplitude and shifted in latency for that trial and also scaled
according to the coupling between each source and that detector plus
the signals that we do not yet understand or care to understand. We
call Eq. 1 the multiple component event-related potential (mcERP)
model of evoked activity.

By adopting the mcERP model of the evoked responses, we
implicitly adopt a well-defined set of characteristics capable of de-
scribing a neural source. The term “component” refers to the wave-
shape describing the temporal activation pattern of a particular neural
source. Because no information regarding the spatial locations or
distributions of the neural sources has gone into the model, this model
does not distinguish between two spatially distinct groups of neurons
that produce the same waveshape varying identically with latency and
proportionally in amplitude. However, in such a situation, examina-
tion of the estimated coupling matrix would reveal two spatially
distinct sources if there are detectors positioned within the proximity
of each source. The major advantage obtained by estimating the
coupling matrix is that practical experience in conjunction with
previously obtained physiological or anatomical data suggesting
source distributions can be used to independently evaluate the solu-
tions obtained with this technique. The disadvantage, aside from
withholding information from the algorithm, is that there remain two
degeneracies in the model. First, there is no specified order to the
sources. Second, there is no specified scale for the coupling matrix;
one could halve the coupling matrix elements while doubling the
magnitude of the source waveshapes and obtain an equally valid
solution. These degeneracies, which are present in every other linear
source separation algorithm, including PCA and ICA, pose no diffi-
culties to the interpretation of the results. In our implementation we
have chosen to normalize the columns of the coupling matrix so that
the maximum value is equal to one. However, it should be noted that
this scaling degeneracy could be remedied by adopting a physical
model of the source currents (Knuth and Vaughan 1998). With these
conventions defined, it is a straightforward matter to map the param-
eter values estimated by the dVCA algorithm back to a model of the
single-trial response. A single-trial component is found by applying
the single-trial estimates to the relevant portion of the mcERP model
above, which is simply �nrsn(t � �nr). The single-trial ERP measured
by the mth detector can be found by summing the contributions from
each component, ¥n�1

N Cmn�nrsn(t � �nr), which gives a noise-free
estimate of the recorded evoked response.

One last notable strength of the mcERP model is that no component
waveform is required to be present in every trial. In other words, a
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single-trial amplitude of zero is allowable for any component. This is
important because it acknowledges the empirical fact that in a given
site in the brain, the trial-to-trial response is not stereotypic. The
general resemblance of most single-trial responses to the averaged
waveform arises from the fact that in most experimental trials, similar
configurations of neural elements are activated with trial-varying
latency and amplitude; by the same token, the occasional extreme
deviation from the “stereotypic” waveform shows that essentially
different ensemble configurations can substitute on a subset of the
trials. By not assuming a priori that identical neural processes are
active during every trial of the experiment, one is able to investigate
the possibility that different processing strategies are used by the brain
during the course of the recordings.

The dVCA algorithm

Bayesian probability theory is used to derive equations that use the
recorded data to identify the maximum probability estimates of the
mcERP model parameters in Eq. 1. Like PCA and ICA, each source
waveshape is modeled as a pointwise time series where each point of
the time series is considered to be a model parameter. The entire set
of model parameters consists of these time-series points along with
the mcERP parameters described above. Equations are obtained for
each model parameter and an iterative fixed-point method is used to
solve them jointly. The implemented algorithm is hierarchical in the
sense that components are added one by one as the data analysis

progresses. Figure 1 provides a flowchart describing the analysis
stages used by the algorithm. In the text that follows, we present a
basic outline of the operation of the algorithm. A more detailed
description, including derivations of the equations, can be found in
APPENDIX A.

The key idea is that the algorithm starts with the ensemble average
ERP, which is widely accepted in the community as a meaningful
description of the ERP. The average ERP can be considered to be a
one-component model of the data. Our algorithm improves on this
result by estimating the amplitude and latency of this component
waveform in each of the single trials. With this new information in
hand, an amplitude-weighted and latency-shifted average of the sin-
gle-trial responses is then computed. This result is iterated an appro-
priate number of times, resulting in a refined estimate of a one-
component model of the data. This one-component model can be
subtracted from the data, resulting in residual signals—called the
“residuals ” for short—that represent aspects of the recordings that
were not captured by the model. If the residuals contain signals with
significant temporal or spatial structure, another component can be
added to the model. Both components are then jointly refined, allow-
ing us to resolve details in the waveshapes that are not visually
apparent either in the raw data or in the average ERP. This process of
adding components is repeated until the data are well described. This
optimization heuristic is commonly referred to as a hierarchical
iterative fixed-point algorithm.

The dVCA algorithm improves on the average ERP in two ways: by
extending our ability to address single-trial responses and trial-to-trial

FIG. 1. Flowchart describing the differentially variable
component analysis (dVCA) algorithm. This flowchart de-
scribes the implementation of the dVCA algorithm, which
relies on Eqs. A12, A16, A19, and A13 described in APPEN-
DIX A. It is based on a hierarchical model, which begins with
a single-component model and adds components until the
investigator chooses to stop.
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variability, and by generalizing the one-component stereotypic wave-
shape model of the average ERP to a multiple-component stereotypic
waveshape model. The trial-to-trial variability addressed by dVCA
includes only single-trial amplitude and latency variation. Although
retaining the concept of a stereotypic component waveshape from the
average ERP may be seen as a liability, the state-of-the-art in signal
processing does not allow us to consider radical multiple-component
waveshape variations because that approach could easily lead to an
algorithm that is overly sensitive to noise. Below, we will apply the
dVCA algorithm to field potential data recorded from cortical area V1
of the macaque and demonstrate how dVCA can be used to address
significant waveshape variations.

The fact that this algorithm is derived from a signal model that
describes the recordings as a mixture of components implies that
dVCA has something in common with techniques such as factor
analysis (FA), the more familiar principal component analysis (PCA),
and the more recent independent component analysis (ICA). This is in
fact the case, and by reverting to a more simplistic signal model,
assigning the appropriate prior probabilities and marginalizing over
the source waveshape parameters one can derive, using the same
methodology described in APPENDIX A, these more familiar techniques
(Knuth 1997, 1999, 2005). PCA assumes that the source amplitudes
are Gaussian-distributed and chooses a solution such that a single
source will contribute as much of the signal variance as possible. The
result is an unphysical separation, which is constrained only by this
unnatural variance assumption. ICA allows for more general assump-
tions regarding the distribution of the source amplitudes. ICA basi-
cally assigns non-Gaussian priors to the source amplitude distribu-
tions. By assuming that the sources are independent (or equivalently
that these priors are factorable) and that there are as many sources as
detectors, an integration over all possible source waveshapes can be
performed, resulting in a straightforward learning rule for the coupling
(mixing) matrix. Mixed signals will tend to have more Gaussian
amplitude distributions, so ICA strives to find a separation matrix that
minimizes the Gaussianity of the results, thus optimally separating the
signals.

dVCA relies on the prior information about the phenomenon of
trial-to-trial variability. This information is incorporated by explicitly
introducing new relevant model parameters into the signal model (Eq.
1). In the derivation, we assume that we are ignorant about the values
of the model parameters and therefore assign uniform priors to the
source waveshapes, single-trial amplitudes, and single-trial latencies.
One can also view this as an assignment of a multidimensional
uniform density, which is maximally ignorant, but also conveniently
factorable, because the probability of each variable is independent of
one another. However, because it is a multidimensional uniform
density, any combination of values of amplitude and latency from any
source is as equally probable as any other. So the algorithm is not
biased toward any particular values of amplitude or latency given the
amplitude or latency of the same source in another trial or another
source altogether. In this sense, dVCA does not impose any condition
of independence in the basic assumptions underlying the algorithm.
All possibilities are equally probable.

Because dVCA makes no explicit assumptions regarding indepen-
dence, this algorithm has the ability to identify distinct sources with
similar waveshapes or similar amplitude and latency variability pat-
terns. We have performed some early experiments demonstrating the
ability of dVCA to identify coupled sources and sources with similar
waveshapes (Shah et al. 2003). Not surprisingly, if the sources have
similar waveshapes, but different trial-to-trial variability patterns, they
can be separated. However, sources with identical waveshapes and
identical trial-to-trial variability are inseparable. Later, we demon-
strate using field potential data recorded from cortical area V1 of the
macaque that coupled sources can be identified. Specifically, we
identify amplitude–amplitude coupling across components, latency–

latency coupling across components, and amplitude–latency both
within and across components.

R E S U L T S

Simulations

The dVCA algorithm was evaluated using synthetic data to
demonstrate the utility of amplitude and latency variability in
the identification of multiple evoked components and also to
assess the robustness of the algorithm in the presence of noise.
We simulated electric field potentials recorded from a linear-
array multielectrode with 15 channels spanning the cortical
laminae in V1. Specifically, we designed three synthetic ERP
components (Fig. 2A) sampled at 2 kHz to approximate the
neural ensemble response to diffuse red-light stimulation in
macaque V1 (Givre et al. 1995; Mehta et al. 2000). Figure 2B
shows the field potentials derived from the noise-free synthetic
data as the detectors in the multielectrode would record them.
Superimposing the field potentials from the three sources and
approximating the second spatial derivative of this summed
activity yields the current source density (CSD) profile shown
in Fig. 2C. The value of the CSD technique (Freeman and
Nicholson 1975; Nicholson and Freeman 1975; Mitzdorf 1985;
Tenke et al. 1993) is evident as it both localizes the neural
activity at the current sources and sinks, and eliminates vol-
ume-conducted, or far-field, activity (i.e., see component c3
below). Many of our results will be displayed using the CSD
profile. We emphasize that dVCA works with the recorded
field potentials only, and that displaying the CSD profile is
used only to emphasize the quality of our results by retrieving
accurate (in simulations) or physiologically reasonable (in real
data) localizations of neural activity.

The first component, c1, represents the initial biphasic acti-
vation in lamina 4, followed by the second component, c2,
representing activation in the supragranular layers. The third
component, c3, represents a far-field source that volume con-
ducts to the electrode channels and is observable in the field
potential waveforms (Fig. 2B), but it is absent from the CSD
plot (Fig. 2C) since the coupling between this component and
the channels is nearly constant (linear with a small slope). The
spatial distribution of component amplitudes across the elec-
trode array is defined by the coupling matrix, which was
chosen to simulate the expected spatial distributions of the
neural ensembles (current source-sink pairs) located in lamina
4, in the supragranular layers, and at a distant site. Although
this is a simplistic model, it captures features we expect to see
in actual field potential recordings.

In the majority of simulations, uncorrelated Gaussian-dis-
tributed, additive noise was introduced, as in Eq. 1. The
signal-to-noise ratio (SNR) is different for each component
from trial to trial because the three simulated components have
different single-trial amplitudes. For this reason, we specify the
trial-average SNR for each component. Since the mean ampli-
tude scale of the components is set to one, this is easily
computed from the standard deviation (SD) of the detected
component waveshape divided by the SD of the additive noise

SNRcomponent � 20 log10

�component

�noise

(2)

where �component � 0.876, 0.174, and 0.935 for c1, c2, and c3,
respectively. Because we are using multiple detectors, the
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values of �component were found by multiplying the SD of the
waveshape �wave by the L2 norm of the coupling coefficients
for that component. For the nth component, this is

�componentn
� �waven��

m�1

M

Cn
2 (3)

We will often also provide the SNR ratio, which is a ratio of
the component and noise SDs.

The performance of the dVCA algorithm was evaluated in
several ways. First, the ability of dVCA to separate the three
mixed signals was measured using a unit-normalized Amari
error (Amari et al. 1996), which describes the degree of
component mixing (details can be found in APPENDIX B, Eq.
B5). A completely separated solution gives an Amari error of
zero, whereas the worst case mixture gives an Amari error of
one. For three signals of equal variance, an Amari error of
0.065 corresponds to 10% mixing.

Second, the ability of dVCA to estimate each component
waveshape was evaluated by calculating the fractional root-
mean-square (RMS) error of the estimated waveshape as com-
pared with the correct waveshape. Note that before this com-
parison could be made the estimated components ŝ(t) needed to
be rescaled and permuted because of the indeterminacy de-
scribed by Eq. B1. For the jth component

Ewave
j �

��
t�1

T

�sj�t� � ŝj�t��
2

��
t�1

T

�sj�t��
2

(4)

Finally, the accuracies of the amplitude and onset latency
estimates for the jth component were evaluated by computing
the deviation from the correct values for the entire set of
single-trial estimates using

Eamp
jr � �jr � �̂jr (5)

and

Elat
jr � �jr � �̂jr (6)

and then computing the range of values contained within the
68th percentile. This not only provides a measure of accuracy,
but also allows us to compare the advantage of employing
dVCA over the standard technique of averaging. The key idea
is to note that if the trial-to-trial variability can be summarized
by the SD (�), then the error one obtains by working with the
average ERP necessarily must be greater than or equal to �
because it does not account for trial-to-trial variability. Thus
errors in the dVCA estimates below the SDs of the variability

FIG. 2. Synthetic data used in the simulations.
Synthetic data used herein are derived from a
model of expected responses in macaque V1 when
stimulated by a red-light flash. A: these data rep-
resent electric field potentials recorded from a
15-channel linear-array multielectrode spanning
the cortical laminae in V1. Thalamic input acti-
vates the spiny stellate cells in layer IV, generat-
ing a biphasic field potential [component 1 (c1)].
Feedforward connections from the stellate cells
activate the pyramidal cells in the supragranular
layers [component 2 (c2)]. Component 3 (c3)
models a signal generated by a far-field source
that volume conducts to the multielectrode array.
B: noise-free synthetic field potentials generated
by these 3 components are recorded differently by
each electrode in the multielectrode array. Notice
that the polarity and amplitude of the recordings
depend on the physical positions of the current
sources and sinks in the cortical laminae (see C).
C: current source density (CSD) of the summed
field potentials in B is computed using an approx-
imation of their second spatial derivative. CSD
focuses the activity at the location of the current
sinks (negative) and sources (positive) relative to
the detector positions. This technique clarifies the
laminae in which the field potentials are gener-
ated. Notice that far-field sources do not appear in
the CSD.
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represent a significant improvement over the standard assump-
tion that amplitudes and latencies do not vary.

Effects of amplitude variability

We first demonstrate that amplitude variability aids in the
separation process. Eleven experiments using synthetic data,
each consisting of 50 simulated trials from the source compo-
nent configuration described above, were performed where the
degree of variability of the single-trial amplitudes was con-
trolled. To generate the synthetic data, 50 single-trial ampli-
tudes for each component were randomly sampled from a
log-normal distribution with a sample mean �amp � 1.0 and
sample SDs of �amp � {0, 0.0625, 0.125, 0.1875, 0.219, 0.25,
0.375, 0.5, 0.625, 0.75, 1.0} for each of the 11 sets of synthetic
data. Because latency variability was not simulated in this set
of experiments, the single-trial latency parameters were set to
zero (�jr � 0). Given the component waveshapes, the coupling
matrix, and the single-trial amplitudes and latencies, Eq. 1 was
used to generate the synthetic data. The SD of �noise � 0.217
was used for the noise, resulting in SNRs of 12.1, �1.9, and
12.7 dB (4.04, 0.80, and 4.31 in terms of SD ratios) for c1, c2,
and c3, respectively. The dVCA algorithm was used to esti-
mate the coupling matrix, component waveshapes, and single-
trial amplitudes and latencies from the synthetic data. Because
the true parameters were known, the performance of the
algorithm was evaluated as previously described.

Without amplitude variability, dVCA was unable to sep-
arate the components as demonstrated by the high Amari
error of 0.219 (see Fig. 3A). A small degree of amplitude
variability, �amp � 0.25, renders the problem solvable as
demonstrated in Fig. 3A, where the Amari error drops below
0.05 corresponding to a fractional RMS waveshape error of
	10% (SNR 
 23 dB) for three equal variance components,
and remains relatively constant with increasing variability
hovering about an average of 0.028. Figure 3B shows the
dramatic improvement in the waveshape estimation as quan-
tified by the RMS errors, which rapidly drop to levels
commensurate with the SNRs of the individual components.
The effect of amplitude variability on the single-trial am-
plitude estimates (not shown) remained relatively constant
for �amp 	 0.25 with mean SDs of the errors in the
single-trial amplitude estimates of 0.014, 0.076, and 0.010
and for c1, c2, and c3 respectively. This is well below the
SD of the amplitude variability. It should be noted that even
though the true onset latencies were set to zero in these

simulations, dVCA still estimates these quantities. The
errors of the onset latency estimates (not shown) also
remained relatively constant with respective mean SDs of
0.417, 2.059, and 1.000 ms.

Finally, experiments were repeated with normally distrib-
uted single-trial amplitudes rather than a log-normal distribu-
tion. Negative amplitude values were discarded and the sample
set was controlled to maintain a sample mean of �amp � 1.0
and the specified sample variance. The two analyses gave
similar quantitative and qualitative results.

Effects of latency variability

Next we demonstrate that latency variability also aids in the
separation process. Eight experiments using synthetic data,
each consisting of 50 synthetic trials from the source compo-
nent configuration described above, were performed where the
variability of the single-trial latencies was controlled. In these
experiments there was no amplitude variability (�jr � 1). To
generate the simulated data, 50 single-trial latencies were
randomly drawn from a Gaussian distribution with sample
mean �lat � 0 and sample SDs of �lat � {0, 1.25, 2.5, 3.75,
5.0, 6.25, 7.5, 10.0} ms for each of the eight simulations. The
same noise variance was used as in the amplitude variability
case.

Amari error was found to decrease with increasing latency
variability (Fig. 3C), dropping to 	0.05 with �lat 	 7.5 ms.
Component waveshape estimation was also found to improve
with increasing onset latency variability, although the effect is
not nearly so dramatic as in the amplitude variability case.
Moreover, with the onset latency variability ranges considered,
the accuracy of the algorithm’s estimates never attained the
levels found with amplitude variability. This difference be-
tween the effects of amplitude and latency variability was not
attributable to the sampling distributions because we controlled
for both the sample mean and variance. Instead, the most likely
reason for this effect is the fact that in terms of signal ampli-
tude, amplitude variability is a first-order effect, whereas la-
tency variability, when written as a Taylor expansion, is a
second-order effect dependent on the first derivative of the
waveshape. Although the amplitudes were all set to one in the
simulated data, dVCA still estimates these quantities. Again,
these amplitude estimate errors were low for �lat 	 7.5 ms with
the mean SD of the errors in the estimates equal to 0.017,
0.077, and 0.011 for c1, c2, and c3, respectively, which is on
the order of the errors seen in the amplitude variability trials.

FIG. 3. Amplitude and latency variability aid component
identification. A: Amari error, which measures the degree of
signal separation, decreases with increasing amplitude variabil-
ity where �amp 	 0.25 is sufficient for signal separation. B:
waveshape root-mean-square (RMS) errors also indicate the
importance of amplitude variability. C: Amari error decreases
with increasing latency variability, where �lat 	 7.5 ms is
necessary to achieve effective separation. D: increasing latency
variability also improves the estimate of the component wave-
shapes, but not as dramatically as amplitude variability.
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Onset latency estimate errors also remained relatively constant
with SDs of 0.250, 2.250, and 1.142 ms, respectively.

Sensitivity to additive white Gaussian noise

In this first noise study we examined the robustness of
dVCA in the face of additive white Gaussian noise by simu-
lating 12 different noise levels. Each simulation relied on 50
trials of synthetic data where variability in both the amplitudes
and latencies of the components was modeled. Variability
ranges were in accordance with those observed in our previous
investigations (Truccolo et al. 2001). Single-trial amplitudes
were drawn from a log-normal distribution with sample mean
�amp � 1.0 and sample SD �amp � 1.0. Single-trial latencies
were drawn from a normal distribution with sample mean
�lat � 0 and sample SD �lat � 10.0 ms. The synthetic signal
from each electrode (detector) was contaminated with a
unique white Gaussian noise waveform, which is specified
by �mr(t) in Eq. 1.

The component-specific SNRs and resulting Amari errors,
listed in Table 1 and shown in Fig. 4A, indicate a relatively
smooth increase in Amari error with decrease in c1 SNR.
However, a significant jump in error occurs as the SNR of c2
passes below �17 dB (note that this corresponds to a c1
SNR � �3 dB; see figure caption), suggesting that an SNR
level of about �17 dB may denote a transition from a useful
data set to a prohibitively noisy one. These results can be
compared with the waveshape fractional RMS errors, which
grow exponentially with decreasing SNR (Fig. 4B). The errors
reach 1.0, signifying that the deviations in the estimates are on
the scale of the waveshape itself, at about �15 to �17 dB for
the localized components and about �17 dB for the far-field
component. Figure 4E shows waveshape results for four dif-
ferent noise levels, providing a better idea of the quality of the
separation under these conditions. Most noteworthy is the fact
that the majority of the waveshape error arises from the
high-frequency contamination of the Gaussian noise rather
than mixing of the components. Much of this could easily be
improved by incorporating a prior probability describing the
expectation that components should be slowly varying with
respect to typical sampling rates, which would effectively
low-pass filter the results. As we will demonstrate, explicitly

filtering a real data set can remove important signals, and alter
others (Bogacz et al. 2002; Mocks et al. 1986). Regardless,
some distortion in the positive phase of c1 can be seen at
SNR1 � �3.0 dB, which is much more easily noticeable at
SNR1 � �15 dB, where only c1 and c3 remain detectable.
The improved accuracy in the estimation of the far-field
component c3 (illustrated in Fig. 4B) is most likely ex-
plained by the fact that each electrode in the array provides
information about the far-field source, whereas for local
sources some detectors have small signals.

Next we examine the quality of the single-trial amplitude
estimates. First, it is important to realize that, if we simply take
the trial average as an estimate of the resulting evoked re-
sponse, we would be assuming that during each trial the
response had the same average amplitude. Because this is not
the case, the errors in our simplistic amplitude estimate would
be on the order of the physiologic variability of response
amplitudes. If the performance of dVCA is such that its
amplitude estimation errors are less than the trial-to-trial am-
plitude variability, then dVCA is necessarily performing better
than the trial average. Put another way, the performance of
dVCA exceeds that of signal averaging when the estimation
errors are less than the degree of variability in the original
single-trial amplitudes. Figure 4C shows the relationship be-
tween the errors of the estimates and the range of variability of
the amplitudes. The horizontal black lines in Fig. 4C represent
the degree of variability of the component amplitude as 1 SD
of the single-trial amplitudes about their mean. The solid blue
curve represents 1 SD of the dVCA single-trial amplitude
estimate errors. When the blue curves are contained within the
black lines, dVCA is outperforming standard averaging. Again,
the far-field estimates (c3) were more accurate than those of the
local sources (c1 and c2). Ninety-five percent of the amplitude
estimates were within the degree of variability down to SNRs
between �10 and �15 dB with 68% of the estimates within the
range well down to �15 to �18 dB, which is consistent with
the performance indicated by both the Amari error and the
waveshape RMS error. To demonstrate the quality of the
amplitude estimates, Fig. 4F shows scatterplots of the true
amplitude scales versus the estimates for c1 at the same four
SNR levels as in Fig. 4E. Note that different values for the
single-trial amplitudes were used in each simulation. Correct
estimates will lie on the diagonal, whereas incorrect estimates
are off diagonal. Although the errors in the values of the
amplitude estimates become unacceptable around �15 dB the
pattern still exhibits a strong correlation (r � 0.948).

Figure 4D shows the behavior of the onset latency estimates,
which are less well estimated than the amplitudes. In addition,
the degradation of the quality of the far-field estimates was not
noticeably different from those of the local sources with 95%
of the estimates being within the range of variability down to
an SNR of 3 to �1 dB, and 68% of the estimates within the
range of variability down to �15 to �18 dB. Figure 4G shows
scatterplots of the true onset latencies versus the estimates for
c1. The diagonal pattern, which indicates a high level of
predictability, is almost lost by �15 dB (r � 0.392). Note that
as a result of the difference in variability levels of the ampli-
tudes and onset latencies, the distribution of points in Fig. 4F
should not be directly compared with those in Fig. 4G because
they are effectively at different magnifications.

TABLE 1. Effect of additive white Gaussian noise on separation

Case Noise SD

Component SNR, dB

Amari Error1 2 3

1 0.155 15.0 1.0 15.6 0.004
2 0.310 9.0 �5.0 9.6 0.005
3 0.437 6.0 �8.0 6.6 0.013
4 0.618 3.0 �11.0 3.6 0.011
5 0.734 1.5 �12.5 2.1 0.014
6 0.873 0 �14.0 0.6 0.026
7 1.037 �1.5 �15.5 �0.9 0.017
8 1.233 �3.0 �17.0 �2.4 0.050
9 1.742 �6.0 �20.0 �5.4 0.108

10 2.460 �9.0 �23.0 �8.4 0.100
11 4.909 �15.0 �29.0 �14.4 0.198
12 9.794 �21.0 �35.0 �20.4 0.421

Component SNRs are calculated using the component SDs of 0.290, 0.059,
and 0.262 and coupling L2 norms of 3.02, 2.98, and 3.57 for components c1,
c2, and c3, respectively.
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Sensitivity to correlated far-field noise

In an effort to more accurately simulate the conditions that
may be experienced during a real experiment, we designed a
second noise study to determine the effect of ongoing corre-
lated far-field activity on dVCA performance. The ongoing
far-field activity (noise) was modeled as a time series with a 1/f
spectrum so that correlations would exist at all timescales. To
simulate its far-field nature the ongoing activity was coupled
identically to each detector, which can also be viewed as a
spatial correlation across channels.

Again, 12 levels of the ongoing noise amplitude were tested;
however, in this study Gaussian noise was not added to the
individual electrodes, only the ongoing correlated far-field
noise was used. Noise amplitude was computed from the
sample variance of the time-series noise signal. The specific
noise levels, SNRs of the three components and resulting
Amari errors are listed in Table 2. Figure 5A shows the Amari

error smoothly decreasing with increasing SNR. The Amari
error reaches the same level of error as in the Gaussian noise
case with 20 dB less noise, amounting to large errors around a
c1 SNR of 3 to 8 dB. It is apparent that this type of noise more
severely limits the ability of dVCA to separate signals. Figure
5B shows the component waveshape errors blowing up around
1 dB, with the effect on the far-field component c3 (red) being
understandably catastrophic because both c3 and the noise are
correlated across detectors. The amplitude errors reach unac-
ceptable levels around 0 to 3 dB (Fig. 5C). However, most
interesting are errors of the onset latencies (Fig. 5D). The
errors for the local sources reach high levels (68% of estimates
being within the range of variability) between 0 and 1 dB,
whereas the errors for the far-field component c3 are large
across the entire SNR range considered with 95% of the
estimates never being within the range of variability. This is
because the correlated far-field noise is severely interfering

FIG. 4. dVCA algorithm is robust to noise. In this figure we
study the behavior of dVCA with varying signal-to-noise ratio
(SNR). Because of their different magnitudes each component
has a different SNR, and for simplicity the plots are made with
respect to the SNR of component 1, labeled SNR1. Recall that
SNR2 
 SNR1 � 14 dB and that SNR3 
 SNR1 � 0.6 dB. A:
Amari error decreases with increasing SNR (see text). B: quality
of the waveshape estimates improves with increasing SNR.
Note that the graph is drawn with respect to c1 SNR. Wave-
shape RMS error reaches 1.0, signifying that the deviations in
the estimates are on the order of the waveshape itself, at about
�15 to �17 dB for the localized components and about �17
dB for the far-field component. C: single-trial amplitude esti-
mates are also robustly recovered. Horizontal black lines denote
the level of variability in the single-trial quantities. Blue curves
indicate 1 SD of the single-trial amplitude estimate errors.
When the blue curves are within the black lines, dVCA is
performing better than the standard practice of averaging (see
text). High-quality estimates are achieved down to �15 to �18
dB. D: single-trial latency estimates are slightly less well
estimated than amplitudes, although high-quality estimates are
again possible down to �15 to �18 dB. E: these plots demon-
strate the quality of the waveshape estimates for 4 SNR levels.
At a c1 SNR of �15 dB, the smallest component, c2, was
unable to be extracted from the data. F: scatterplots of the true
c1 single-trial amplitudes vs. the estimated c1 single-trial am-
plitudes demonstrate the quality of amplitude estimates, and
show that useful information can be obtained down to an SNR
of �15 dB. G: scatterplots of the true c1 single-trial latencies
vs. the estimated c1 single-trial latencies demonstrate that
latencies are less well estimated than amplitudes. Latencies can
be estimated down to SNR levels well below �3 dB, but
become inaccurate by �15 dB.
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with the ability to identify the far-field component in any given
trial.

PCA, ICA, and dVCA comparison

Neuroscientists have several available techniques to analyze
evoked responses, although each of these techniques is based
on different assumptions and signal models. Here we briefly
evaluate two popular techniques, PCA and ICA, and compare
them to dVCA using our synthetic data, which as described
above, is based on experimental findings regarding both the
componentry and their laminar distribution (Givre et al. 1995;
Mehta et al. 2000) and observed trial-to-trial variability (Truc-
colo et al. 2002). ICA was performed by applying the Infomax
ICA algorithm in the EEGLAB toolbox (Delorme and Makeig
2004). The runica.m algorithm (Makeig et al. 1996) was used
both with and without the “extend” option (extended ICA),
which allows ICA to model sub-Gaussian sources (Lee et al.
1999). Because extended ICA consistently gave better results
in the single-trial data sets exhibiting trial-to-trial variability,
we will present those results here and in Fig. 6. PCA was
performed using the EEGLAB routine runpca.m (Colin
Humphries, CNL/Salk Institute, August 1997), which com-

putes the singular value decomposition (SVD) of the data and
identifies the resulting eigenvectors as the estimates of the
source waveshapes. Because each data set has 15 channels,
both PCA and ICA estimate 15 source waveshapes. Because it
is known that the synthetic data are composed of three sources,
the three estimated source waveshapes with highest correlation
to the three original sources were chosen for analysis, whereas
the remaining estimated sources were ignored. This avoids the
difficult issues of estimating the number of sources in both
PCA and ICA, and thus gives them a slight advantage.

Two synthetic data sets were used to perform the compari-
son. The first data set exhibited neither amplitude nor latency
variability and was contaminated by low-amplitude additive
Gaussian noise (component SNRs of 15, 1.0, and 15.6 dB). The
second data set, examined earlier in the section on Sensitivity to
additive white Gaussian noise, exhibited log-normally distrib-
uted amplitude variability with sample mean �amp � 1.0 and
sample SD �amp � 1.0, normally distributed latency variability
with sample mean �lat � 0 and sample SD �lat � 10.0 ms, and
possessed additive Gaussian noise identical in SNR level to
that of the no variability case.

These two data sets were analyzed using PCA and ICA in
two different ways: first by averaging the epochs and analyzing
the average response (average analysis), and second by treating
the data as a long string of concatenated single-trial responses
(single-trial analysis). Figure 6A shows the source waveshape
results for PCA, extended ICA, and dVCA in the single-trial
analysis cases. Note that only the dVCA analysis of the
variable responses results in accurate identification of the
underlying source waveshapes. The Amari errors in Fig. 6B
quantify the degree to which the components were correctly
identified in the four cases. In this example, the performance of
the original ICA algorithm was comparable to PCA. Because
dVCA can analyze only single-trial responses, the dVCA
analysis consisted of analyzing the single-trial cases, resulting
in only two bars in the bar graph. Note that dVCA performs
poorly when there is no trial-to-trial variability. However, the
presence of trial-to-trial variability dramatically improves the
performance of dVCA, enabling it to surpass both PCA and
extended ICA in separation quality.

TABLE 2. Effect of additive l/f far-field noise on separation

Case Noise SD

Component SNR, dB

Amari Error1 2 3

1 0.036 27.8 13.8 28.4 0.015
2 0.048 25.3 11.3 25.9 0.013
3 0.063 22.8 8.8 23.4 0.017
4 0.113 17.8 3.8 18.4 0.008
5 0.150 15.3 1.3 15.9 0.035
6 0.201 12.8 �1.2 13.4 0.068
7 0.268 10.3 �3.7 10.9 0.113
8 0.357 7.8 �6.2 8.4 0.143
9 0.476 5.3 �8.7 5.9 0.159

10 0.634 2.8 �11.2 3.4 0.191
11 0.846 0.3 �13.7 0.9 0.359
12 1.128 �2.2 �16.2 �1.6 0.365

Component SNRs are calculated using the component SDs of 0.290, 0.059,
and 0.262 and coupling L2 norms of 3.02, 2.98, and 3.57 for components c1,
c2, and c3, respectively.

FIG. 5. dVCA algorithm is also robust to correlated far-field
noise, although to a lesser degree than independent Gaussian
noise. A: Amari error decreases with increasing SNR and reaches
the same level of error as in the Gaussian case with 20 dB less
noise. B: component waveshapes blow up around 0 dB, with the
far-field component, c3, being more dramatically affected. C:
amplitude errors reach unacceptable levels from 0 to 3 dB,
whereas the far-field component amplitudes can be estimated
only down to around 8 dB. D: latency estimates become unac-
ceptable around 0 dB for the local sources, whereas the far-field
latencies can be estimated only at levels above 10 dB.
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Finally, we compared the ability of extended ICA and dVCA
to identify source waveshapes in the face of additive white
Gaussian noise. These data sets are identical to those analyzed
in the earlier section on Sensitivity to additive white Gaussian
noise. Note also that the data set with the smallest noise level
(SNR1 � 15 dB) is the same data set that was used in the
variable single-trial case considered above. Figure 6C demon-
strates that dVCA consistently outperforms extended ICA with
respect to robustness to noise. It should be noted that the
extended ICA algorithm outperformed the original ICA algo-
rithm in all but two cases. At SNR1 � �9 dB, the Amari error
of extended ICA was 0.240, whereas the Amari error of ICA
was 0.177 compared with the Amari error of dVCA, which was
0.100. In the second case, the Amari error of extended ICA and
ICA differed by only 0.001.

Application to cortical field potential data

To further demonstrate the utility of dVCA, we applied the
algorithm to field potentials recorded from primary visual
cortex of a male macaque monkey during the cuing period of
an earlier selective attention study (Mehta et al. 2000) for
which all animal care and use procedures were approved by the
Institutional Animal Care and Use Committee, and were in
accordance with National Institutes of Health publication no.
86–23 (rev. 1087). During data collection, the subject was
required to discriminate between standard and target visual
stimuli for a juice reward. The standard visual stimulus was a
10-�s red-light flash presented through a diffusing plate sub-
tending a 20° visual angle, centered on the point of visual
fixation, while the target was presented similarly, although

differing slightly in intensity. Stimuli were presented at irreg-
ular interstimulus intervals (ISIs) (minimum of 350 ms, aver-
age of 2 stimuli/s). Intracortical field potential profiles were
recorded using a linear-array multielectrode with 14 contacts
(or channels), equally spaced at 150 �m, inserted into V1 and
positioned so that the channels spanned all six laminae (see
Fig. 2A, middle). The continuous field potential record from all
channels, incorporating the stimulus tags, was sampled at 2
kHz and recorded on a PC-based data acquisition system
(Neuroscan, El Paso, TX).

The signals examined with dVCA were recorded during 171
trial presentations of the standard visual stimulus and were
epoched from 0 to 300 ms (0 ms indicates stimulus presenta-
tion). No other preprocessing of the data was performed. The
average field potential signals in each electrode contact were
calculated and used to determine the current source density
(CSD) profile of these data (Fig. 7A). The CSD is an estimate
of the second spatial derivative of the electric potential, which
is proportional to the vector divergence of the current field.
This profile was approximated using a three-point, second-
order difference of the field potentials (Nicholson and Freeman
1975; Schroeder et al. 1995). Because the CSD represents the
divergence of the electric current, it indexes the local regions
of transmembrane current flow and eliminates volume-con-
ducted activity generated at a distant site, which often contam-
inates field potential recordings. This makes the CSD a useful
tool for studying the electric signals detected by an electrode
array. Consistent with earlier studies reviewed by Schroeder et
al. (1995, 2001), the visually evoked CSD profile sampled
from V1 during this experimental session shows that the
earliest activation occurs in the granular subdivisions of Layer

TABLE 3. Symbols used throughout the text

Numbers and Indices

N Number of components
M Number of recording channels
R Number of trials
T Number of time points recorded
n, j Index for number of components N
m, i Index for number of channels M
r, p Index for number of trials R
t, q Index for number of time points T

Model parameters (Boldface denotes matrix form)
�nr, � Amplitude of nth component during rth trial
Cmn, C Coupling (mixing matrix) between channel m and source n
sn(t), s(t) Magnitude of source n at time t
�nr, � Onset latency of nth component during rth trial
�mr(t), �(t) Noise recorded in mth channel at time t during rth trial
xmr(t), x(t) Data recorded in mth channel at time t during rth trial

Error analysis and variability
� Mean value (quantity indicated by subscript)
� Standard deviation (quantity indicated by subscript)
SNR Signal-to-noise ratio in units of decibels (dB)
EAmari Amari error between mixing matrix and estimated mixing matrix
Ewave Fractional root mean square error of the jth source waveshape
Eamp Difference between estimated and correct single-trial amplitude
Elat Difference between estimated and correct single-trial latency

Miscellaneous
I Prior information
Q Sum of squares difference between model and data
M Matrix transformation (such as a mixing matrix)
� Diagonal scaling matrix
� Permutation matrix

Note that estimated parameters are indicated with “hats” (carets), as in ŝn(t).
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4, which constitute the major target of thalamic afferents. A
second focus of activity localizes to the supragranular (laminae
2 and 3) layers and is thought to index a feedforward activation
of pyramidal cells by interneurons in the granular layers
(Schroeder et al. 1990, 1991). Note that because we are using
a three-point, second-order difference to approximate the CSD,
the top waveform in Fig. 7A is associated with electrode
channel 2 rather than channel 1.

Although it is an attractive idea to apply dVCA as an
automated computer program that analyzes the data and pro-
duces an answer (as we did with simulated data), it is often
more productive to apply dVCA in a more facultative approach
(Shah et al. 2004). To illustrate and stress the importance of
this point, instead of following the flowchart exactly as in Fig.
1, we first applied dVCA to the single-trial field potential
signals to extract a single component. As shown in Fig. 7B, the
CSD profile of this component depicts a biphasic response
localized in the granular layer, suggesting that it represents the
initial response to the thalamic inputs. Not surprisingly, this
waveshape and its distribution are very similar to the CSD
profile of the ensemble averaged ERP of Fig. 7A because the
initial approximation to the first component derives from the
ensemble average. However, note that it excludes much of the
minor variations not associated with this main activation pat-
tern. In addition to providing information about the component
waveshape and its spatial distribution, dVCA provides infor-

mation about the amplitude and latency shift of the component
in each trial. Figure 7C shows the distribution of single-trial
amplitude scales for this component. In accordance with the
dVCA normalization condition, the mean of the sample equals
one (�1 � 1). In this case, the distribution shows that there is
very little single-trial amplitude variability (�1 � 0.1044),
which is on the order of 10% variation. In contrast, the
distribution of single-trial latency shifts (Fig. 7D) shows some-
thing quite different and unexpected—it is bimodal with an
early latency peak at �4.625 ms and a late latency peak at
2.125 ms with a difference of 6.75 ms. The ratio of late to early
responses is 2.29:1 (119:52), as defined by a �1.25-ms cutoff
between the two modes.

We performed several different analyses to confirm the
existence of the bimodal latency distribution displayed in Fig.
7D. First, Fig. 7E displays a colorized plot of the actual,
single-trial field potentials (FPs) recorded from electrode chan-
nel 10, which is located in the granular layer. Time runs along
the horizontal axis, chronological trial number runs along the
vertical axis, and color indicates the amplitude of the FP. The
red dashes on the left side of the plot indicate trials for which
dVCA determined the latency to be early. It is easily seen that
these highlighted trials have a response onset before the late
trials, confirming that the bimodal latency distribution of the
dVCA estimation concurs with observations from the actual
data. It is also apparent that early and late responses are

FIG. 6. Comparison between principal component analysis (PCA), independent component analysis (ICA), and dVCA. Two synthetic data sets were
generated, one with trial-to-trial variability (�amp � 1.0, �lat � 10.0 ms) and one without (see text for more details). Both data sets have the same SNR level
(SNR1 � 15 dB). A: PCA, ICA, and dVCA were used to analyze these data as one long time series of multiple single-trial epochs. Note that PCA and ICA were
not able to accurately separate these waveshapes, whereas dVCA, which fails in the case where there is no variability, succeeds in the variable case (boxed graph).
B: accuracy of these analyses is quantified by considering the Amari error. For PCA and ICA, the analyses were also performed for averaged epochs. Both PCA
and ICA results are improved when single-trial data are used over analysis of averaged responses. dVCA, which can be used only on single-trial data, dramatically
outperforms both PCA and ICA when the responses exhibit trial-to-trial variability. Resulting waveshapes corresponding to the single-trial results are shown in
A. C: ICA and dVCA are compared using noisy data. Data set with the smallest noise level (SNR1 � 15 dB) is the same data set that was used in the variable,
single-trial case considered above (compare with Amari errors in B). dVCA consistently outperforms ICA with respect to robustness to noise. Each colored arrow
indicates the SNR levels at which dVCA can no longer detect its associated component. For example, the blue arrow indicates that below an SNR of �15 dB,
component 1 (blue) can no longer be detected. Likewise, the red arrow indicates the SNR below which component 2 was no longer detectable and the green arrow
indicates the point below which component 3 was no longer detectable. To the left of each of these points our Amari error necessarily increases; this is because
we can no longer detect one of the components and have an incomplete picture of the componentry. With high noise ( far to the left) we have lost all ability
to detect components, and dVCA’s performance is now similar to that of ICA.
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grouped over trials, which suggests a slow cyclical shift be-
tween different response states with one state dominated by
faster and the other by slower responses. Second, we per-
formed a cross-correlation analysis between each single-trial
waveshape and the trial-averaged, FP waveform between 25
and 95 ms (this time period captures the initial negative
deflection of the averaged FP waveform). This analysis also
yielded a bimodal distribution (not shown). Finally, we selec-
tively averaged the early and late FP recordings in channel 10
and showed them to be significantly different in both latency
and waveshape (Fig. 7F). The trial-averaged FP waveshape
(black) lies between the early (red) and late (blue) waveshapes.
As expected, the minimum of the early averaged responses
occurs before the minimum of the late averaged responses
(5.5-ms difference). Although this time difference reflects the
fact that these early responses precede the late responses, it is
however not as accurate as the dVCA estimate because it is
derived from a single time point rather than from the entire
waveshape. It is also not surprising that the late responses more
closely resemble the ensemble-averaged FP because they out-
number the early responses by more than 2 to 1.

Because these two types of granular responses exhibit dis-
tinct waveshapes and latencies this suggests that different
physiological mechanisms are at work in these two processes.
These mechanisms will be much easier to distinguish by
separating the original data set into two subsets—an early
subset and a late subset—and performing separate analyses on
each and comparing. We then used dVCA to reestimate the
first component in each subset. Figure 8, A and B shows the
CSD of the first component from the early and late subsets,

respectively. The onset latency of the prominent granular sink
over source configuration was determined by descending down
the left side of the peak and identifying the point in time where
five consecutive previous data points were monotonically in-
creasing. With this measure the response onset latency of the
early subset (Fig. 8A) was 28 ms, which is clearly earlier than
its counterpart in the late subset (Fig. 8B), which was 42.5 ms,
as indicated by the drop lines. The waveshapes of the two types
of Layer 4 responses differ significantly, indicating a differ-
ence in activation patterns between subsets. This is also con-
firmed by the different degrees to which this activation appears
in the supragranular layers because the later responses seem to
be more strongly coupled to the supragranular activation than
the early responses.

After any analysis, the residual signals must be examined
because they represent activity that was not modeled by the
algorithm. This residual activity is often a combination of
unstructured “noise ” and structured unmodeled signal. In Fig.
8C we show the trial-averaged FP residuals for the early (red)
and late (blue) subsets for odd-numbered electrode channels.
First, the black arrows indicate activation that is almost iden-
tical in both subsets (mean peak time at 37.75 ms for the early
subset and 37.68 ms for the late subset). Because of the timing
and the laminar distribution of this field potential, we believe
that this negativity reflects the initial signal from the thalamo-
cortical afferents. The early responses onset just after onset of
this thalamic signal, which occurs at about 25 ms, whereas the
late responses are delayed. After 50 ms the residual signals
from the two subsets diverge significantly. This difference is
striking in channel 1 where the oscillations are 180° out of

FIG. 7. Single-component analysis of V1 re-
sponses. A: CSD profile of the trial-average event-
related potential shows granular and supragranu-
lar activation in macaque V1 in response to a
red-light flash (number of trials � 171). B: esti-
mating a single component with dVCA results in
a waveshape with a CSD profile that captures the
most prominent responses in the data. C: a histo-
gram of the single-trial amplitudes of this compo-
nent shows that the amplitude rarely varies more
than �20%. D: histogram of the single-trial la-
tencies reveals that there are 2 response modes: an
early response that happens in 1/3 of the trials and
a late response that happens in about 2/3 of the
trials. Peak latency difference between these 2
modes of activation is 6.75 ms. E: to verify the
existence of these 2 activation modes, this figure
shows all 171 trials of the field potential recorded
in channel 10. Each trial is represented as a
horizontal line with its time-varying color repre-
senting the time-varying amplitude of the field
potential. Trials designated as belonging to the
“early” subset are indicated by the red dashes on
the left side of the plot. Note that the “early” trials
are characterized by a negative (yellow) field
potential onset occurring before the onset seen in
the “late” trials. F: further verification of this
finding is provided by comparing the average FP
recorded in channel 10 with the average obtained
from the “early” subset and the average obtained
from the “late” subset. Although both the early
and late responses show initial activation occur-
ring at the same time, the early response’s acti-
vation continues to grow, whereas the late re-
sponse’s activation decreases before growing
again. Difference in latency between the minima
of the 2 subaverages is 5.5 ms.
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phase. Of significant interest are the ultra-high-frequency
(UHF; 160–220 Hz) oscillations in the granular and the supra-
granular layers of the early subset (red arrow in channel 11).
These UHF oscillations, which onset with the initial granular
response, are absent in the averaged residuals of late responses.

To verify that these UHF oscillations were not present in the
late responses, we applied a Morlet-based wavelet transforma-
tion to the two residual subsets of channel 11. To preserve
information about time–frequency behavior of oscillations not
precisely time-locked to the stimulus, we applied the wavelet
transform to each single trial separately and the wavelet results
were then averaged. These results show that there is a burst of
UHF activity ranging from about 160 to 220 Hz and occurring
between 42 and 57 ms in the early subset, which is represented
as an “island of activity” in the time–frequency plot (Fig. 8D).
Such an island of activity is completely absent in the late subset
(Fig. 8E). This finding demonstrates the ability of dVCA to
identify distinct physiological modes of activation using the
single-trial characteristics of the responses, even in situations
where the data are unfiltered.

To demonstrate how dVCA can be used to extract multiple
components, we focus on the late subset. A complete analysis
of the entire data set will be published elsewhere. In this
example we model three components (Fig. 9, A–C). Compo-
nents 2 and 3 (c2 and c3) have been magnified by a factor of
2 to make them easily visible, and are thus not on the same
scale as component 1 (c1), which is the largest response. To
ensure that the SNR is within the acceptable range for dVCA,
we used Eq. B4 to compute the SNR for each component in

each channel. For a given component this is accomplished by
estimating the SD of the component in that channel and the SD
of the residual signal in that channel. The average SNR for
each component was then computed by averaging its SNRs
across channels. We found that all three components are well
within the range of acceptable performance with average SNRs
of 1.59, 1.68, and 0.98 dB for c1, c2, and c3, respectively.

First, c1 is in all practical respects identical to the single
component we previously estimated from the late subset. The
prominent granular sink over source configuration is activated
at about 35.5 ms in this more detailed model. Although the
onset time is easy to quantify in the large biphasic response,
components c2 and c3, which onset with low-amplitude oscil-
latory behavior, required a more sophisticated onset measure.
By fitting the preresponse interval with a line, we computed the
SD of the preresponse signal deviations from that line. Com-
ponent onset was then defined as the first of five consecutive
time points where the component amplitude was greater than
this line by 2 SDs. This was useful because we did not filter the
data, and low-frequency oscillations could produce confound-
ing baseline deviations. With this measure, we found small, but
significant, activations in c1 as early as 26 ms (see drop line in
Fig. 9A) occurring after the thalamic signal at 25 ms and before
the massive biphasic response at 35.5 ms.

A low-frequency biphasic response is described by c2 (Fig.
9B). Significant onset of this component occurs at 37 ms (see
drop line), which is after c1 begins the biphasic activation in
the granular layers. Note that the source and sink distribution
of c2 are in superficial layers compared with the small supra-

FIG. 8. Examination of the early and late
responses. Data set has been split into 2
subsets: the early subset and the late subset,
and a single component has been reestimated
for each subset. A: CSD profile of the early
component with a drop line showing onset of
the major response at 28 ms. B: CSD profile
of the late component. Drop line shows its
major response onset at 42.5 ms. Wave-
shapes of the 2 responses are noticeably
different, as are their laminar profiles. C:
average residual field potentials, computed
by subtracting the single-trial model from the
single-trial data and averaging over all trials,
further demonstrates the differences between
these 2 modes of activation (early: red; late:
blue). Only the odd channels are shown.
These residuals represent responses not mod-
eled by the single component in each subset.
Black arrows indicate what is most likely the
thalamic input, which is time locked to the
stimulus because it is visible in the average.
Subsequent activation of the 2 response
types is very different. Late oscillations in
channel 1 after 100 ms are 180° out of phase.
Red arrow in channel 11 at about 50 ms
shows time-locked ultra-high-frequency
(UHF) oscillations in the early responses that
are not present in the late subset. D: wavelet
analysis was performed on the residuals to
characterize these oscillations and verify that
the categorization indicated by the dVCA
results is justified. Residuals in the early
subset show a burst of UHF oscillation be-
tween 42 and 57 ms with frequency ranging
from 160 to 220 Hz. E: these oscillations are
completely absent in the late subset.
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granular response of c1. At first glance it appears that the
spatial distribution of c3 is the same as that of c2. However,
whereas these components may involve the same populations
of supragranular neurons, c3 also involves others in the gran-
ular layers. The initial activation of c3 is at 30 ms, but it is not
until 45 ms when the component begins to display a biphasic
activation followed later by a slow wave.

Figure 9D shows the single-trial amplitude histograms along
the diagonal, along with scatterplots showing the relationships
between the single-trial amplitudes of the three components.
The initial granular response, c1, has the lowest amplitude
variability (�amp1 � 0.102), whereas the later supragranular
responses display greater variability (�amp2 � 0.248, �amp3 �
0.362). Figure 9E shows the single-trial latency results along
with scatterplots depicting the trial-by-trial relationships be-
tween component latencies. Component c1 again displays the
least variability (�lat1 � 1.08 ms), but in this case, c2 displays
greater variability than that of c3 (�lat2 � 9.85 ms, �lat3 � 1.58
ms).

Correlations in the scatterplots between component param-
eters indicate dynamic interactions among these components.
Of the amplitude–amplitude interactions (Fig. 9D), we see that
the amplitudes of c2 are correlated with c3 (r � 0.495, P 	
10�7), so that when c2 is larger than average, c3 is also larger
than average. Such correlation might suggest that these com-
ponents have not been separated. However, note that the
latency variability of each component is very different (Fig.
9E), and that there is little correlation between the latency of c2
and the latency of c3 (r � 0.171, P � 0.075).

Of the latency–latency interactions, the largest correlation is
between the c1 and c2 latencies (r � 0.327, P 	 0.001), so that
when c1 is earlier than average, c2 is also earlier than average.

More interesting are the amplitude–latency interactions. Figure
9F shows the two most probable relationships. First the am-
plitude and latency of c1 are correlated (r � 0.297, P 	 0.002),
so that when c1 is early its response is smaller, and when it is
late its response is larger. Self-interactions, such as this one
illustrated by c1, contain much information about the underly-
ing dynamics of the neural response. More apparent is the
relationship between the amplitude of c1 and the latency of c2
(r � 0.483, P 	 10�7). In this case, when the c1 granular
response is larger than average, c2 onsets later than average.
This result is somewhat counterintuitive because generally we
expect that if the c1 is driving the c2, a larger c1 might produce
an earlier-onset c2. The difference between c1 and c2 is further
highlighted by noting that the amplitude of c1 is anticorrelated
to the latency of c3 (r � �0.190, P � 0.048) (not shown).

D I S C U S S I O N

Detailed studies of single-trial interactions among neural
components in a variety of experimental situations have the
potential of providing novel insight into the information-pro-
cessing strategies used by the brain. In this paper, our specific
goal was to describe the dVCA algorithm and to show how it
can tease apart evoked responses in different neuronal ensem-
bles and facilitate the study of their dynamic interactions.

Maximum-likelihood techniques have previously been used
to approach the problem of trial-to-trial variability of evoked
responses. These past works have relied on single-component
signal models that incorporate latency variability (Pham et al.
1987; Woody 1967), and more recently both amplitude and
latency variability (Jaskowski and Verleger 1999) to charac-
terize evoked responses. Multiple-component models were

FIG. 9. Three components were estimated
from the late subset. A: CSD profile of com-
ponent 1 shows that it represents the granular
response with some activation in the supra-
granular layers. Drop line marks the onset of
the response triggered by the thalamic input
at 26 ms. B: component 2 represents slow-
wave activity in the supragranular layers. Its
onset is considerably later at 37 ms. C: com-
ponent 3 also describes supragranular activa-
tion with a pulselike activation followed by
some slow wave activity. Similarity in the
laminar profiles of c2 and c3 suggests that
these responses are probably taking place in
the same population of cells. Note, however,
that these laminar profiles are not identical as
c3 displays some granular activation. D: sin-
gle-trial amplitude histograms and amplitude
scatterplots. C1 shows very little amplitude
variability, whereas that of c2 and c3, al-
though comparable, are not equal. Scatterplot
of c2 and c3 amplitudes are correlated with
r � 0.495 (P 	 10�7). E: single-trial latency
histograms and scatterplots. Note that the
slow-wave activity in c2 shows great latency
variability. Scatterplot of c1 and c2 latencies
shows some correlation at r � 0.327 (P 	
0.001). F: these scatterplots show the rela-
tionship between c1 amplitudes and c1 and c2
latencies with r � 0.297 (P 	 0.002) and r �
0.483 (P 	 10�7), respectively.
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introduced by Lange et al. (1997) by adopting a template
model of the ERP waveshapes, and were used to characterize
both the amplitude and latency of multiple components in
single-channel EEG recordings. Early versions of the dVCA
algorithm also dealt with multiple-component, single-channel
estimation (Knuth et al. 2001; Truccolo et al. 2001, 2002,
2003), but instead used a completely general waveshape model
that did not rely on a given functional form. The dVCA
algorithm presented here allows one to use multiple-channel
recordings to identify and characterize multiple ERP compo-
nents in the single trial by taking advantage of the trial-to-trial
variability.

The dVCA algorithm was derived by approaching the prob-
lem as an exercise in Bayesian parameter estimation. There are
several advantages to a Bayesian approach. First, the strategy
is model based in the sense that given a quantitative model of
the phenomena of interest, probability theory can be used to
estimate the values of the model parameters from the data. Any
failure in the algorithm can be traced back to either inadequa-
cies of the model in representing the physical situation, as-
sumptions, or approximations made in its implementation, or a
situation produced by an insufficiently informative data set.
Second, inadequacies in the model, once identified, are readily
remedied—leading to improvements in the algorithm. Third,
once the model components have been adequately estimated,
the residual data can be examined to identify previously hidden
phenomena. For example, herein we have discovered UHF
oscillations associated with early initial granular layer re-
sponses and absent during the more frequent late responses. By
accurately identifying the evoked components in the single-
trial epochs, one can more accurately study the ongoing activ-
ity, which has been purported to contain signals important for
communication among brain regions (Bressler et al. 1993;
Singer 1993; Truccolo et al. 2003), in perception, working
memory, and sensorimotor integration (Engel et al. 2001; Lee
et al. 2003). Finally, the Bayesian methodology allows one to
incorporate additional prior information into the problem to
improve one’s inferences, which is a major advantage that we
plan to capitalize on in future work.

dVCA has a number of technical strengths. The first is that
it capitalizes on both amplitude and latency variability to aid in
component separation. Second, neither the components nor
their underlying neural sources are assumed to be independent
of one another. This avoids the adoption of physiologically
implausible assumptions and enables one to study the dynam-
ical interactions among neural sources. A third strength is that
by accounting for trial-to-trial variability in amplitude and
latency, one is able not only to quantify the interactions among
sources but also to study their time-dependent properties over
the duration of the entire experiment. Single-trial analysis also
allows dVCA to detect components, which are not present in
every experimental trial, thus allowing an experimenter to
study cognitive or sensorimotor processes, which may use
different processing strategies at different times. Additionally,
one can use dVCA to study how systemic factors such as
attention, arousal, or varying disease states may modify neural
responses on both a single-trial and a single-component basis.
Finally, although no explicit prior information about the values
of the model parameters was included in the development of
the algorithm, much prior information went into the choice of
the model. This is in contrast to other approaches such as ICA

and other general BSS techniques, which strive to make very
general assumptions about the model and the distributions of
the parameter values (Knuth 1997, 1999).

dVCA is robust in the presence of noise, allowing accurate
estimates of all parameters down to SNRs on the order of �15
dB for white Gaussian noise and down to around 0–1 dB for
correlated far-field noise. The estimation of far-field signals in
the presence of correlated far-field noise was difficult. This is
undoubtedly explained by the fact that this noise possesses the
same spatial distribution as the source, making the two difficult
to distinguish. Although this is a problem for local field
potential measurements, it will not be a problem for whole-
head recordings because, in that case, a far-field source for one
detector will be local for another. Also in most cases, the
behavior of the background noise will fall somewhere between
the pure white Gaussian noise and pure correlated far-field
noise extremes. When using dVCA, we recommend that one
calculate the SNR of the estimated components to ensure that
the algorithm is operating in a regime where the quality of the
parameter estimates is guaranteed. In addition, the spatial
distribution of the sources across the array should be examined
to ensure that they are physiologically reasonable. We have
been able to construct cases where the sources remain insep-
arable by the algorithm. This can typically be detected by
examining the CSD map of the estimated components across
the array. In cases where two sources remain mixed, each is
characterized by multiple sets of neural sources in identical
locations. However, such a criterion is not necessarily conclu-
sive in intracortical laminar recordings because the cortical
architecture allows for only a small number of current sources
and sinks, and tight couplings between sources is extremely
likely (Shah et al. 2003). One possible solution to this problem
is to restart the algorithm using starting conditions consistent
with the source locations indicated by the CSD. The value of
the posterior probability of these solutions obtained from
different starting points can also be computed and compared
(when using the same model order) to ensure that one has the
most probable solution and is not merely stuck at a local
maximum. Searching such enormous solution spaces is a
difficult problem faced by all source separation algorithms.

We are currently working to improve the dVCA algorithm
along several lines.

First, there are situations where the experimenter has knowl-
edge about the forward problem, which describes the propa-
gation of the signals to the detectors. Such knowledge can be
incorporated by adopting a more specific source model (e.g.,
current dipole model) and expressing the coupling coefficients
in terms of the new ERP source parameters, detector coordi-
nates, and head geometry (Knuth and Vaughan 1998; Schmidt
et al. 1999), or by using information about the propagation law
to derive prior probabilities for the coupling matrix elements
(Knuth 1998, 1999, 2005). Similarly, more detailed informa-
tion about the correlation structure of the background noise can
be used to derive more accurate likelihood functions (Sivia
2003). After much experimentation in a specific cortical re-
gion, one can assign Gaussian distributions to the priors for the
amplitude and latency variability of specific sources based on
previously observed means and variances.

Second, by using a discrete model of the component wave-
shapes, we are restricted to estimating discrete values of onset
latency shift. By adopting a waveshape model that relies on a
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set of continuous basis functions, continuous values of latency
shift could be investigated. An example of a continuous time
model is the frequency domain model of the ERP used by
Pham et al. (1987) and Jaskowski and Verleger (1999). They
model the waveshape as a sum of a discrete set of sinusoids,
which is continuous in the time domain, but discrete in the
frequency domain. In principle, such a model allows one to
describe latency shifts with arbitrary precision. It should also
be noted that dVCA does not accommodate trial-dependent
waveshape changes or spatiotemporal wave activity across
cortex. Incorporating such activity into the signal model will
require great care not to erroneously overfit the data.

Third, our algorithm represents a maximum a posteriori
(MAP) estimate based on an iterative, or fixed-point, solution.
Although each step in our algorithm has intuitive appeal, it is
perhaps not the most effective means for obtaining a solution.
Markov chain Monte Carlo (MCMC) with simulated annealing
is well suited to performing simultaneous model selection
calculations and parameter estimations. Several years ago, we
briefly investigated this approach only to find it to be extremely
time consuming given the large number of parameters in the
model. It is expected that given the advances in computing
power and in MCMC technology, such an approach would
most likely outperform the algorithm presented here by auto-
matically identifying the number of components warranted by
the data, avoiding local optimal solutions, and readily provid-
ing error bars for the results.

Fourth, oscillatory responses of sufficiently low frequency
pose great difficulties when it comes to accurate estimation of
their onset latency. Furthermore, ongoing oscillations that are
weakly time locked to stimuli are not well described by the
multiple-component event-related model and suggest that
modifications in the model to allow for ongoing oscillations or
oscillatory bursts would lead to new results.

Finally, in principle this algorithm is equally applicable to
human scalp EEG and MEG data. In fact, the Woody filter,
which was the first method to estimate single-trial evoked
responses, was used on human scalp EEG with success
(Woody 1967). The signal-to-noise levels are certainly well
within the applicable range (0 to �2 dB, or 1.0 to 0.1 in terms
of SD ratios) for many of the evoked responses currently
studied. However, in practice, several challenges remain. The
number of detectors used in these paradigms is typically an
order of magnitude greater than those we have demonstrated
here. It is certain that the algorithm in its present implemen-
tation will run more slowly. Also, whole-head studies expose
the experimenter to an order-of-magnitude more sources than
we work with in our intracortical recordings. This increases the
possibility that the dVCA algorithm can become trapped in
nonoptimal local solutions. This of course is a potential prob-
lem for all source separation and localization techniques, and
dVCA is no exception. We are beginning to examine the
application of dVCA in human scalp studies, and expect that if
such pathological solutions are encountered, they can be
avoided by using more sophisticated search algorithms.

A P P E N D I X A : A L G O R I T H M D E V E L O P M E N T

Bayes’ theorem is the natural starting point for deriving the dVCA
algorithm because it allows one to describe the probability of the
model in terms of the likelihood of the data and the prior probability
of the model parameters

p�model�data, I� �
p�data�model, I�p�model�I�

p�data�I�
(A1)

where I represents any prior information one may have about the
physical situation. The probability on the left-hand side of Eq. A1 is
referred to as the posterior probability. It represents the probability
that a given set of hypothesized values of the model parameters
accurately describes the physical situation in which the data were
collected. The first term in the numerator on the right-hand side—the
likelihood of the data given the model—describes the degree of
accuracy with which we believe the model can predict the data. The
second term in the numerator is the prior probability of the model, or
the prior. This prior describes the degree to which we believe the
hypothesized values of the model parameters to be correct based only
on our prior information about the problem. The term in the denom-
inator is called the evidence, which in this problem acts only as a
normalization factor. It is through the assignment of the likelihood and
the priors that we express all of our knowledge about the particular
source separation problem. Bayes’ theorem can be viewed as describ-
ing how one’s prior probability, p(model � I), is modified by the
acquisition of some new information in the form of data.

To apply this theorem to our problem, we consider the change in
our knowledge about the model with the acquisition of new data,
which consists of the set of recorded data x(t) from M detectors over
the course of R trials. In this case, Bayes’ theorem can be written as

p�C,s�t�, �, ��x�t�, I� �
p�x�t��C, s�t�, �, �, I�p�C, s�t�, �, ��I�

p�x�t��I�
(A2)

where boldface symbols represent the entire set of parameters of each
type in the mcERP model, e.g., � � {�1, �2, . . ., �R}. The most
probable set of model parameters maximizes the probability in Eq.
A2, and thus in practice the equation can be expressed as a propor-
tionality with the inverse of the evidence p[x(t) � I] as the implicit
proportionality constant. Equation A2 then becomes

p�C, s�t�, �, ��x�t�, I�  p�x�t��C, s�t�, �, �, I�p�C, s�t�, �, ��I� (A3)

For simplicity, the joint prior can be factored into four terms, each
describing what we know about the source-detector coupling, the
source waveshapes, the single-trial amplitudes, and the single-trial
latency offsets

p�C, s�t�, �, ��x�t�, I�  p�x�t�C, s�t�, �, ��I�p�C�I�p�s�t��I�p���I�p���I� (A4)

For the amplitude and latency priors, p(� � I) and p(� � I), respectively,
we assign uniform densities with appropriate cutoffs denoting a range
of physiologically realizable values. Note that a joint uniform density
p(�, � � I) can always be factored in this way, and is not necessarily a
statement about independence. Because the amplitude and latency
priors are each represented by a uniform density, we can absorb those
two factors into the implicit proportionality constant.

Our derivation continues by using the principle of maximum
entropy to assign a Gaussian likelihood (e.g., Jaynes 2003; Sivia
1996) by introducing a parameter � reflecting the expected square
deviation between our predictions and the mean

p�C, s�t�, �, �, ��x�t�, I�  �2
�2��MRT/2exp��
1

2�2 Q�p���I�p�C�I�p�s�I�

(A5)

where p(� � I) is the prior probability for �. Q represents the sum of
the square of the residuals between the data and our model in Eq. 1,
written

Q � �
m�1

M �
r�1

R �
t�1

T

�xmr�t� � �
n�1

N

Cmn�nrsn�t � �nr��
2 (A6)

where M represents the number of detectors, R is the number of
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experimental trials, and T is the number of recorded time points per
trial. Some consider this a fancy way to state that the noise is Gaussian
distributed. However, as Jaynes (2003) demonstrates, this is only a
statement that the variance of the noise is equal to some value �2.
Thus higher-order statistical structure in the noise is tolerated and the
noise does not have to be Gaussian distributed.

The fact that we do not actually know the value of � is not a
problem because we can obtain a conservative result by considering
all possible noise levels by integrating the joint posterior over all
possible values of �. Symmetry considerations require that we assign
what is called a Jeffreys prior for �, p(� � I) � ��1 (Sivia 1996).
Performing the integral of the joint posterior over all possible values
of �, we obtain a marginal posterior probability for our original set of
model parameters. To do this, it helps to make the change of variables
by defining t � ��1 and then integrating over t by iteratively
integrating by parts. The proportionality constant one obtains depends
on whether the product MRT is even or odd, so there are two cases to
consider. However, the functional form of the result is independent of
this fact

p�C, s�t�, �, ��x�t�, I�  Q�MRT/2p�C�I�p�s�I� (A7)

Some may recognize this as being related to the Student’s t-distribu-
tion (Student 1908).

If we were more knowledgeable, prior information regarding the
source waveforms could be used to improve our inferences. In
addition, knowledge of the source-detector coupling, which is
found by solving the electromagnetic forward problem, could be
used to create an algorithm that simultaneously performs source
separation and localization (Knuth 1998; Knuth and Vaughan
1998). For simplicity, in this development we choose to assign
uniform priors to p(C � I) and p(s � I), and absorb the terms into the
implicit proportionality constant. It is more convenient to work
with the logarithm of the posterior probability (Eq. A5), which can
be compactly written as

ln P � �
MRT

2
ln Q � const (A8)

where P is the posterior probability p[C, s(t), �, � � x(t), I].
An iterative algorithm to identify mcERPs, which we call

differentially variable component analysis (dVCA), is imple-
mented by solving Eq. A8 for the most probable set of model
parameters. Such a solution is called the maximum a posteriori
(MAP) estimate. This most probable set of model parameters is
represented as a peak in the space of posterior probabilities. At this
maximum, the partial derivative of the posterior probability with
respect to any one of the model parameter values is zero. For this
reason, our first step in deriving an optimal estimate of the
component waveshape by equating each of the partial derivatives
of Eq. A8 with zero. In the current dVCA implementation, each
source waveshape is modeled as a pointwise time series where each
point of the time series is considered as a model parameter. To
solve this we must look at the partial derivative of the log posterior
with respect to the waveshape amplitude at each of the times over
which the waveshape is defined. The partial derivative with respect
to the jth component waveshape at time q gives

� ln P

�sj�q�
� �

MRT

2
Q�1 �Q

�sj�q�
(A9)

with

�Q

�sj�q�
� � 2�

m�1

M �
r�1

R

�WCmj�jr � �Cmj�jr�
2sj�q�� (A10)

where

W � xmr�q � �jr� � �
n�1
n�j

N

Cmn�nrsn�q � �nr � �jr� (A11)

The term W is important because it deals with the data, which has been
time-shifted according to the latency shift of the component being
estimated, xmr(q � �jr). From this, one subtracts all other components
after each has been appropriately scaled and time-shifted,
Cmn�nrsn(q � �nr � �jr). The derivative of the log probability is zero
when the scaled, estimated waveshape equals W. Thus one can obtain
an expression for the optimal waveshape of the jth source at time q in
terms of the other sources

ŝj�q� �

�
m�1

M �
r�1

R

WCmj�jr

�
m�1

M �
r�1

R

�Cmj�jr�
2

. (A12)

Similarly for the source amplitudes, one obtains an optimal estimate
by considering the derivative of the log probability with respect to the
amplitude of the jth source during the pth trial. Setting this derivative
equal to zero results in

�̂jp �

�
m�1

M �
t�1

T

�U V�

�
m�1

M �
t�1

T

V2

(A13)

where

U � �xmp�t� � �
n�1
n�j

N

Cmn�npsn�t � �np�� (A14)

and

V � Cmjsj�t � �jp�, (A15)

such that the solution is given by the projection of the detector-scaled
component Cmjsj(t � �jp) onto the data after removing the other
scaled, time-shifted components. This can be viewed in terms of a dot
product, which is related to a matching filter solution.

The optimal source-detector coupling coefficients are found simi-
larly with

Ĉij �

�
r�1

R �
t�1

T

�X Y�

�
R�1

R �
t�1

T

Y2

(A16)

where

X � �xir�t� � �
n�1
n�j

N

Cin�nrsn�t � �nr�� (A17)

and

Y � �jrsj�t � �jr� (A18)

Estimating the latency shift of the jth source during the pth trial
using the approach taken for the other parameters leads to a complex
solution as the latency appears implicitly as the argument of the
waveshape function. Instead we examine the necessary conditions for
maximizing the quadratic form Q. Expanding the square in Eq. A6,
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one can see that as the latency shift �jp is varied, only the cross-terms
corresponding to the jth source change. The optimal estimate of the
latency shift �̂jp can be found by maximizing the cross-correlation
between the estimated source and the data after the contributions from
the other sources have been subtracted such that

�̂jp � arg max Z��jp� (A19)

where

Z��jp� � �
m�1

M �
t�1

T �Cmj�jpsj�t � �jp��xmp�t� � �
n�1
n�j

N

Cmn�npsn�t � �np���
(A20)

In practice, as a discrete model is being used for the component
waveshapes s(t), we use a discrete set of latency shifts with resolution
equal to the sampling rate.

Perhaps the greatest challenge is determining the number of
sources warranted by the data. In our investigations to date we
have been focused on understanding the major sources responsible
for the recorded data. This typically entails first modeling a single
component and examining the un-modeled residual signal in detail.
We then attempt to model the data with two components and so on
to greater numbers of sources. As we demonstrate, the responses
we are examining are sufficiently complex that this approach
rapidly reveals previously unknown characteristics of the neuro-
physiology.

There are many ways that one can use the equations above to
implement the dVCA algorithm. A useful iterative method (Fig. 1)
begins by modeling a single neural source with the single-trial
amplitudes set to unity and the latency shifts set to zero.

1) Event-related potentials (ERPs) are computed for each detector
by averaging the data over all trials. The ERP for each detector is
full-wave rectified, and its integral (area under the curve) is approx-
imated. The ERP having the largest area, or total signal content, is
chosen as the initial approximation of the first component waveshape.

2) The single-trial amplitude scales are all initialized to one and
the single-trial latency shifts are initialized to zero. This is consistent
with the implicit assumptions of the ERP.

3) The coupling matrix is estimated using Eq. A16.
4) Single-trial latency shifts are estimated using Eq. A19.
5) Single-trial amplitudes are estimated using Eq. A13.
6) Equations A12, A16, A19, and A13 are then iterated until the

average change in the waveshape from the previous iteration is 	1%
or until a maximum number of iterations has been performed.

7) At this point the residual signal for each detector is computed by
subtracting the model from the data, as in the argument of Eq. A6. The
residual signals are then averaged across trials to obtain a residual
ERP for each channel.

8) The investigator can explore the benefit of introducing a new
source to be modeled.

9) The initial approximation of the next component waveshape is
chosen to be the residual ERP of the detector having the largest total
signal.

10) The single-trial amplitudes and latency shifts of the new
component are set to one and zero, respectively.

11) Equations A12, A16, A19, and A13 are used to obtain the
parameters accompanying the new component in addition to refining
the estimate of the first component. The set of equations is further
iterated to refine the solutions until the average changes in each
component waveshape is again 	1% or until the maximum number of
iterations has been reached.

12) Additional components are added until the investigator
chooses to stop.
This implementation represents only one possible approach to using
these equations to obtain useful solutions.

A P P E N D I X B : A M A R I E R R O R

The Amari error (Amari et al. 1996) derives from the fact that the
estimated coupling matrix Ĉ can at best be determined to within a
scaled permutation of the true coupling matrix

Ĉ � C�� (B1)

where � is a diagonal scaling matrix and � is a permutation matrix.
Here the quantities decorated with a caret (also known as a “hat”)
denote estimated quantities and those without a caret denote the
unknown true values. Ideally, the source estimates are therefore
related to the original sources by a simple matrix transformation

ŝ � Ms (B2)

where s is the N � T matrix of the original source waveshapes, ŝ is the
N � T matrix of the estimated source waveshapes, and M is a
transformation matrix found by

M � ��1��1. (B3)

The deviation of M from the ideal form suggested in Eq. B3 provides
a measure of the quality of separation. By postmultiplying both sides
of Eq. B2 by sT, we form a square matrix (ssT) postmultiplying M on
the right-hand side. Assuming that this square matrix is invertible, this
allows us to estimate M by multiplying both sides by its inverse
(ssT)�1, giving

M̂ � �ŝsT��ssT��1 (B4)

The Amari error (Amari et al. 1996) can be computed by summing the
rescaled cross-terms, which describes the degree of component mix-
ing

EAmari �

�
i�1

N ��
j�1

N �M̂ij�
maxk�M̂ik�

� 1�� �
j�1

N ��
i�1

N �M̂ij�
maxk�M̂kj�

� 1�
2�N2 � N�

(B5)

Note that we have normalized the Amari error to have a maximum
value of one rather than a number dependent on the number of
sources.
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