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Abstract

It is often useful in multivariate time series analysis to determine statistical causal relations between different time series. Granger causality
is a fundamental measure for this purpose. Yet the traditional pairwise approach to Granger causality analysis may not clearly distinguish
between direct causal influences from one time series to another and indirect ones acting through a third time series. In order to differentiate
direct from indirect Granger causality, a conditional Granger causality measure in the frequency domain is derived based on a partition matrix
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echnique. Simulations and an application to neural field potential time series are demonstrated to validate the method.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The concept of causality introduced byWiener (1956)
nd formulated byGranger (1969)has played a consider-
ble role in investigating the relations among stationary time
eries. The original definition ofGranger (1969), which is
ell named as Granger causality, refers to the improvement

n predictability of a series that derives from incorporation
f the past of a second series, above the predictability based
olely on the past of the first series. This definition only in-
olves the relation between two time series. As pointed out by
ranger (1969, 1980), if a third series is taken into account,
spurious or indirect causality due to the third series may

e detected. Then he defined a prima facie cause(Granger,
980): Y is said to be a prima facie cause ofX if the ob-
ervations ofY up to timet (Y (τ) : τ ≤ t) help one predict
(t + 1) when the corresponding observations ofX andZ are
vailable (X(τ), Z(τ) : τ ≤ t). We refer to this idea as condi-
ional Granger causality since it gives a measure of causality
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between two time series,X andY, conditional on a third,Z.
Evaluation of this conditional Granger causality in the t
domain is fairly straightforward through comparison of
predictions ofX(t + 1), one when (X(τ), Z(τ) : τ ≤ t) are
given, the other when (X(τ), Y (τ), Z(τ) : τ ≤ t) are given
However, evaluating causality by frequency decompos
may allow more meaningful interpretations in cases w
oscillations are involved.

After giving clear measurements of linear dependence
feedback between two blocks of time series(Geweke, 1982,
he also presented a measure of conditional linear depen
and feedback(Geweke, 1984). Both a time domain measu
consistent with that of Granger, and its frequency dec
position were given. Although Hosoya presented some
provements on Geweke’s methods (both bivariate(Hosoya
1991)and conditional versions(Hosoya, 2001)), they have
not been widely accepted because his time domain imple
tation departs from Granger’s original idea, and its phys
interpretation is less clear.

We point out that Geweke’s use of the term “feedback
equivalent to “causality” in the present discussion. In ap
ing Geweke’s frequency-domain conditional Granger ca
ity measure to neural field potential data, we have found
165-0270/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2005.06.011
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negative values, which have no meaning in terms of causality,
may occur at some frequencies. This finding casts doubt on
the applicability of Geweke’s method for neural time series
analysis. We believe that the negative values result from the
lack of identity of estimates of the same spectrum when differ-
ent autoregressive (AR) models are used. This non-identity of
different estimates of the same spectrum is a general practical
problem in numerical analysis that causes errors in Geweke’s
implementation because it requires the estimates to be iden-
tical. In this paper, we employ a partition matrix method to
overcome this problem. Comparison of the results from our
procedure with Geweke’s original procedure, clearly shows
the validity of the current procedure. In the following sec-
tions: we first provide an introduction to Granger causality;
then present an overview of Geweke’s procedure on condi-
tional causality, pointing out the importance of obtaining a
correct measure; and then derive our procedure. Finally, re-
sults of simulations and application to neural field potential
time series data are provided.

2. Background

Consider a multiple stationary time series of dimension
n, W = {wt}. The series has the following moving average
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X andY be:(
B11(L) B12(L)

B21(L) B22(L)

)(
xt

yt

)
=
(

ε1t

ε2t

)
, (4)

with B11(0) = Ik, B22(0) = Il, B12(0) = 0, B21(0) = 0, var
(ε1t) = �2, var(ε2t) = T2. Eq.(4) is actually a partition form
of Eq. (2). Let C = cov(ε1t, ε2t). Then pre-multiplying a
transformation matrix

P =
(

Ik 0

−C′�−1
2 Il

)
(5)

to both sides of Eq.(4), we have the following normalized
form:(

B̃11(L) B̃12(L)

B̃21(L) B̃22(L)

)(
xt

yt

)
=
(

ε1t

ε̃2t

)
, (6)

whereε1t and ε̃2t are uncorrelated, var(ε̃2t) = T3 = T2 −
C′�−1

2 C, and B̃12(0) = 0 but B̃21(0) �= 0 in general. Then
Eq. (6) implies the following spectral decomposition of the
spectral density ofX:

Sx(λ) = H̃11(λ)�2H̃∗
11(λ) + H̃12(λ)T3H̃∗

12(λ), (7)

whereH̃(λ) is the transfer matrix of the normalized autore-
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epresentation with use of the lag operatorL:

t = A(L)εt, (1)

hereE(εt) = 0, var(εt) = � andA0 = In, then × n iden-
ity matrix. Assume there exists the autoregressive repr
ation:

(L)wt = εt, (2)

hereB0 = In.
Suppose thatwt has been decomposed into two v

ors xt and yt with k and l dimensions, respectively:wt =
x′
t , y′

t)
′, where the prime denotes matrix transposition.

oteWt−1 as the subspace generated by{ws; s ≤ t − 1}. De-
ne �1 = var(xt|Xt−1), �2 = var(xt|Xt−1, Yt−1), T1 = var
yt|Yt−1), T2 = var(yt|Xt−1, Yt−1) andϒ = var(wt|Wt−1),
here the conditional variance is taken to be the varian

he residual about the linear projection which accounts fo
rediction. The measures of linear causality fromY to X, lin-
ar causality fromX to Y, instantaneous linear causality a

inear dependence were respectively defined to be(Geweke
982):

FY→X = ln(|�1|/|�2|),
FX→Y = ln(|T1|/|T2|),
FX·Y = ln(|�2| · |T2|/|ϒ|),
FX,Y = ln(|�1| · |T1|/|ϒ|) = FY→X + FX→Y + FX·Y.

(3)

he measures of directional linear causality may be de
osed by frequency. Let the autoregressive representati
ressive expression in Eq.(6). It is obvious that the spe
ral density ofX is decomposed into an intrinsic part an
ausal part, so the measure of linear causality was sugg
s(Geweke, 1982):

Y→X(λ) = ln
|Sx(λ)|

|H̃11(λ)�2H̃∗
11(λ)| . (8)

here is also a convergence relation between the measu
he time and frequency domains:

1

2π

∫ π

−π

fY→X(λ) dλ ≤ FY→X. (9)

n the above, a Granger causality measure between tw
wo blocks of) time series was given. Before Geweke
ented his logarithm version,Pierce (1979)had introduce
R2 measure which simply takes the ratio of the varian
f two prediction errors. The value of Pierce’sR2 measure i
ithin [0, 1] which is more convenient for comparison w
orrelation coefficients. However, Geweke’s logarithm
ion has better statistical properties. There has also b
easure based on autoregressive moving average (AR
odels(Boudjellaba et al., 1992).
Granger causality analysis has been employed in a

er of studies of neural data (Bernasconi and K̈onig, 1999
ernasconi et al., 2000; Kaminski et al., 2001; Hesse e
003; Harrison et al., 2003; Brovelli et al., 2004; Roebroe
l., 2005). The procedure described above has potential a
ations in these types of study. For those cases where
han two scalar/block time series recordings are avail
he procedure may be performed to identify further patt
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of neural interaction after a more traditional pairwise anal-
ysis. We now consider two simple simulations to illustrate
situations in which conditional Granger causality analysis is
important.

2.1. Example 1: the case of differentially delayed driving

We first consider a simple system consisting of three vari-
ables, each representing an AR process:

x(t) = ξ(t)

y(t) = x(t − 1) + η(t)

z(t) = µz(t − 1) + x(t − 2) + ε(t).

(10)

where |µ| < 1 is a parameter, andξ(t), η(t), ε(t) are inde-
pendent white noise processes with zero mean and variances
σ2

1, σ2
2, σ2

3, respectively. The system configuration is illus-
trated inFig. 1(a) wherex drivesy after the delay of one time
unit andx drivesz after the delay of two time units. We note
that the time unit here is arbitrary and has no physical mean-
ing. To be consistent with the data presented later we assume
that the sample rate is 200 Hz. In other words each time unit
is 5 ms.

We performed a simulation of this system, withµ =
0.5, σ1 = 1, σ2 = 0.2, andσ3 = 0.3, to generate a data set
of 500 realizations, each 100 points long. Then, assuming
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the same parameter values, and MVAR models were again fit
to the data. The results of Granger causality analysis inFig.
2(b) show an apparent unidirectional causal driving ofz by x
that is in fact due to the indirect influence throughy. Again,
the mistaken identification of an indirect influence as being
direct suggests the need for the conditional Granger causality
measure.

Note that, although the systems in the above two examples
are very different, the results of pairwise Granger causality
analysis seen inFigs. 1(b) and 2(b) are essentially the same,
indicating that the analysis could not distinguish between
the two systems. These two examples, although simple, thus
plainly demonstrate that the pairwise measure of Granger
causality by itself may be insufficient to reveal true system
relations. We now describe the conditional Granger causality
as a potentially useful tool for disambiguating such situa-
tions.

3. Geweke’s measure of conditional feedback
causality

Now suppose thatwt has been decomposed into three vec-
tors xt , yt andzt with k, l andm dimensions, respectively:
wt = (x′

t , y′
t , z′

t)
′. The measure given by Geweke for the lin-

ear dependence ofX on Y, conditional onZ, in the time
d

F

w cie
c

R
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m(

w
a cy
d mal-
i like
E

ncy
d ing
t
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w the
t ree
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o knowledge of Eq.(10), we fit multivariate autoregressi
MVAR) models(Ding et al., 2000)to the generated data s
or each pairwise combination of variablesx, y, andz, and
alculated the frequency-domain Granger causality for
air in each direction, as shown inFig. 1(b). In the top two
ows of this figure, we see non-zero Granger causality
es across the spectra ofx → y andx → z and zero value
cross the spectra ofy → x andz → x. These results are i
icative of the true unidirectional causal driving ofy andz
y x. However, we also see results in the third row ofFig.
(b) which appear to indicate unidirectional causal driv
f z by y. In fact, we know from the system configurat

hat this apparent driving is due to the common influenc
on bothy andz but with different time delays. This mi

aken identification of an indirect influence as being a d
ne suggests the need for the conditional Granger cau
easure.

.2. Example 2: the case of sequential driving

Next we consider another simple system, again consi
f three AR processes:

x(t) = ξ(t)

y(t) = x(t − 1) + η(t)

z(t) = µz(t − 1) + y(t − 1) + ε(t).

(11)

his system configuration consists of sequential driving f
to y, then fromy to z as illustrated inFig. 2(a). The sam
umbers of realizations and data points were generate
omain(Geweke, 1984)is:

Y→X|Z = ln
var(xt|Xt−1, Zt−1)

var(xt|Xt−1, Yt−1, Zt−1)
, (12)

hich is consistent with Granger’s definition of a prima fa
ause(Granger, 1980).

Time series prediction is achieved by the fitting of MVA
odels. In order to implement Eq.(12), two MVAR mod-
ls are involved. One is the following two-variable MVA
odel:

D11(L) D12(L)

D21(L) D22(L)

)(
xt

zt

)
=
(

�t

�t

)
, (13)

ith the normalizationD11(0) = I, D22(0) = I, D12(0) = 0,
nd cov(�t , �t) = 0 imposed in order to yield the frequen
ecomposition of the conditional dependence. The nor

zation can be achieved by using a transformation matrix
q. (5).
The other MVAR model used for deriving the freque

ecomposition of the conditional dependence is the follow
hree-variable MVAR model:

B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)






xt

yt

zt


 =




εxt

εyt

εzt


 , (14)

ith normalization imposed too. The explicit formula of
ransformation matrix to normalize the MVAR model of th
ime series is given in theAppendix A.
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Fig. 1. (a) Schematic illustration of a simple delay driving system; (b) Granger causality spectra by pairwise analysis.

Based on the relations of different variances, Geweke
derived the following important relation of the conditional
causality in the time domain(Geweke, 1984):

FY→X|Z = FY�→�. (15)

The same relationship is satisfied in the frequency domain
(Geweke, 1984):

fY→X|Z(λ) = fY�→�(λ). (16)

In order to getfY�→�(λ), we need to decompose the variance
of � into the frequency domain. To do so, we write Eqs.(13)

and (14)in the frequency domain:(
X(λ)

Z(λ)

)
=
(

Gxx(λ) Gxz(λ)

Gzx(λ) Gzz(λ)

)(
�(λ)

�(λ)

)
, (17)




X(λ)

Y(λ)

Z(λ)


 =




Hxx(λ) Hxy(λ) Hxz(λ)

Hyx(λ) Hyy(λ) Hyz(λ)

Hzx(λ) Hzy(λ) Hzz(λ)






Ex(λ)

Ey(λ)

Ez(λ)


 .

(18)

If the spectra ofX(λ) andZ(λ) from Eq.(17)remain identical
to the spectra from Eq.(18), then we can substitute Eq.(17)
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Fig. 2. (a) Schematic illustration of a simple sequential driving system; (b) Granger causality spectra by pairwise analysis.

into Eq.(18) to get the following equations:


�(λ)

Y(λ)

�(λ)


 =




Gxx(λ) 0 Gxz(λ)

0 Il 0

Gzx(λ) 0 Gzz(λ)




−1


Hxx(λ) Hxy(λ) Hxz(λ)

Hyx(λ) Hyy(λ) Hyz(λ)

Hzx(λ) Hzy(λ) Hzz(λ)






Ex(λ)

Ey(λ)

Ez(λ)




=




Qxx(λ) Qxy(λ) Qxz(λ)

Qyx(λ) Qyy(λ) Qyz(λ)

Qzx(λ) Qzy(λ) Qzz(λ)






Ex(λ)

Ey(λ)

Ez(λ)


 , (19)

whereQ(λ) = G−1(λ)H(λ). From the first equation of Eq.
(19), the spectrum of� is decomposed into the following
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three obvious parts:

S�(λ) = Qxx(λ)�xxQ∗
xx(λ) + Qxy(λ)�yyQ∗

xy(λ)

+Qxz(λ)�zzQ∗
xz(λ). (20)

Therefore, the measure of causality fromY� to � may be
described as:

fY�→�(λ) = ln
|S�(λ)|

|Qxx(λ)�xxQ∗
xx(λ)| , (21)

whereS�(λ) is actually the variance of�t , namely��, since
�t is white noise in Eq.(13). Considering the relation of
Eq. (16), we could get the conditional causality asGeweke
(1984):

fY→X|Z(λ) = ln
|��|

|Qxx(λ)�xxQ∗
xx(λ)| , (22)

In the above derivations, the assumption that the spectra of
X(λ) andZ(λ) coming from Eq.(17) and from Eq.(18) are
identical is actually very hard to satisfy numerically due to
practical estimation errors. As an example of this problem,
considerFig. 6, where the dashed curves result from perform-
ing Geweke’s conditional causality procedure. Note that the
negative values seen here have no interpretation in terms of
causality. (A detailed description ofFig. 6 is given in a later
section.) In the following section, we introduce the partition
m

4

-
v e
i .
(
p(

w e
e(

W l-
t eral
A d
M p-
r for
t riate
A ce-

dure (Maravall and Mathis, 1994). Alternatively, we adopt
the following procedure to evaluate the conditional Granger
causality.

Letting

(
H̄xy(λ)

H̄zy(λ)

)
=
(

Hxx(λ) Hxz(λ)

Hzx(λ) Hzz(λ)

)−1(Hxy(λ)

Hzy(λ)

)
,

we get the covariance matrix of the noise terms given in Eq.
(24):

�̄(λ) =
(

�xx �xz

�zx �zz

)
+
(

H̄xy(λ)

H̄zy(λ)

)
(�xy �zy)

+
(

�xy

�zy

)
(H̄∗

xy(λ) H̄∗
zy(λ))

+�yy

(
H̄xy(λ)

H̄zy(λ)

)
(H̄∗

xy(λ)H̄∗
zy(λ)). (25)

This covariance matrix is no longer a real matrix, but it is a
Hermite matrix, i.e.̄�xz(λ) = �̄

∗
zx(λ). Therefore, we can use

the following transformation matrix to normalize the bivari-
ate model of Eq.(23):

P


I 0



T in
E

G

T
Q
c
c

5
p

5

s on
t nted
a
a
d
3 ated
t
1
2

atrix technique to overcome this problem.

. Partition matrix improvement

For three blocks of time seriesxt , yt , zt , we can fit a three
ariable MVAR model as in Eq.(14) and we can also deriv
ts frequency domain expression as in Eq.(18). From Eq
18), writing an expression only forX(λ) andZ(λ) (making
artitions) we have:

X(λ)

Z(λ)

)
=
(

Hxx(λ) Hxz(λ)

Hzx(λ) Hzz(λ)

)(
Ēx(λ)

Ēz(λ)

)
, (23)

hereĒx(λ) andĒz(λ) have the following moving averag
xpression:

Ēx(λ)

Ēz(λ)

)
=
(

Ex(λ)

Ez(λ)

)
+
(

Hxx(λ) Hxz(λ)

Hzx(λ) Hzz(λ)

)−1

×
(

Hxy(λ)

Hzy(λ)

)
Ey(λ). (24)

e realize that Eq.(23) is actually a summation of mu
iple ARMA processes, and that the summation of sev
RMA processes is still an ARMA process(Granger an
orris, 1976; Harvey, 1993). However, an unambiguous re

esentation of the general multivariate ARMA process
he summation is unknown, although a general univa
RMA model could be obtained through a specific pro
¯ =  k

− �̄xz(λ)

�̄xx

Im

 . (26)

herefore, in correspondence with the normalized form
q.(17), the transfer matrixG(λ) is now:

(λ) =
(

Hxx(λ) Hxz(λ)

Hzx(λ) Hzz(λ)

)
Ik 0

− �̄xz(λ)

�̄xx

Im




−1

(27)

aking the expansion form of thisG(λ) matrix to get matrix
(λ) = G−1(λ)H(λ), and considering�� = �̄xx, where�̄xx

omes from Eq.(25), we can still use Eq.(22) to get the
onditional causality.

. Applications to simulated and neural field
otential data

.1. Application to simulated data

We performed conditional Granger causality analysi
he delay driving and sequential driving systems prese
bove in Section2. For the delay driving case (Section2.1
ndFig. 1), the Granger causality spectrum fromy to z, con-
itional onx, is presented inFig. 3. It is obvious fromFig.
that the conditional Granger causality measure elimin

he indirect causal influence ofy onz which appeared inFig.
(b). For the sequential driving case (Section2.2 andFig.
), the Granger causality fromx to z, conditional ony, is also
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Fig. 3. Conditional Granger causality spectra fromy to z, conditional on
x, in the delay driving example (Fig. 1), and fromx to z, conditional ony,
in the sequential driving example (Fig. 2), showing that the indirect effects
indicated inFigs. 1(b) and 2(b) have been eliminated.

presented inFig. 3. Clearly, the indirect causal influence from
x to z, which was indicated inFig. 2(b), was also eliminated
by use of the conditional Granger causality.

In both cases, we have seen that conditional Granger
causality analysis eliminated indirect causal influences that
inadvertently resulted from application of the pairwise
Granger causality measure. Knowing the system equations
in these examples allowed us to verify that the conditional
Granger causality measure yielded a truer depiction of the
system relations. We now consider how the conditional
Granger causality measure may provide the same benefit in
the analysis of real neural data.

5.2. Application to neural field potential data

Field potential data were recorded from two macaque
monkeys using transcortical bipolar electrodes at 15 dis-
tributed sites in multiple cortical areas of one hemisphere
(right hemisphere in monkey GE and left hemisphere in mon-
key LU) while the monkeys performed a GO/NO-GO visual
pattern discrimination task(Bressler et al., 1993). The pres-
ence of oscillatory field potential activity in the beta (14–
30 Hz) frequency range was recently reported in the senso-
rimotor cortex of these monkeys during the prestimulus pe-
riod (Brovelli et al., 2004). In that study, Granger causal-
i ons
o eys,
s from
p cor-
t rea
a otor
c

l in-
fl
o ctu-
a (in

area 7b) (Fig. 4(a)). We therefore used conditional Granger
causality analysis to test the hypothesis that theSoma → 7a

influence was mediated by the 7b site. In Fig. 4(b) is pre-
sented the pairwise Granger causality spectrum from the
Soma site to the 7a site (Soma → 7a, light solid curve),
showing significant causal influence in the beta frequency
range. Superimposed inFig. 4(b) is the conditional Granger
causality spectrum for the same pair, but with the 7b site
taken into account (Soma → 7a|7b, dark solid curve). The
corresponding 99% significance thresholds are also presented
(light and dark dashed lines which overlap each other). These
significance thresholds were determined using a permuta-
tion procedure (Edgington, 1980) that involved creating 500
permutations of the field potential data set by random rear-
rangement of the trial order. Since the test was performed
separately for each frequency, a correction was necessary for
the multiple comparisons over the whole range of frequen-
cies. The Bonferroni correction could not be employed be-
cause these multiple comparisons were not independent. An
alternative strategy was employed following(Blair and Kar-
niski, 1993). The Granger causality spectrum was computed
for each permutation, and then the maximum causality value
over the frequency range was identified. After 500 permuta-
tion steps, a distribution of maximum causality values was
created. Choosing ap-value atp = 0.01 for this distribution
gave the thresholds shown inFig. 4(b), (c) andFig. 5(b) in
d

al-
i d no
l from
t ct
m the
k
a 7b,
b

that
t -
t
T rom
S

w pec-
t
c e
b
o sig-
n ility
e e
b
F sal-
i ell
a

the
G sory
c di-
r und
t

ty analysis was performed for all pairwise combinati
f sensorimotor cortical recording sites. In both monk
ignificant Granger causal influences were discovered
rimary somatosensory cortex to both primary motor

ex and inferior posterior parietal cortex, with the latter a
lso exerting Granger causal influences on primary m
ortex.

In monkey GE, the possibility existed that the causa
uence from the primary somatosensory (Soma) site to one
f the inferior posterior parietal sites (in area 7a) was a
lly mediated by another inferior posterior parietal site
ashed lines.
We see fromFig. 4(b) that the conditional Granger caus

ty is greatly reduced in the beta frequency range an
onger significant, meaning that the causal influence
heSoma site to the 7a site is most likely an indirect effe
ediated by the 7b site. This conclusion is consistent with

nown neuroanatomy of the sensorimotor cortex(Felleman
nd Essen, 1991)in which area 7a is connected with area
ut not directly with the primary somatosensory cortex.

FromFig. 4(a) we see that the possibility also existed
he causal influence from theSoma site to the primary mo
or (Mot) site in monkey GE was mediated by the 7b site.
o test this possibility, the Granger causality spectrum f
oma to Mot (Soma → Mot, light solid curve inFig. 4(c))
as compared with the conditional Granger causality s

rum with 7b taken into account (Soma → Mot|7b, dark solid
urve inFig. 4(c)). In contrast toFig. 4(b), we see that th
eta-frequency conditional Granger causality inFig. 4(c) is
nly partially reduced, and remains well above the 99%
ificance level. InFig. 5(a), we see that the same possib
xisted in monkey LU of theSoma to Mot causal influenc
eing mediated by 7b. However, just as inFig. 4(c), we see in
ig. 5(b) that the beta-frequency conditional Granger cau

ty for monkey LU is only partially reduced, and remains w
bove the 99% significance level.

The results from both monkeys thus indicate that
ranger causal influence from the primary somatosen

ortex to the primary motor cortex was not simply an in
ect effect mediated by area 7b. However, we further fo
hat area 7b did play a role in mediating theSoma to Mot
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Fig. 4. Granger causality analysis of field potential data from monkey GE.
(a) Schematic illustration of significant Granger causal influences in the beta
frequency band among sites in sensorimotor cortex. (b) The reduction of the
conditional Granger causality spectrum (dark solid line) below the signifi-
cance threshold indicates an indirect influence of the primary somatosensory
site on the 7asite. (c) The fact that the conditional Granger causality spectrum
(dark solid line) does not fall below the significance threshold shows that
there is a direct influence of the primary somatosensory site on the primary
motor site. That the conditional spectrum is significantly below the pairwise
spectrum indicates that there is an additional indirect effect mediated by 7b.

Fig. 5. Granger causality analysis of field potential data from monkey LU.
(a) Schematic illustration of significant Granger causal influences in the beta
frequency band among sites in sensorimotor cortex. (b) As inFig. 4(c), the
conditional Granger causality spectrum (dark solid line) does not fall below
the significance threshold, indicating that there is a direct influence of the
primary somatosensory site on the primary motor site. Again, the conditional
spectrum is significantly below the pairwise spectrum, showing that there is
an additional indirect effect mediated by 7b.

causal influence in both monkeys. This was determined by
comparing the means of bootstrap resampled distributions
of the peak beta Granger causality values from the spectra
of Soma → Mot andSoma → Mot|7b by Student’st-test.
The significant reduction of beta-frequency Granger causal-
ity when area 7b is taken into account (t = 17.2 for GE;
t = 18.2 for LU, p ≪ 0.001 for both), indicates that the
influence from the primary somatosensory to primary mo-
tor area was partially mediated by area 7b. Such an influ-
ence is consistent with the known neuroanatomy(Felleman
and Essen, 1991), which shows direct connections between
area 7b and both primary motor and primary somatosensory
areas.

As a final demonstration of the value of using the parti-
tion matrix method outlined in this paper to compute condi-
tional Granger causality, we present inFig. 6a direct com-
parison of our improved procedure (solid) with Geweke’s
original procedure (dashed) for theSoma → Mot|7b spec-
tra of monkey GE (Fig. 6(a)) and monkey LU (Fig. 6(b)).
From much previous experience working with this field
potential data(Brovelli et al., 2004), we know that spec-
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Fig. 6. Comparison of Geweke’s original method for computing condi-
tional Granger causality spectra (dashed) with our partition matrix procedure
(solid). (a)Soma → Mot|7b in monkey GE, corresponding toFig. 4(c); (b)
Soma → Mot|7b in monkey LU, corresponding toFig. 5(b). Note that for
both monkeys, Geweke’s original method suffers from having multiple peaks
and valleys across the spectra (believed to be artifactual), and also from hav-
ing negative values, which have no physical interpretation.

tra from these cortical areas typically have a single peak
in the beta frequency range. Geweke’s original method is
clearly seen to be deficient in these examples not only by
the multiple peaks and valleys across the spectra, but also by
the negative values, which have no physical interpretation.
We thus are confident that the partition matrix technique is
a potentially valuable tool to be used in the investigation
of conditional Granger causality relations between neural
signals.
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Appendix A. Transformation matrix to normalize a
model of three time series

Since the MVAR model, such as in Eq.(14), is usually not
normalized, the noise terms could be correlated with each
other. Let us assume that the covariance matrix is given by:

� =




�xx �xy �xz

�yx �yy �yz

�zx �zy �zz


 .

In order to make the first noise term independent, we could
use the following transform:

P1 =




Ik 0 0

−�yx�
−1
xx Il 0

−�zx�
−1
xx 0 Im


 .

Then the covariance matrix for the transformed noise terms
is:




�xx 0 0

0 �yy − �yx�
−1
xx �xy �yz − �yx�

−1
xx �xz

0 �zy − �zx�
−1�xz �zz − �zx�

−1�xz


 .
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gain, to make the second and third noise terms indepen
he following transformation may be made:

2 =




Ik 0 0

0 Il 0

0 −(�zy − �zx�
−1
xx �xz)(�yy − �yx�

−1
xx �xy)−1 Im


 .

herefore the whole transformation matrix needed to m
ll three noise terms independent is:

= P2 · P1
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