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Abstract

Itis often useful in multivariate time series analysis to determine statistical causal relations between different time series. Granger causalit
is a fundamental measure for this purpose. Yet the traditional pairwise approach to Granger causality analysis may not clearly distinguisl
between direct causal influences from one time series to another and indirect ones acting through a third time series. In order to differentiat
direct from indirect Granger causality, a conditional Granger causality measure in the frequency domain is derived based on a partition matri
technique. Simulations and an application to neural field potential time series are demonstrated to validate the method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction between two time serieX; andY, conditional on a thirdZ.
Evaluation of this conditional Granger causality in the time
The concept of causality introduced hiener (1956) domain is fairly straightforward through comparison of two
and formulated byGranger (1969has played a consider- predictions ofX(z + 1), one when X(z), Z(z) : t < 1t) are
able role in investigating the relations among stationary time given, the other whenX(z), Y(z), Z(z) : <) are given.
series. The original definition dbranger (1969)which is However, evaluating causality by frequency decomposition
well named as Granger causality, refers to the improvementmay allow more meaningful interpretations in cases where
in predictability of a series that derives from incorporation oscillations are involved.
of the past of a second series, above the predictability based After giving clear measurements of linear dependence and
solely on the past of the first series. This definition only in- feedback between two blocks of time sef{@sweke, 1982)
volves the relation between two time series. As pointed out by he also presented a measure of conditional linear dependence
Granger (1969, 1980if a third series is taken into account, and feedbackGeweke, 1984)Both a time domain measure,
a spurious or indirect causality due to the third series may consistent with that of Granger, and its frequency decom-
be detected. Then he defined a prima facie c#Gsanger, position were given. Although Hosoya presented some im-
1980} Y is said to be a prima facie cause ¥fif the ob- provements on Geweke’s methods (both bivar{atesoya,
servations oft up to timer (Y(z) : < t) help one predict  1991)and conditional versionfHosoya, 2001) they have
X(t + 1) when the corresponding observation¥aindZ are not beenwidely accepted because histime domainimplemen-
available ¥ (), Z(7) : T < t). We refer to this idea as condi-  tation departs from Granger’s original idea, and its physical
tional Granger causality since it gives a measure of causality interpretation is less clear.
We point out that Geweke's use of the term “feedback” is
" Corresponding author. Tel.; +1 352 392 5605; fax: +1 352 392 9791,  €duivalent to “causality” in the present discussion. In apply-
E-mail addresses: ychen@bme.ufl.edu (Y. Chen); ing Geweke’s frequency-domain conditional Granger causal-
bressler@fau.edu (S.L. Bressler); mding@bme.ufl.edu (M. Ding). ity measure to neural field potential data, we have found that
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negative values, which have no meaning in terms of causality, X andY be:
may occur at some frequencies. This finding casts doubt on

the applicability of Geweke’s method for neural time series B11(L) Bio(L) Xe\ _ [ en 4)
analysis. We believe that the negative values result from the \ B21(L)  B22(L) | \ y: ’

lack of identity of estimates of the same spectrum when differ-

entautoregressive (AR) models are used. This non-identity of With B11(0) = I, B25(0) = 1, B12(0) = 0, B21(0) = 0, var
different estimates of the same spectrum is a general practicalé1) = X2, var(ez) = T2. Eq.(4)is actually a partition form
problem in numerical analysis that causes errors in Geweke's®! Ed- (2)- Let C = coviey, ex). Then pre-multiplying a
implementation because it requires the estimates to be iden{ransformation matrix

tical. In this paper, we employ a partition matrix method to < I O)

€2t

overcome this problem. Comparison of the results from our P = ol 5)
procedure with Geweke’s original procedure, clearly shows 2 !

the validity of the current procedure. In the following sec-
tions: we first provide an introduction to Granger causality;
then present an overview of Geweke’s procedure on condi-

tional causality, pointing out the importance of obtaining a (ﬁll(L) ﬁlZ(L)> <Xt) _ <€1t>

to both sides of Eq(4), we have the following normalized
form:

(6)

correct measure; and then derive our procedure. Finally, re- |\ Boy(L) Boo(L) i Ba

sults of simulations and application to neural field potential

time series data are provided. whereey, and g, are uncorrelated, véf;) = T3 = Ty —
C/zglc, andB1,(0) = 0 but B,1(0) 0 in general. Then
Eq. (6) implies the following spectral decomposition of the

2. Background spectral density oX:

N % B3 ] % B3
Consider a multiple stationary time series of dimension Sx(%) = H11(1)22H7y (%) + Hia(3) T3Hy,(2). Q)

n. W = {w;}. The series has the following moving average \herefi(1) is the transfer matrix of the normalized autore-
representation with use of the lag operator gressive expression in E¢6). It is obvious that the spec-

tral density ofX is decomposed into an intrinsic part and a
causal part, so the measure of linear causality was suggested
as(Geweke, 1982)

w, = A(L)e;, 1)

whereE(e;) = 0, vare,) = X andAg = I, then x n iden-

tity matrix. Assume there exists the autoregressive represen- ISx(A)]
tation: fr=x() =In —= =~ . (8)
’ |H11()\)22H11()\)|
B(L)w, = &y, (2) There is also a convergence relation between the measures in
the time and frequency domains:
whereBg =1,,. 1 g
Suppose thaw; has been decomposed into two vec- — frox(A) dr < Fy_x. Q)

torsx, andy, with k and!/ dimensions, respectivelyy, = 2 ) n
(x,y,), where the prime denotes matrix transposition. De-
noteW,_; as the subspace generatedWwy; s < r — 1}. De-

fine X1 = var(x;|X;_1), X2 = var(x,|X;_1, Y;—1), T1 = var
(y:1Y;-1), T2 = var(y;|X;—1, Y;—1) andY = var(w,;|W,_1),
where the conditional variance is taken to be the variance of
the residual about the linear projection which accounts for the
prediction. The measures of linear causality frgno X, lin-

ear causality fronX to Y, instantaneous linear causality and
linear dependence were respectively defined t(Qmwveke,
1982)

In the above, a Granger causality measure between two (or
two blocks of) time series was given. Before Geweke pre-
sented his logarithm versioRjerce (1979had introduced
a R? measure which simply takes the ratio of the variances
of two prediction errors. The value of Pierc&$ measure is
within [0, 1] which is more convenient for comparison with
correlation coefficients. However, Geweke’s logarithm ver-
sion has better statistical properties. There has also been a
measure based on autoregressive moving average (ARMA)
models(Boudjellaba et al., 1992)

Granger causality analysis has been employed in a num-

Fy_x = In(|Z1]/]1Z2]), . . .
v-x = IN(1Z1l/1Z2) ber of studies of neural datB¢rnasconi and &nig, 1999;

Fx—y = In(|T1l/IT2l), @) Bernasconi et al., 2000; Kaminski et al., 2001; Hesse et al.,
Fx.y =In(|22| - |T21/|Y]), 2003; Harrison et al., 2003; Brovelli et al., 2004; Roebroek et
Fxy = In(|Z1] - IT1]/|Y]) = Fy_x + Fx-y + Fxy. al., 2005. The procedure described above has potential appli-

cations in these types of study. For those cases where more
The measures of directional linear causality may be decom-than two scalar/block time series recordings are available,
posed by frequency. Let the autoregressive representation fothe procedure may be performed to identify further patterns
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of neural interaction after a more traditional pairwise anal-
ysis. We now consider two simple simulations to illustrate
situations in which conditional Granger causality analysis is
important.

2.1. Example 1: the case of differentially delayed driving

We first consider a simple system consisting of three vari-
ables, each representing an AR process:

x(r) = (1)

y(0) = x(t — 1) + n(?)
z2(t) = pz(t — 1)+ x(t — 2) + (7).

(10)

where|u| < 1 is a parameter, anglt), n(z), €(¢) are inde-
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the same parameter values, and MVAR models were again fit
to the data. The results of Granger causality analysisgn

2(b) show an apparent unidirectional causal driving b x

that is in fact due to the indirect influence througtAgain,

the mistaken identification of an indirect influence as being
direct suggests the need for the conditional Granger causality
measure.

Note that, although the systems in the above two examples
are very different, the results of pairwise Granger causality
analysis seen ifrigs. 1(b) and @) are essentially the same,
indicating that the analysis could not distinguish between
the two systems. These two examples, although simple, thus
plainly demonstrate that the pairwise measure of Granger
causality by itself may be insufficient to reveal true system
relations. We now describe the conditional Granger causality

pendent white noise processes with zero mean and varianceas a potentially useful tool for disambiguating such situa-

02,02, 02, respectively. The system configuration is illus-

trated inFig. 1(a) wherex drivesy after the delay of one time
unit andx drivesz after the delay of two time units. We note

that the time unit here is arbitrary and has no physical mean-

tions.

3. Geweke’s measure of conditional feedback

ing. To be consistent with the data presented later we assumeausality

that the sample rate is 200 Hz. In other words each time unit

is5ms.
We performed a simulation of this system, with=
0.5,01 = 1,00 = 0.2, ando3 = 0.3, to generate a data set

Now suppose that, has been decomposed into three vec-
torsx;, y; andz, with k, [ andm dimensions, respectively:
w, = (x,y,,z,). The measure given by Geweke for the lin-

of 500 realizations, each 100 points long. Then, assumingear dependence & on Y, conditional onZ, in the time

no knowledge of Eqg(10), we fit multivariate autoregressive
(MVAR) models(Ding et al., 2000}o the generated data set
for each pairwise combination of variablgsy, andz, and

calculated the frequency-domain Granger causality for each

pair in each direction, as shown ffig. 1(b). In the top two

rows of this figure, we see non-zero Granger causality val-

ues across the spectraxf> y andx — z and zero values
across the spectra 9f— x andz — x. These results are in-
dicative of the true unidirectional causal driving yofindz

by x. However, we also see results in the third rowrag.
1(b) which appear to indicate unidirectional causal driving
of z by y. In fact, we know from the system configuration

that this apparent driving is due to the common influence of

x on bothy andz but with different time delays. This mis-
taken identification of an indirect influence as being a direct

domain(Geweke, 1984is:

var(x,|X;—1, Z;—1)
varx|X,—1, Y1, Zs—1)’

Fy_xjz =In (12)
which is consistent with Granger’s definition of a prima facie
causgGranger, 1980)

Time series prediction is achieved by the fitting of MVAR
models. In order to implement E¢l2), two MVAR mod-
els are involved. One is the following two-variable MVAR

(222 ) ()-(2)

(Dll(L) D1o(L) 0,
with the normalizatiorD11(0) = I, D22(0) = I, D12(0) = O,

v,

X;
(13)

D21(L) D2o(L) Z

one suggests the need for the conditional Granger causalityand cov@;, ¥,) = 0 imposed in order to yield the frequency

measure.

2.2. Example 2: the case of sequential driving

decomposition of the conditional dependence. The normal-
ization can be achieved by using a transformation matrix like
Eq. (5).

The other MVAR model used for deriving the frequency

Next we consider another simple system, again consisting decomposition of the conditional dependence is the following

of three AR processes:

x(1) = &()
y(1) = x(t = 1)+ n()
(1) = pz(t = 1)+ y(r — 1)+ €().

11)

This system configuration consists of sequential driving from
x to y, then fromy to z as illustrated irFig. 2a). The same

three-variable MVAR model:

B11(L) Bi2(L) Bis(L) X; Ext
B21(L) B2o(L) Bos(L) ye | =|ex |, (14
B31(L) Bza(L) Bszz(L) Z ez

with normalization imposed too. The explicit formula of the
transformation matrix to normalize the MVAR model of three

numbers of realizations and data points were generated fortime series is given in th&ppendix A
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Fig. 1. (a) Schematic illustration of a simple delay driving system; (b) Granger causality spectra by pairwise analysis.

Based on the relations of different variances, Geweke and (14)in the frequency domain:
derived the following important relation of the conditional

causality in the time domaifGeweke, 1984) (X()‘)> _ (Gxx()‘) ze(k)) (9()”)> a7
Zx) )\ Gz Gz(3) )\ ¥®) )’

Fyxiz = Fyv-eo.

The same relationship is satisfied in the frequency domain i(k) EM(M gxy *) EXZ()L) EX(A)
(Geweke, 1084) W) | = [ Hu(d) HL0) H0) | | EG)

Z()) H:(1) H,() H:()/ \E:Q)
fY-xz(}) = frv-e(?). (16) (18)

Inorderto getfyw_. @ (1), we need to decompose the variance If the spectra oKX (1) andZ(A) from Eq(17)remain identical
of @ into the frequency domain. To do so, we write HdR) to the spectra from Eq18), then we can substitute E(.7)
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Fig. 2. (a) Schematic illustration of a simple sequential driving system; (b) Granger causality spectra by pairwise analysis.

into Eq.(18)to get the following equations:

o)
YO | =
w(L)

Gix(2)
0
G:c(2)

QX)C ()\’)
Q,x(%)
Q:x(2)

0 Guo()\
I 0
0 G.(v)
Qu(x) Qu(d)

Q1) Qy:(4)
Q,(A) Qz:(1)

Hi(1) Hye(2) He ()
Hy.(2) Hy,(2) Hy:(2)
H. () H;y() Hi(d)

E.(2)
Ey(%)
E.(1)

whereQ(1) = G~1(A)H()). From the first equation of Eq.
(19), the spectrum o is decomposed into the following

E.(2)
E,(2)
E:(2)

(19)
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three obvious parts: dure (Maravall and Mathis, 1994 )Alternatively, we adopt
. . the following procedure to evaluate the conditional Granger
Se ()\) = Qxx()‘)zxexx()‘) + Qxy()‘)znyxy()‘) Causa“ty_
+Quxz (1) 22 QY (V) (20) Letting

Therefore, the measure of causality frafls to ® may be 0O Hoo) Ho(\ L /H
described as: H,, (1) _ w(d) He (L) e |
Se()] Hy(2) H..()) H()) H.,())
)
; (21)
Qe B Q) we get the covariance matrix of the noise terms given in Eq.

whereSg (1) is actually the variance @,, namelyXg, since (24).
®; is white noise in Eq(13). Considering the relation of ¥ 5 H o)
Eq. (16), we could get the conditional causality Geweke  3(3) = <Z“ xz) + ( v ) (Zyy Z2y)

frevse()=In

(1984) o Xz H:, (%)
|Zol Yy — —
-xjz(2) =1 , 22 3 * *
frox2®) =g 0%, QL) @2 * <zzy> (H, () H, (1)
In the above derivations, the assumption that the spectra of H, n\ B
X(*) andZ(2) coming from Eq(17) and from Eq(18) are Ty <1-_1 y(}»)) (B, (OH, (1), (25)
identical is actually very hard to satisfy numerically due to wy

practical estimation errors. As an example of this problem
considerFig. 6, where the dashed curves result from perform- : o
in Gewekge’s conditional causality procedure Notg that the Hermite matrix, |.erZ(A).= E:X(A)' Therefore., We can use
g B¢ y P o he following transformation matrix to normalize the bivari-
negative values seen here have no interpretation in terms o .
. . - S . ate model of Eq(23):
causality. (A detailed description &ig. 6is given in a later

' This covariance matrix is no longer a real matrix, but it is a

section.) In the following section, we introduce the partition I 0
matrix technique to overcome this problem. P= z.. (1) (26)
==
T
4. Partition matrix improvement Therefore, in correspondence with the normalized form in
Eq. (17), the transfer matrixz(1) is now:
For three blocks of time serias, y;, z;, we can fit a three- 1
variable MVAR model as in E¢L4) and we can also derive H. (2) Hi(A) R 0
its frequency domain expression as in E#8). From Eq. G(A) = <H *) H (A)) ¥ (2) I 27)
(18), writing an expression only faX(A) andZ()) (making > w@ T "

partitions) we have:
Taking the expansion form of thi§(1) matrix to get matrix

(X(K)> 3 <Hxx()») sz(M) <]Ex()\)> 23) Q(\) = G~Y(A)H(»), and consideringe = X,., whereX,,
Z(\) ) \ H, (W) H (1) E.(2) |’ comes from Eq(25), we can still use Eq(22) to get the
’ _ conditional causality.
whereE, (1) andE, (1) have the following moving average
expression:

_ 1 5. Applications to simulated and neural field

E.(%) E.(%) H. (2) Hy(3) potential data

B0 ) T\ R0 ) T e B
5.1. Application to simulated data

Hy(2)

x (sz(k)> Ey(). (24) We performed conditional Granger causality analysis on

the delay driving and sequential driving systems presented
We realize that Eq(23) is actually a summation of mul- above in Sectior2. For the delay driving case (Secti@il
tiple ARMA processes, and that the summation of several andFig. 1), the Granger causality spectrum frgrto z, con-
ARMA processes is still an ARMA proceg&ranger and  ditional onx, is presented iifrig. 3. It is obvious fromFig.

Morris, 1976; Harvey, 1993However, an unambiguous rep- 3 that the conditional Granger causality measure eliminated
resentation of the general multivariate ARMA process for the indirect causal influence gon z which appeared ifig.
the summation is unknown, although a general univariate 1(b). For the sequential driving case (Sect@2 and Fig.
ARMA model could be obtained through a specific proce- 2), the Granger causality fromto z, conditional ory, is also
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02 . . - . area 7h) Fig. 4a)). We therefore used conditional Granger
018 - i causality analysis to test the hypothesis thatStvea — 7a
influence was mediated by thé 8ite. InFig. 4(b) is pre-
sented the pairwise Granger causality spectrum from the
Soma site to the ¢ site (Soma — 7a, light solid curve),
showing significant causal influence in the beta frequency
] range. Superimposed kig. 4(b) is the conditional Granger
causality spectrum for the same pair, but with tliesite
taken into accountSoma — 7a|7b, dark solid curve). The
corresponding 99% significance thresholds are also presented

ity

0.16 1

=
L

Z e
A

conditional Granger causal

0.04 1 1 (light and dark dashed lines which overlap each other). These

002 ] significance thresholds were determined using a permuta-
o tion procedureEdgington, 198pthat involved creating 500

0 20 40 60 80 100 permutations of the field potential data set by random rear-

frequency (Hz) rangement of the trial order. Since the test was performed

separately for each frequency, a correction was necessary for
x, in the delay driving example~(g. 1), and fromx to z, conditional ony, the multiple compar!sons Ov.er the whole range of frequen-
in the sequential driving exampl€i@. 2), showing that the indirect effects cies. The Bonferroni correction could not be employed be-
indicated inFigs. 1(b) and @) have been eliminated. cause these multiple comparisons were not independent. An

alternative strategy was employed followifBjair and Kar-
presented ifrig. 3. Clearly, the indirect causal influence from  niski, 1993) The Granger causality spectrum was computed
x to z, which was indicated ifrig. 2(b), was also eliminated  for each permutation, and then the maximum causality value
by use of the conditional Granger causality. over the frequency range was identified. After 500 permuta-

In both cases, we have seen that conditional Grangertion steps, a distribution of maximum causality values was

causality analysis eliminated indirect causal influences that created. Choosingavalue atp = 0.01 for this distribution
inadvertently resulted from application of the pairwise gave the thresholds shown fig. 4(b), (c) andFig. 5(b) in
Granger causality measure. Knowing the system equationsdashed lines.
in these examples allowed us to verify that the conditional ~ We see fronFig. 4(b) that the conditional Granger causal-
Granger causality measure yielded a truer depiction of theity is greatly reduced in the beta frequency range and no
system relations. We now consider how the conditional longer significant, meaning that the causal influence from
Granger causality measure may provide the same benefit inthe Soma site to the 4 site is most likely an indirect effect

Fig. 3. Conditional Granger causality spectra frero z, conditional on

the analysis of real neural data. mediated by the#/site. This conclusion is consistent with the
known neuroanatomy of the sensorimotor coreglleman
5.2. Application to neural field potential data and Essen, 19910 which area 7a is connected with area 7b,

but not directly with the primary somatosensory cortex.

Field potential data were recorded from two macaque FromFig. 4(a) we see that the possibility also existed that
monkeys using transcortical bipolar electrodes at 15 dis- the causal influence from th&oma site to the primary mo-
tributed sites in multiple cortical areas of one hemisphere tor (Mot) site in monkey GE was mediated by thé §ite.
(right hemisphere in monkey GE and left hemisphere in mon- To test this possibility, the Granger causality spectrum from
key LU) while the monkeys performed a GO/NO-GO visual Soma to Mot (Soma — Mot, light solid curve inFig. 4(c))
pattern discrimination tasfBressler et al., 1993 he pres- was compared with the conditional Granger causality spec-
ence of oscillatory field potential activity in the beta (14— trumwith 75 takeninto accountoma — Mot|7b, dark solid
30 Hz) frequency range was recently reported in the senso-curve inFig. 4(c)). In contrast td~ig. 4b), we see that the
rimotor cortex of these monkeys during the prestimulus pe- beta-frequency conditional Granger causalityig. 4(c) is
riod (Brovelli et al., 2004) In that study, Granger causal- only partially reduced, and remains well above the 99% sig-
ity analysis was performed for all pairwise combinations nificance level. IrfFig. 5a), we see that the same possibility
of sensorimotor cortical recording sites. In both monkeys, existed in monkey LU of thoma to Mot causal influence
significant Granger causal influences were discovered frombeing mediated byi However, just as ifrig. 4(c), we see in
primary somatosensory cortex to both primary motor cor- Fig. Xb) that the beta-frequency conditional Granger causal-
tex and inferior posterior parietal cortex, with the latter area ity for monkey LU is only partially reduced, and remains well
also exerting Granger causal influences on primary motor above the 99% significance level.
cortex. The results from both monkeys thus indicate that the

In monkey GE, the possibility existed that the causal in- Granger causal influence from the primary somatosensory
fluence from the primary somatosensofya) site to one cortex to the primary motor cortex was not simply an indi-
of the inferior posterior parietal sites (in area 7a) was actu- rect effect mediated by area 7b. However, we further found
ally mediated by another inferior posterior parietal site (in that area 7b did play a role in mediating thena to Mot
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—()

Mot | Soma
(a)
0.12
—— Soma — Mot
— Soma — Motl7b
(a) 0.1 ---- significance threshold
0.1 :
— Soma — 7a % 0.08
0.09 — Soma —7a|7b ]
0.08 ==-- significance threshold § 0,06
Q
= 007 &
S E o4
w 0.06 o v
=
-3
2 0.05
s 0.02
O 003 0-
10 20 30 40 50 60
0.02
frequency (Hz)
0.01
M (b
% 20 30 40 50 60
(b) - ‘frequency (Hz) ; ? Fig. 5. Granger causality analysis of field potential data from monkey LU.
(a) Schematic illustration of significant Granger causal influences in the beta
023 . frequency band among sites in sensorimotor cortex. (b) Asgn4(c), the
’ —— Soma — Mot conditional Granger causality spectrum (dark solid line) does not fall below
02 — Soma — Mot|7b the significance threshold, indicating that there is a direct influence of the
0.18 ---- significance threshold | primary somatosensory site on the primary motor site. Again, the conditional
0.16 spectrum is significantly below the pairwise spectrum, showing that there is
2" an additional indirect effect mediated by 7b.
< 014
E
8 012
S ol causal influence in both monkeys. This was determined by
g 008 comparing the means of bootstrap resampled distributions
© e of the peak beta Granger causality values from the spectra
004 of Soma — Mot and Soma — Mot|7b by Student's-test.
' The significant reduction of beta-frequency Granger causal-
002 4 e ity when area 7b is taken into accoumt=f 17.2 for GE;
% 20 20 40 0 P t =182 for LU, p <« 0.001 for both), indicates that the
© frequency (Hz) influence from the primary somatosensory to primary mo-

tor area was partially mediated by area 7b. Such an influ-
Fig. 4. Granger causality analysis of field potential data from monkey GE. €NC€ is consistent with the known neuroanatdfgileman
(a) Schematic illustration of significant Granger causal influences in the beta and Essen, 1991yhich shows direct connections between
frequency band among sites in sensorimotor cortex. (b) The reduction of the grea 7b and both primary motor and primary somatosensory
conditional Granger causality spectrum (dark solid line) below the signifi- eas

cance threshold indicates an indirect influence of the primary somatosensory . . . .
site onthe Z site. (c) The factthatthe conditional Granger causality spectrum As a ﬂ_nal demonStr{it'on _Of th_e value of using the pam_'
(dark solid line) does not fall below the significance threshold shows that tion matrix method outlined in this paper to compute condi-
there is a direct influence of the primary somatosensory site on the primary tional Granger causality, we presentHig. 6a direct com-
motor site. That the conditional spectrum is significantly below the pairwise parison of our improved procedure (solid) with Geweke's
spectrum indicates that there is an additional indirect effect mediated by 7b. original procedure (dashed) for tl¥@ma — Mot|7b spec-
tra of monkey GE Kig. 6(@)) and monkey LU Kig. 6(b)).
From much previous experience working with this field
potential data(Brovelli et al., 2004) we know that spec-
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0.15 : ‘ . : Appendix A. Transformation matrix to normalize a
model of three time series

Since the MVAR model, such as in Egd4), is usually not
normalized, the noise terms could be correlated with each
other. Let us assume that the covariance matrix is given by:

0.1

0.05

P 2;xy sz
=] Zn Xy Xy
0 ZZX ZZ}’ ZZZ

conditional Granger causality

In order to make the first noise term independent, we could

-0.05 o 30 20 30 50 use the following transform:
(a) frequency (Hz)
I 0 O
-1
008 Pr=|-XZpX; I O

-z, 0 I,

0.06 . . .
Then the covariance matrix for the transformed noise terms

IS:
0.04
E.XX 0 0

0 X, —3IuIlZy X - X313,
0 X,-X,Xl%, X,-%.3.1%,

0.02

conditional Granger causality

Again, to make the second and third noise terms independent,
the following transformation may be made:

-0.02 ’ : . .
10 20 30 40 50 60
(b) frequency (Hz) L 0 0
P, = 0 I 0
Fig. 6. Comparison of Geweke’s original method for computing condi- 0 —(z, - szz;xlzxz)(zyy _ ):yle—_xlz”)—l I,

tional Granger causality spectra (dashed) with our partition matrix procedure

(solid). (a)Soma — Mot|7b in monkey GE, corresponding f&g. 4(c); (b)

Soma — Mot|7b in monkey LU, corresponding tBig. 5b). Note that for Therefore the whole transformation matrix needed to make
both monkeys, Geweke's original method suffers from having multiple peaks all three noise terms independent is:

and valleys across the spectra (believed to be artifactual), and also from hav-

ing negative values, which have no physical interpretation. P=P,.P;
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