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of the limb, simplifying the process of control. However, there is
now convincing evidence that in programming motor commands
to the muscles, the brain does take into account the dynamics of
the task (see SENSORIMOTOR LEARNING). The motor commands
result in an attractor trajectory that leads the hand in simple reach-
ing movements. It would be expected that both the trajectory of
the attractor and the shape of the restoring field about the attractor
would change as the dynamics of the task change. Although it is
quite possible that biological motor commands can be described in
terms of changes in the equilibrium position of the limb, the hy-
pothesis that control of movements by the brain is explicitly per-
formed through this manipulation because it somehow simplifies
the process of control appears to be inconsistent with the current
data.

Road Maps: Mammalian Motor Control; Dynamic Systems
Related Reading: Arm and Hand Movement Control; Cerebellum and Mo-

tor Control; Geometrical Principles in Motor Control; Limb Geometry,
Neural Control; Muscle Models; Optimization Principles in Motor
Control
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Event-Related Potentials
Steven L. Bressler

Introduction

It is commonly believed that cognition intimately depends on the
functioning of the cerebral cortex. Understanding the neural basis
of cognition therefore will likely require knowledge of cortical
operations at all organizational levels, which may usefully be
grouped as microscopic, mesoscopic, and macroscopic. The cel-
lular mechanisms of cortical neurons operate at the microscopic
scale and are measured by a host of techniques targeted at that level.
Individual cortical neurons contribute to cognitive function, how-
ever, by joining in the cooperative actions of neural networks,
which operate at the mesoscopic and macroscopic scales. At the
microscopic scale, the cooperative fraction of any single neuron’s
total activity may be exceedingly small, but the cooperative activity
of the network exerts effects that are relevant for cognition. The
mesoscopic level concerns the cooperative activity of neurons lo-
cally in ensembles and area networks, and the macroscopic level
concerns the cooperative activity of neurons globally in large-scale
networks and entire systems. Thus, many important cortical func-
tions reside in the operations of neural networks and are measured
by specialized techniques targeted at the mesoscopic and macro-
scopic levels.

The event-related potential (ERP) is a neural signal that reflects
coordinated neural network activity. The cortical ERP provides a
window onto the dynamics of network activity in relation to a va-

riety of different cognitive processes at both mesoscopic and mac-
roscopic levels on a time scale comparable to that of single-neuron
activity. Cortical ERPs arise from synchronous interactions among
large numbers of participating neurons. These include dense local
interactions involving excitatory pyramidal neurons and inhibitory
interneurons, as well as long-range interactions mediated by axonal
pathways in the white matter. (See NEUROANATOMY IN A COM-
PUTATIONAL PERSPECTIVE.) Multiple feedback loops involving
both excitatory and inhibitory interactions typically cause ERPs to
be oscillatory, meaning that they fluctuate within bounds around a
central value. Depending on the types of interaction that occur in
a specific behavioral condition, cortical networks may display dif-
ferent states of synchrony, causing their ERPs to oscillate in dif-
ferent frequency bands, designated delta (0–4 Hz), theta (5–8 Hz),
alpha (9–12 Hz), beta (13–30 Hz), and gamma (31–100 Hz).

The physiological basis of the cortical ERP lies in fields of po-
tential generated by interacting neurons (Lopes da Silva, 1991).
Field potentials are largely dendritic in origin, resulting from the
summed extracellular currents generated by electromotive forces
(EMFs) in the dendrites of synchronously active cortical neurons,
primarily pyramidal cells. The EMFs, arising from synaptic acti-
vation of postsynaptic ion channels, circulate current in closed
loops across the cell membrane and through the intracellular and
extracellular spaces. Summed closed-loop currents generated by an
ensemble of neighboring neurons flow across the external resis-
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Figure 1. A local field potential (LFP) recorded from the posterior parietal
cortex of a macaque monkey in relation to a visual stimulus presented on
a display screen for 100 ms, starting at time 0. The LFP was recorded from
a chronically implanted bipolar transcortical electrode consisting of 51-lm-
diameter Teflon-coated platinum wires with 2.5-mm tip separation.

Figure 2. The averaged event-related potential from the same posterior
parietal cortex site as in Figure 1, computed from an ensemble of 888 trials.
Note the flat prestimulus baseline as compared to the single trial in Figure
1. This illustrates the fact that rhythmic prestimulus activity that is not
phase-locked to the stimulus is canceled out by the averaging process.

tance to form the local ensemble mean field potential (Freeman,
2000).

Depending on the location and size of the recording and refer-
ence electrodes, recorded cortical field potentials integrate neural
activity over a range of spatial scales: from the intracortical local
field potential (LFP) to the intracranial electrocorticogram (ECoG)
to the extracranial electroencephalogram (EEG). The LFP (Figure
1) is the most spatially localized signal, integrating the field poten-
tial on a submillimeter scale; the ECoG integrates on a submilli-
meter to millimeter scale; and the EEG integrates over centimeters.
The term “field potential” will be used here in reference to the
general class of signal subsuming the LFP, ECoG, and EEG. (The
intracellular components of the same closed-loop currents that give
rise to field potentials are responsible for the closely related mag-
netic fields, recorded extracranially as the magnetoencephalogram,
or MEG.)

A general problem in the investigation of ERPs is that field po-
tential recordings most often contain a combination of potentials,
in unknown proportions, from multiple sources. Thus, in addition
to the ERP, which is derived from specific networks associated with
a behavioral event, the field potential typically also contains po-
tentials derived from the more general field activity of large neural
populations. Owing to their fortuitous geometric arrangements and
synchronous behavior, these later potentials are mixed with the
ERP waveform. Thus, a primary task of all ERP studies is to extract
the event-related portion of the recorded field potential. The next
section deals with some basic methodology by which this is ac-
complished for different kinds of ERP.

ERP Varieties and Their Analysis

Whether reflecting mesoscopic or macroscopic activity, the cortical
ERP is an electrical signal generated by neuronal networks in re-
lation to a behaviorally significant event. (The corresponding
event-related magnetic field has many of the same dynamic and
functional properties as the ERP.) Two general classes of ERP are
distinguished by whether the relevant event is discrete or contin-
uous. In the case of discrete events, the associated transient ERP
is analyzed in short epochs that are time-locked to the event. In the
case of continuous events, which usually are periodically modu-
lated sensory stimuli such as a visual flicker, the concurrent steady-
state ERP is analyzed in a relatively long time segment.

The traditional approach to the analysis of transient ERPs is to
consider the ERP as a characteristic waveform that occurs in re-
lation to the behaviorally significant discrete event. As a simpli-
fying assumption, the ERP waveform is usually treated as if it
possesses the same amplitude and phase each time that the event
is repeated on multiple trials, although recent analysis shows that

this assumption may not always be valid (Truccolo et al., 2002).
Nonetheless, as was discussed above, the recorded single-trial field
potential contains contributions from network activity that are both
associated (ERP signal) and not associated (noise) with the event.
Therefore, averaging of the single-trial field potential time series,
time-locked to the event, is commonly employed to extract the ERP
from the non-event-related noise. When the relevant event is a sen-
sory stimulus, such phase-locked ERPs are called “evoked.” Av-
eraged evoked potentials (Figure 2) are most commonly described
in terms of the succession of waveform components that follow
stimulus presentation. These components are typically identified
according to their polarity (positive or negative) and their time
latency following stimulus onset. (Note that the time latency is
equivalent to phase in this context.)

Transient ERP waveform components having variable phase
may also reliably occur in relation to the repeated event. In this
case, time series averaging does not reveal the ERP but instead is
destructive, since components of opposite polarity on successive
trials tend to be canceled. Non-phase-locked ERPs are referred to
as “induced” when they occur following a stimulus and “sponta-
neous” in the period prior to a stimulus or motor response. This
type of ERP may be effectively analyzed by averaging the fre-
quency content of single-trial time series rather than the time series
themselves.

Non-phase-locked transient event-related phenomena are de-
tected as frequency-specific changes in the ERP time series. These
phenomena may consist of either an event-related increase or de-
crease of power in one or more of the aforementioned frequency
bands. Since the level of ERP power is typically considered to
reflect the degree of synchrony within local neuronal populations,
a power increase is called event-related synchronization, and a
power decrease is called event-related desynchronization (Pfurt-
scheller and Lopez da Silva, 1999). Frequency analysis has the
further advantage of allowing measurement of event-related phase
synchronization of ERPs from different cortical sites (Varela et al.,
2001). ERP phase synchronization in different frequency ranges
has been identified as a fundamental neural correlate of basic sen-
sory and motor processes, as well as higher cognitive processes
such as perception and recall of semantic entities. (See SYNCHRO-
NIZATION, BINDING AND EXPECTANCY.)

The study of steady-state ERPs also depends on a variant of
frequency analysis. Field potentials recorded during periodically
modulated sensory stimulation are narrow-bandpass filtered around
the frequency of the driving periodicity to derive the steady-state
(periodic) ERPs. Variations in the amplitude and phase of the
steady-state ERP are interpreted in terms of driving frequency, spa-
tial location, and behavioral state.
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The Theory of Large-Scale Cortical Networks

Evidence from a variety of sources indicates that neural networks
in the cerebral cortex are organized both locally in anatomically
segregated areas and on a large scale encompassing multiple dis-
tributed areas (Bressler, 2002). Although research on cortical net-
work properties is still in its infancy, a rough depiction of some
basic operational features is now possible. Local-area networks
process and store information related to specialized sensory, motor,
and executive functions, and local synaptic interactions lead to the
manifestation of coherent spatial ERP patterns in these specialized
informational domains. These interactions also modify the local
synaptic matrix with learning. The modified synaptic matrix exerts
an essential control on pattern formation in the local-area network
by attracting its dynamics to learned (attractor) patterns. In this
regard, artificial neural networks that operate according to attractor
dynamics bear a resemblance to cortical networks at the local level.
(See COMPUTING WITH ATTRACTORS.)

An essential element of overall cortical network function, how-
ever, is missing from most artificial network models. Following
training on pattern recognition problems, traditional artificial neural
networks converge to fixed solutions for a given class of input
patterns. Although this behavior has well-known advantages for
pattern recognition, it represents an excessive processing rigidity,
since these networks lack the ability to adapt to changing external
constraints such as are found in real-world situations. Adaptability,
in this sense, is a distinguishing feature of normal cortical function.

Theoretical considerations suggest that processing adaptability
in the cerebral cortex derives from an essential property of large-
scale network dynamics called metastability. Cortical metastability
refers to a state of dynamic balance among multiply interacting
local networks in which the tendency for independent local ex-
pression is offset by the tendency for large-scale entrainment (Bres-
sler and Kelso, 2001). The property of metastability permits local
networks that are interconnected within the large-scale network
architecture of the cortex to coordinate their activities without be-
coming locked in a fixed pattern of coordination from which they
cannot escape.

The ability of local-area networks to form transient coordination
relations may represent a basic cortical mechanism for the rapid
and flexible association of information from different informational
domains. (See ASSOCIATIVE NETWORKS.) It is to be expected that
the concurrent coordination of multiple local-area networks im-
poses conjoint constraints on the spatiotemporal patterning of ac-
tivity in each local network. The imposition of such constraints
may have the important effect of creating associations between
activity patterns in different informational domains during the
learning process, through the modification of synapses of axons
that project from one local network to another. These learned as-
sociations would then act during recall on the attractor dynamics
of multiple interacting local area networks, causing them to reach
a conjunction of consensual patterns that represents an integration
of their information. (See COMPUTING WITH ATTRACTORS.)

ERP Evidence for Large-Scale Cortical
Network Organization

The theoretical considerations presented in the previous section
lead to predictions about the large-scale cortical network organi-
zation underlying cognition. One straightforward prediction is that
cognitive states should be characterized by unique configurations
of interdependent cortical areas in large-scale networks. A confir-
mation of this prediction is found in the spatial patterning of coac-
tivated cortical areas seen with functional brain imaging techniques
such as PET and fMRI. (See COVARIANCE STRUCTURAL EQUATION

MODELING.) Like these neuroimaging procedures, ERPs can pro-
vide information about the spatial distribution of large-scale net-
work activity underlying a cognitive function. Moreover, because
ERPs reflect neurodynamics on a fast time scale (that is inacces-
sible to current brain imaging technologies), ERPs can also reveal
elementary neural subprocesses that subserve that cognitive func-
tion. This section uses working memory to illustrate how ERP re-
sults can relate large-scale network activity to different subpro-
cesses of a cognitive function.

Working memory consists of several subprocesses for which
prominent averaged ERP waveform components have revealed dis-
tinct underlying large-scale networks (McEvoy et al., 1998). The
mismatch negativity is an early poststimulus ERP component that
reflects the maintenance of sensory working memory in the audi-
tory modality. It is elicited by auditory stimuli having physical
acoustic properties that deviate from prior (standard) stimuli reg-
istered in auditory memory. Occurring between 80 and 200 ms after
presentation of deviant auditory stimuli, thus overlapping the N1
and P2 components, the mismatch negativity is isolated by com-
puting the difference wave between averaged ERPs evoked by de-
viant and standard stimuli. The mismatch negativity is subserved
by a large-scale network that includes, in addition to auditory cor-
tical areas, dorsolateral prefrontal cortex, which may serve to con-
trol the maintenance of sensory memory in the auditory cortex
following one stimulus for comparison with subsequent stimuli
(Alain et al., 1998).

A second ERP component, the P3b, occurring roughly 300 ms
poststimulus, also results from the comparison of target stimuli
with the content of working memory. However, rather than being
tuned to the physical characteristics of stimuli, the widely distrib-
uted cortical network underlying the P3b is involved in the cate-
gorization of stimuli as significant events. Network strength has
been found to reflect the degree of consonance resulting from com-
parison of stimulus attributes with a maintained “expectation”
(Kok, 2001).

A third ERP component, related to semantic memory, is the
negative-going N400. It occurs between 200 and 500 ms after pre-
sentation of a potentially meaningful information-bearing stimulus
and varies systematically according to the preexisting context that
is established by semantic and long-term memory influences. Spe-
cifically, N400 amplitude is reduced as a function of associative,
semantic, and repetition priming within or across sensory modali-
ties (Kutas and Federmeier, 2000). Variation of its scalp-recorded
topographic distribution with task and stimulus type suggests that
the N400 reflects the construction of meaning by cross-modal in-
teractions in a widely distributed neural network. This view is sup-
ported by intracranial evidence that the N400 arises from similar
waves of activity in multiple brain areas, particularly in the tem-
poral and prefrontal cortices, during the retrieval of information
from semantic memory.

Deeper insight into the dynamic organization of large-scale net-
works underlying working memory comes from studies of the
phase synchronization between ERPs from distributed cortical ar-
eas. For example, long-range ERP phase synchronization has been
reported in the theta frequency range between prefrontal and pos-
terior association areas when subjects retain verbal and spatial
items for short periods of time (Sarnthein et al., 1998) and in the
beta frequency range between extrastriate areas when they retain
visual object representations (Tallon-Baudry et al., 2001). These
studies suggest that large-scale cortical network function is based
not just on the co-activation of distributed neuronal ensembles, but
also on the active coordination of ensemble activity, observable as
ERP phase synchronization.

Finally, other ERP types have been used to examine the neural
correlates of working memory load. In one investigation, the
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steady-state visual ERP elicited by a diffuse 13-Hz visual flicker
was used to study memory load during the retention period of an
object working memory task (Silberstein et al., 2001). The steady-
state visual ERP exhibited a load-dependent increase in amplitude
at frontal and occipitoparietal sites. By comparison, in a study of
event-related synchronization and desynchronization, significant
effects of memory load were found in the frontal lobe during a
visual sequential letter task (Krause et al., 2000). Event-related syn-
chronization was found at theta frequencies during the initial stages
of stimulus processing, whereas event-related desynchronization
was observed at alpha frequencies.

Discussion

The cortical ERP reflects the coordinated behavior of large numbers
of neurons in relation to a meaningful externally or internally gen-
erated event. Single neurons are actively coordinated in the opera-
tions of ensembles, local-area networks, and large-scale networks.
ERP studies provide a unique avenue of approach to the dynamics
of coordination in the cortex at the mesoscopic and macroscopic
levels of organization. ERP analysis is an indispensable comple-
ment to single-cell neurophysiology and whole-head neuroimaging
techniques and can supply a rich source of criteria for neural net-
work modeling efforts.

ERP studies have shown that local cortical area networks are
able to synchronize and desynchronize their activity rapidly with
changes in cognitive state. These synchronization changes occur
between neurons located both within individual local networks and
in different local networks. The ability of local area networks to
repeatedly reconfigure their activity patterns under constraint of
large-scale coordinating influences may allow them to increase the
degree of consensus of those local patterns in a short period of
time, thereby causing the cortical system as a whole to evolve to-
ward the solution of computational problems. Since it normally
operates in a metastable dynamic regime, the cortex is able to bal-
ance the coordinated and independent behavior of local networks
to maintain the flexibility of this process. When incorporated into
artificial neural network designs, a similar computational process
could prove useful in avoiding the processing rigidity of many
current network models. A metastable large-scale neural network
design that recruits and excludes subnetworks according to their
ability to reach consensual local patterns has the potential to im-
plement behavioral schema and adapt to changing environmental
conditions. Such a system would represent an important advance
in machine cognition.

Road Map: Cognitive Neuroscience
Related Reading: Covariance Structural Equation Modeling; EEG and

MEG Analysis; Hippocampal Rhythm Generation; Schema Theory; Syn-
chronization, Binding and Expectancy
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Evolution and Learning in Neural Networks
Stefano Nolfi

Introduction

Evolution and learning are two forms of adaptation that operate on
different time scales. Evolution is capable of capturing relatively
slow environmental changes that might encompass several gener-
ations. Learning allows an individual to adapt to environmental
changes that are unpredictable at the generational level. Moreover,
evolution operates on the genotype, but learning affects the phe-
notype and phenotypic changes cannot directly modify the geno-
type. Recently, the study of artificial neural networks subjected

both to an evolutionary (see EVOLUTION OF ARTIFICIAL NEURAL

NETWORKS) and a lifetime learning process has received increasing
attention. These studies (see also Nolfi and Floreano, 1999) have
been conducted with two different purposes: (1) looking at the
advantages, in terms of performance, of combining two different
adaptation techniques; (2) understanding the role of the interaction
between learning and evolution in natural organisms. The general
picture emerging from this body of research suggests that, within
an evolutionary perspective, learning has several different adaptive
functions:


