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Abstract

Objectives: The time series of single trial cortical evoked potentials typically have a random appearance, and their trial-to-trial variability

is commonly explained by a model in which random ongoing background noise activity is linearly combined with a stereotyped evoked

response. In this paper, we demonstrate that more realistic models, incorporating amplitude and latency variability of the evoked response

itself, can explain statistical properties of cortical potentials that have often been attributed to stimulus-related changes in functional

connectivity or other intrinsic neural parameters.

Methods: Implications of trial-to-trial evoked potential variability for variance, power spectrum, and interdependence measures like

cross-correlation and spectral coherence, are first derived analytically. These implications are then illustrated using model simulations and

verified experimentally by the analysis of intracortical local field potentials recorded from monkeys performing a visual pattern discrimina-

tion task. To further investigate the effects of trial-to-trial variability on the aforementioned statistical measures, a Bayesian inference

technique is used to separate single-trial evoked responses from the ongoing background activity.

Results: We show that, when the average event-related potential (AERP) is subtracted from single-trial local field potential time series, a

stimulus phase-locked component remains in the residual time series, in stark contrast to the assumption of the common model that no such

phase-locked component should exist. Two main consequences of this observation are demonstrated for statistical measures that are

computed on the residual time series. First, even though the AERP has been subtracted, the power spectral density, computed as a function

of time with a short sliding window, can nonetheless show signs of modulation by the AERP waveform. Second, if the residual time series of

two channels co-vary, then their cross-correlation and spectral coherence time functions can also be modulated according to the shape of the

AERP waveform. Bayesian estimation of single-trial evoked responses provides further proof that these time-dependent statistical changes

are due to remnants of the evoked phase-locked component in the residual time series.

Conclusions: Because trial-to-trial variability of the evoked response is commonly ignored as a contributing factor in evoked potential

studies, stimulus-related modulations of power spectral density, cross-correlation, and spectral coherence measures is often attributed to

dynamic changes of the connectivity within and among neural populations. This work demonstrates that trial-to-trial variability of the evoked

response must be considered as a possible explanation of such modulation. q 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

A number of cerebral cortical functions are thought to

involve transient task-dependent changes in the functional

interdependence of neurons in the same and/or different

cortical areas. Examples include perceptual binding and

segmentation (Gray, 1999; von der Malsburg, 1994), multi-

modal integration (Bressler, 1995, 1996; Damasio 1989a,b;

Sporns et al., 1994; Tononi et al., 1992), and selective atten-

tion (Olshausen et al., 1993). Generally, evidence for such

changes purportedly comes from stimulus- or task-related

modulation of statistical interdependence measures, such as

cross-correlation or spectral coherence, that are derived

from various types of cortical recordings. In addition,

changes in the level of interaction within a neuronal popula-

tion are inferred from temporal modulation of the power

spectral density of population signals such as the local
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field potential (LFP) or electroencephalogram (EEG) (Fries

et al., 2001; Kalcher and Pfurtscheller, 1995; Pfurtscheller

and Lopes da Silva, 1999). Indeed, recent studies have

provided evidence for the event-related modulation of all

these statistical measures in a number of different experi-

mental preparations. Such modulation is usually understood

in terms of changes in the level of synchrony of neuronal

pulse activity. Fast transient changes in functional connec-

tivity of the underlying neural circuitry (i.e. changes in

synaptic efficacy and/or effective connectivity occurring

on time scales of ,100 ms) are often identified as the

sources of such events (Aertsen et al., 1994, 1989; Bressler

et al., 1993; Buchel and Friston, 1997; Chawla et al., 1999b;

Gray et al., 1989; Rodriguez et al., 1999; Srinivasan et al.,

1999; Tallon-Baudry et al., 1997, 1998).

In this paper, we show that temporal modulation of power

and interdependence measures may result from trial-to-trial

non-stationarity of the cortical evoked response. Trial-to-

trial variability in amplitude, latency and waveform of the

evoked response constitute manifestations of this non-

stationarity (Coppola et al., 1978; Lange et al., 1997;

Mocks et al., 1987; Pham et al., 1987). We demonstrate

that trial-to-trial variability in the amplitude and latency

of evoked local field potentials, can, in the appropriate

context, lead to temporal modulation of the aforementioned

statistical measures, producing effects that could resemble

either transient synchronization or, alternatively, transient

desynchronization events. Consequently, inter-trial variabil-

ity of the evoked response may appear as intra-trial stimu-

lus- or task-related modulation of intrinsic parameters in the

neural system. To overlook this possibility, as is commonly

done, may result in the erroneous interpretation of trial-to-

trial non-stationarity as intra-trial task-related changes in

functional connectivity.

In order to understand the effect of trial-to-trial amplitude

and latency variation on interdependence measures, we

reconsider the long-standing question of how to model the

cortical potentials that follow presentation of a sensory

stimulus. At least since the time of Dawson (1954), the

most common model of the post-stimulus cortical potential

postulates that a single trial waveform is the linear combi-

nation of an invariant stimulus phase-locked evoked compo-

nent (signal) and an ongoing background noise component.

The evoked response component is treated as being time-

invariant since any changes over trials in its amplitude,

latency onset, or waveform are considered to be negligible.

The usual method of measuring this component is to repeat-

edly present the same sensory stimulus and then average the

post-stimulus potentials across an ensemble of trials

(ensemble average). Averaging is presumed to decrease

the size of the noise component, while leaving the signal

component unchanged, thereby enhancing the signal-to-

noise ratio. Since averaging is time-locked to a particular

event onset, the result is called the average event-related

potential (AERP). From this still widely accepted concep-

tualization (McGillem and Aunon, 1987), henceforth

referred to as the signal-plus-noise (SPN) model, it follows

that: (1) all the variability in single trial recordings is due to

the independent ongoing noise component; (2) the AERP

asymptotically approaches the true invariant evoked

response as the number of trials involved in the averaging

increases; and, most importantly, (3) when the AERP is

subtracted from single trial recordings, the resulting residual

time series do not contain significant event-related informa-

tion. Rigorous acceptance of the SPN model assumptions

would imply that no event-related modulation should be

observed in statistical measures that are, by definition,

computed on the residual time series. These measures

include cross-correlation, spectral coherence and power

spectrum density time functions. However, as pointed out

above, there is abundant experimental evidence that event-

related modulation does occur, suggesting that the SPN

model is significantly violated in its main principles: (1)

the ongoing activity can be event-related as a consequence

of, for example, non-linear interactions between the evoked

response and the ongoing activity, and (2) the evoked

response may vary from trial to trial.

For the purpose of this work, we focus on the conse-

quences of relaxing the SPN model’s assumption of statio-

narity1 of the evoked response over trials. The alternative

model, henceforth referred to as the variable signal plus

ongoing noise activity (VSPN) model, asserts that the stimu-

lus-triggered response has a stereotyped waveform with

variable amplitude and latency onset across trials. Accord-

ing to the VSPN model, after subtracting out the AERP, the

single trial residual time series contain two components: (1)

a stimulus phase-locked component resulting from the trial-

to-trial amplitude and latency variability; and (2) an

ongoing noise component.

Because the VSPN model includes a residual stimulus

phase-locked component, it differs from the SPN model in

its prediction concerning the post-stimulus modulation of

power spectral density and statistical interdependence time

functions. In the SPN model, the residuals remaining after

AERP subtraction consist only of event-independent noise.

Therefore, it predicts that the ensemble variance will be

constant for all post-stimulus times. By contrast, the

VSPN model predicts that the ensemble variance time func-

tion will of necessity be non-stationary, with its time course

modulated according to the AERP waveform. Since the

AERP is often oscillatory with clear characteristic frequen-

cies, the phase-locked component remaining in the residuals

will contribute to the power spectral density time function at

these frequencies. Consequently, the power spectral density

of the LFP or EEG time series, after subtraction of the

AERP, and computed as a function of time in a sliding

short window, can nonetheless be modulated according to

the AERP waveform. Moreover, the ratio of the variance of

W.A. Truccolo et al. / Clinical Neurophysiology 113 (2002) 206–226 207

1 Even though stationarity is usually assumed as a pre-condition, we

argue that in practice it might be unattainable in most of the experimental

designs involving behaving animals (see Section 4).



the residual stimulus phase-locked component to the

variance of the ongoing component may change in time

according to the AERP profile, especially if the time depen-

dence of the variance of the ongoing component is weak.

This means that if the residual time series from two record-

ing channels co-vary, the time function of measures of those

channels’ statistical interdependence will also be modulated

accordingly to the AERP profile. We refer to this type of

modulatory effect on any such statistical measure as the

time-dependent signal-to-noise ratio effect, where the signal

refers again to remnants of the stimulus phase-locked

components in the residual time series.

The existence of phase-locked components in the residual

leads to a second contrast between the two models. Speci-

fically, the VSPN model predicts that peaks in the single

trial stimulus-locked component will be either larger or

smaller than the average, resulting, after AERP subtraction,

in the peaks of the phase-locked component in the single

trial residual time series having either positive or negative

polarity. If the latency variability is small, then the phases of

the Fourier components at frequencies corresponding to the

main characteristic frequencies of the AERP, are predicted

to have a bimodal distribution. This again is in contrast with

the SPN model, which predicts a flat phase distribution since

the residuals are considered to originate only from the inde-

pendent ongoing activity.

The VSPN model’s predictions for these statistical

measures are explicitly derived in Section 2.1. The predic-

tions for the single channel quantities, variance and power

time functions, and for the phase distribution are derived

first. Then, the predictions for time functions of statistical

interdependence measures (cross-correlation and coher-

ence) are presented, and the time-dependent signal-to-

noise ratio effect is illustrated using simulated time series.

Section 3 presents the outcome of testing these predictions

on LFP data recorded from implanted intra-cortical electro-

des in monkeys performing a visual pattern discrimination

task (Bressler et al., 1993). We emphasize that knowing the

detailed characteristics of the interdependence measures

under the influence of the remnant phase locked components

is important since they provide a benchmark to discriminate

whether a temporally modulated quantity in a given experi-

ment is related to genuine event-related modulation of

ongoing activity, or is due to the effect examined here.

Following the previous discussion, it thus becomes a

fundamental task to reconstruct the single trial evoked

response. If one is able to achieve that, then the ensemble

average of the aforementioned statistical measures, when

calculated on the new residual time series after removing

the evoked response on a trial by trial basis, will exhibit no

time behavior that is characteristically related to the trial-to-

trial non-stationarity of the evoked response. Assuming the

VSPN model, we apply a Bayesian inference procedure to

estimate the single trial evoked responses in the LFP data

set, which gives further and definitive support for the signal-

to-noise ratio effect in the statistical quantities. The single

trial based procedure again points to the importance of iden-

tifying the sources of non-stationary variance in LFP data.

This is particularly imperative when considering the event-

related modulation of statistical measures that is commonly

interpreted as being due to fast changes in functional

connectivity or other intrinsic neural parameters and opens

the path for discovering temporal effects of neural dynamics

that are caused by the underlying physiology. Additional

progress in this direction will depend on the development

of more accurate models of the single trial evoked response.

2. Methods

2.1. Model

The SPN model can be formally expressed as follows:

ZrðtÞ ¼ EðtÞ1 j rðtÞ ð2:1Þ

where Zr(t) is the recorded cortical LFP at time t for the rth

trial, E(t) is the stereotyped stimulus evoked response, and

j r(t) is a zero-mean noise component, independent of the

stimulus response, which represents ongoing noise activity.

The stimulus onset is at t ¼ 0. In practice, the average kZr(t)l
taken over an ensemble of trials, {Z 1ðtÞ;Z2ðtÞ;…;ZNðtÞ}, is

considered to be a consistent estimate of E(t), i.e. E(t) ¼

kZr(t)l, and the ongoing noise is estimated as the residual

remaining when the average is subtracted from the LFP time

series, i.e.

hrðtÞ ¼ ZrðtÞ2 kZrðtÞl ¼ j rðtÞ: ð2:2Þ

A more generic alternative model, which takes into

account the trial-to-trial variability of the evoked response,

can be expressed by:

ZrðtÞ ¼ ErðtÞ1 j rðtÞ; ð2:3Þ

where j r(t) again represents the zero-mean ongoing noise

activity. The evoked response Er(t) is now trial dependent,

and could potentially have complex attributes, like the

summation of distinct components, each one of them having

their own trial-to-trial non-stationarity. In this work, we

focus on the case where the evoked response has a stereo-

typed waveform with amplitude and latency variability,

which is expressed as the VSPN model:

Z rðtÞ ¼ arEðt 1 trÞ1 j rðtÞ; ð2:4Þ

where the term a r is a parameter corresponding to the

amplitude of the evoked waveform and is assumed to be

time independent for a given trial, and t r gives the single

trial latency of the evoked response. The terms a r, t r and j r

are assumed to be independent of each other.

2.1.1. The VSPN model and its predictions for the single

channel quantities

The effects of trial-to-trial variability in amplitude and

latency in the VSPN model are analyzed separately. Their

role in determining the relation between the ensemble mean
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and ensemble variance will be central to understanding the

post-stimulus behavior of power and interdependence

measures.

2.1.1.1. Amplitude variability.. Considering the amplitude

variability alone, the VSPN model simplifies to:

Z rðtÞ ¼ arEðtÞ1 j rðtÞ: ð2:5Þ

The ensemble average (AERP) based on this model

becomes kZrðtÞl ¼ karlEðtÞ. When the AERP is subtracted

from a single trial, the residual time series becomes:

hrðtÞ ¼ arEðtÞ2 kZrðtÞl1 j rðtÞ ¼ ðar 2 karlÞEðtÞ1 j rðtÞ

¼ SrðtÞ1 j rðtÞ;

ð2:6Þ

which contains two components: the ongoing activity j r(t)

and a component that is dependent on the AERP waveform:

S rðtÞ ¼ ðar 2 karlÞEðtÞ: ð2:7Þ

Thus, the VSPN model predicts that a stimulus phase-locked

component will remain in the residual time series of LFP

data after the AERP is subtracted from each trial.

The variance of Zr(t) over the ensemble of trials at a given

time t is equal to the ensemble variance of the residual h r(t)

which from Eq. (2.6) becomes:

s 2ðtÞ ¼ k½hrðtÞ�2l ¼ k½SrðtÞ�2l1 k½j rðtÞ�2l ¼ s 2
S ðtÞ1 s 2

j ðtÞ; ð2:8Þ

where the variance of the stimulus phase-locked component

is given by:

s 2
S ðtÞ ¼ k½ar 2 karl�2lE2ðtÞ: ð2:9Þ

Since j r(t) is assumed to be stationary over the trial length,

it follows that the variance of the residual has a time course

resembling that of E2(t). In particular, the peaks of the

variance function occur at the same times as the extrema

of the AERP. Moreover, the power spectral density time

function of the residual, kuh rðf ; tÞu2l; computed in a sliding

time window centered at time t, will also be modulated

according to the AERP shape at frequencies characteristic

of the AERP waveform. Specifically, since E(t) is often

oscillatory with a very distinct main frequency, the quantity

kuhrðf ; tÞu2l; at this frequency, will be similarly modulated

and should also exhibit a significant increase during the

evoked response time period.

Since the amplitude of the phase-locked component, a r,

can be either greater or less than the average on any single

trial, it follows that (a r 2 ka rl) can take both positive and

negative values. Therefore, the Fourier component at the

characteristic frequency f, h ( f ), exhibits a phase distribu-

tion having two modes that represent the positive and nega-

tive amplitudes, and thereby differ by the value of 1808. By

contrast, if the phase-locked component in the residual were

zero, as predicted by the SPN model, a uniform phase distri-

bution would result.

2.1.1.2 Latency variability. When only the latency

variability is considered, the VSPN model simplifies to:

ZrðtÞ ¼ Eðt 1 trÞ1 j rðtÞ: ð2:10Þ

To evaluate the effect of the right-hand side of Eq. (2.10),

we use the Taylor expansion of E(t 1 t r) for small t r, which

up to the first order is:

Eðt 1 trÞ ¼ EðtÞ1 E 0ðtÞtr; ð2:11Þ

where E 0(t) is the first derivative with respect to t. The

approximation to (2.10) then becomes:

ZrðtÞ ¼ EðtÞ1 E 0ðtÞtr
1 j rðtÞ: ð2:12Þ

By letting ktrl ¼ 0, the ensemble mean is then given by:

kZrðtÞl ¼ kEðtÞl ¼ EðtÞ; ð2:13Þ

and the residual time series becomes:

hrðtÞ ¼ EðtÞ2 kZrðtÞl1 E 0ðtÞtr 1 j rðtÞ ¼ E 0ðtÞtr 1 j rðtÞ

¼ SrðtÞ1 j rðtÞ:

ð2:14Þ

Again the residual time series contain a component,

Sr(t) ¼ E 0(t)t r, that is phase-locked to stimulus onset.

From Eq. (2.14) we obtain the ensemble variance as

s 2ðtÞ ¼ k½hrðtÞ�2l ¼ k½tr�2l½E 0ðtÞ�2 1 k½j rðtÞ�2l

¼ s 2
S ðtÞ1 s 2

j ðtÞ; ð2:15Þ

where the variance of the phase-locked component is

approximately:

s 2
S ðtÞ ¼ k½tr�2l½E 0ðtÞ�2: ð2:16Þ

This equation shows that the ensemble variance is again

modulated by the evoked response since it follows the

square of the first derivative of the evoked response. Eq.

(2.16) allows us to predict the form of the variance function

when the AERP resembles a damped sinusoid. That is

because the derivative of a sinusoid has the property of

being shifted by 908. Specifically, maximum values in

variance should coincide in time with inflexion points of

the AERP, and minimum values in variance with extrema

of the AERP.

2.1.1.3. Amplitude and latency variability. When both

amplitude and latency vary from trial to trial, their

interplay can have more complicated effects. We use a

simple example to illustrate the effect of increasing latency

variability while maintaining a constant level of amplitude

variability (Fig. 1). The simulated time series are given by

Zr(t) ¼ a rE(t 1 t r), without added noise, and with the

waveform given by Eðt 1 trÞ ¼ Hðt 1 trÞsinðvt 1 frÞ.

The phase of the sine function is given by fr ¼ trv and

H(t) is a Hanning window, used to produce a waveform

that mimics commonly observed AERPs. The signal E(t)

contains two full cycles of a sinusoidal oscillation with

W.A. Truccolo et al. / Clinical Neurophysiology 113 (2002) 206–226 209



period T ¼ 50 (arbitrary time unit), and is zero elsewhere.

The amplitudes a r were taken from a uniform distribution

over the interval [0,4]. The latency parameter expressed in

terms of phase was uniformly distributed over the following

intervals: [2p/10, p/10] (top plot), [2p/4, p/4] (middle

plot) and [2p/2, p/2] (bottom plot).

For small latency variability, the amplitude variability

modulation on the ensemble variance dominates, resulting

in variance peaks that coincide with extrema of the AERP

(top plot), in accordance with the derived Eq. (2.9). As the

latency variability increases, a point is reached where ampli-

tude and latency effects are balanced, leading to a single

peak in the variance function (middle plot). As latency

increases even further (bottom plot), the characteristic effect

of latency variability, as described by the linear approxima-

tion in Eq. (2.16), emerges. As can be seen, this approxima-

tion holds well even for latencies uniformly distributed over

an interval ranging about half of the waveform’s cycle. At

much higher levels of latency variability (not shown), a

single peaked variance is observed.

2.1.2. Implications of the VSPN model for statistical

interdependence measures involving two channels

Consider two channel recordings given by Zr
1ðtÞ ¼

ar
1E1ðtÞ1 j r

1ðtÞ and Zr
2ðtÞ ¼ ar

2E2ðtÞ1 j r
2ðtÞ: The cross-

correlation function between the two channels’ time series,

at time t and time lag t is then given by:

CZ1Z2
ðt; tÞ ¼

kSr
1ðtÞS

r
2ðt 1 tÞl1 kj r

1ðtÞj
r
2ðt 1 tÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k½Sr
1ðtÞ�

2l1 k½j r
1ðtÞ�

2l
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k½Sr
2ðt 1 tÞ�2l1 k½j r

2ðt 1 tÞ�2l
q ; ð2:17Þ

where S1
r(t) ¼ (a1

r 2 ka1
rl)E1(t) and Sr

2ðtÞ ¼ ðar
2 2 kar

2lÞE2ðtÞ.

Without loss of generality, we assume that the ongoing noise

processes are approximately stationary, meaning that

kj r
1ðtÞj

r
2ðt 1 tÞl, k½j r

1ðtÞ�
2l and k½j r

2ðt 1 tÞ�2l have no time

dependence. That is, the cross-correlation function between

the noise processes, j r
1ðtÞ and j r

2ðt 1 tÞ; is only a function of

the time lag t and is time independent:

Cj1j2
ðt; tÞ ¼ Cj1j2

ðtÞ ¼ kj r
1ðtÞj

r
2ðt 1 tÞl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½j r

1ðtÞ�
2lk½j r

2ðt 1 tÞ�2l
q

:

The cross-correlation function between the two evoked

signals, considering the case of trial-to-trial amplitude varia-

bility, is given by:

CS1S2
ðt; tÞ ¼

kðar
1 2 kar

1lÞða
r
2 2 kar

2lÞlE1ðtÞE2ðt 1 tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½ar

1 2 kar
1l�2l

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½ar

2 2 kar
2l�2l

q
uE1ðtÞuuE2ðt 1 tÞu

¼ ^K; ð2:18Þ

for E1ðtÞ – 0, E2ðt 1 tÞ – 0 and where K is the correlation

coefficient of the two single-trial amplitudes. Although

uCS1S2
ðt; tÞu is a constant, CS1S2

ðt; tÞ may flip between positive

and negative values of K, depending on the sign of the

product E1ðtÞE2ðt 1 tÞ, which may change in time for a

given time lag. Thus, the very presence of the variable signals

in the VSPN model already makes possible temporal modu-

lations of the cross-correlation function between the two time

series, CZ1Z2
ðt; tÞ; albeit in a simple and very stereotypical

way. The interplay between signals and noises can lead to

more complex and significant temporal modulations of

CZ1Z2
ðt; tÞ, as we consider below.

Let SNR represent the signal-to-noise ratio, defined as

SNR1ðtÞ ¼ s2
S1
ðtÞ=s2

j1
ðtÞ and SNR2(t 1 t) ¼ sS2

2(t 1 t)/

sj2

2(t 1 t). Dividing both the numerator and denominator

by sj1
ðtÞsj2

ðt 1 tÞ, and after algebraic manipulation, Eq.

(2.17) can be rewritten as:

CZ1Z2
ðt; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR1ðtÞSNR2ðt 1 tÞ

p
CS1S2

ðt; tÞ1 Cj1j2
ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNR1ðtÞ1 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNR2ðt 1 tÞ1 1
p ð2:19Þ

It is clear that complex temporal modulation can result

depending on the time course of the signal-to-noise ratios.

In particular, as the product of the signal-to-noise ratios,

SNR1ðtÞSNR2ðt 1 tÞ; increases, the cross-correlation func-

tion approaches the evoked signals’ cross-correlation func-

tion, i.e. CZ1Z2
ðt; tÞ ! CS1S2

ðt; tÞ: As seen in the previous

section, fluctuations in the signal-to-noise ratios are expected

to occur since the variances in signals have their time course

modulated by the square of the AERP waveform. Two char-

acteristic cases illustrating this effect, referred to as the time-

dependent signal-to-noise ratio effect, are discussed below.

Case 1. Transient increase in cross-correlation. To illus-

trate this effect, consider the situation where for a given time

W.A. Truccolo et al. / Clinical Neurophysiology 113 (2002) 206–226210

Fig. 1. Relation between ensemble average, kZr(t)l, and ensemble variance

time function, s 2(t), for the case of trial-to-trial amplitude and latency

variability in simulated time series. The simulated evoked signal E(t),

consisted of two full cycles of a sinusoidal waveform (see text). The wave-

form is shown by the thin curve while the ensemble variance time function

is shown by the thicker curve. Single trial amplitudes were taken from a

uniform distribution over the interval [0,4]. The latency parameter

expressed in terms of phase was uniformly distributed over the following

intervals: [2p10, p/10] (top plot), [2p/4, p/4] (middle plot) and [2p/2, p/

2] (bottom plot). When the amplitude variability dominates (top plot), the

ensemble variance peaks coincide with extrema of the AERP. As the

latency variability increases, amplitude and latency are balanced, resulting

in a single peak being observed (middle plot). As latency variability

increases even further, the variance peaks coincide with inflexion points

of the AERP waveform, and variance valleys coincide with extrema of the

AERP (bottom plot). A total of 2000 trials were employed. Amplitude,

variances and time are given in arbitrary units.



lag t , we have that CS1S2
ðt; tÞ ¼ K . Cj1j2

ðtÞ and that

SNR1ðtÞ < SNR2ðt 1 tÞ. Thus the stimulus phase-locked

components in the residual time series co-vary at a level

greater than that of the ongoing noise and the two AERPs

have similar waveforms but are separated by a time differ-

ence of t . Eq. (2.19) then becomes:

CZ1Z2
ðt; tÞ ¼

SNR1ðtÞK 1 Cj1j2
ðtÞ

SNR1ðtÞ1 1
: ð2:20Þ

This function is a monotonically increasing function of

SNR1(t), and if we assume that s2
j1
ðtÞ is constant, CZ1Z2

ðt; tÞ

will follow the profile ofs2
S1
ðtÞ:Therefore, peaks of the cross-

correlation function will coincide with peaks in the variance

of the stimulus phase-locked component, and hence, as

demonstrated above, with extrema of the AERP. This

predicted signature will be demonstrated in the analysis of

LFP data that follows, suggesting that this case represents a

realistic situation. The possibility will be discussed that

cross-correlation increases, due to signal-to-noise ratio varia-

tion, might be misconstrued as reflecting modulation in the

level of synchronization between two neuronal populations.

An example of this effect is now provided (Fig. 2, left
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Fig. 2. Time-dependent signal-to-noise ratio effect on the modulation of the cross-correlation time function. Transient increase I (left column). The two

channels share a common evoked response E(t) (top plot) whose amplitude is drawn from a uniform distribution over the interval [0,4]. Each channel’s ongoing

activity was modeled as independent zero mean and unit variance white Gaussian noise (see text). In the bottom plot, the zero lag cross-correlation C(t) (thick

curve) and the ensemble variance s 2(t) time functions are shown (s 2(t): left vertical axis; C(t): right vertical axis). The variance (and the signal-to-noise ratio)

of the shared evoked component oscillates at 1/2 the period of the original sinusoidal component. As a consequence, the cross-correlation time function also

oscillates with the same period, with peaks coinciding in time with peaks in the variance, or equivalently, with extrema of the evoked response. Transient

increase II (middle column). Top: simulated evoked responses, E(t), from two channels. Parameters for the evoked response-waveforms, amplitudes and

ongoing noise are the same as in the previous example, except that the periods of the two evoked signals are slightly different. Bottom: only the zero-lag cross-

correlation is shown. The peaks, i.e. extrema, in the cross-correlation function in general may not coincide in time with extrema of E(t) or equivalently with

peaks of the ensemble variance from each channel. Notice also the fluctuations of the cross-correlation between positive and negative values. Transient

decrease (right column). Top: the same parameters as before except that the trial-to-trial amplitudes for the common evoked responses for each channel are

independent, while the ongoing noise is now correlated. Bottom: the signal-to-noise ratio effect appears as a transient decrease in cross-correlation that could

resemble a transient desynchronization event. Peaks in the variance time function of the time series from each channel coincide with minima of the cross-

correlation time function. In all simulations, the ensemble consisted of 2000 trials. Amp1itude, variances and time are given in arbitrary units. The ensemble

variance time functions of each channel are approximately the same and only one of them is shown in the right and left bottom plots.



column), with two simulated time series described as:

Zr
1ðtÞ ¼ arEðtÞ1 j r

1ðtÞ and Zr
2ðtÞ ¼ arEðtÞ1 j r

2ðtÞ: The

time series share a common signal that is given by

EðtÞ ¼ HðtÞ sinðvtÞ, consisting of two cycles (period

T ¼ 50), existing from t ¼ 0 to t ¼ 100, and zero else-

where. H(t) is a Hanning window. The ongoing activities

are simply modeled as zero-mean, unit-variance, Gaussian,

white-noise processes. The single trial amplitudes a r are the

same for the two channels and are drawn from a uniform

distribution over the interval [0,4]. The zero-time-lag, point-

by-point cross-correlation is computed according to Eq.

(2.23). As expected, it peaks at the same times as the

variance of the residuals (i.e. at the signal-to-noise ratio

peaks) and oscillates at half the period of E(t).

For situations where the main characteristic frequencies

of E1(t) and E2(t) are significantly different, peaks in the

cross-correlation function may no longer coincide precisely

with peaks in variance, although as before, the same time-

dependent signal-to-noise ratio effect will be observed, i.e.

CZ1Z2
ðt; tÞ ! CS1S2

ðt; tÞ as the signal-to-noise ratio increases

(Fig. 2, middle column).

Case 2. Transient decrease in cross-correlation. We next

consider the situation where the stimulus phase-locked

components Sr
1ðtÞ and Sr

2ðt 1 tÞ in the residual time series

do not co-vary, i.e. kðar
1 2 kar

1lÞða
r
2 2 kar

2lÞl ¼ 0, but the

ongoing activities are correlated, for example,

kj r
1ðtÞj

r
2ðt 1 tÞl ¼ Cj1j2

ðtÞ . 0. Assuming as before that

the time dependence of s2
j1
ðtÞ and s2

j2
ðt 1 tÞ are weak,

then the value of the observed cross-correlation CZ1Z2
ðt; tÞ

will still be modulated by the time dependence of the

product of the signal-to-noise ratios. As the signal-to-noise

ratio product increases, the observed cross-correlation time

function approaches that of the stimulus phase-locked

components, which is zero. In practice, the resulting modu-

lation could be misconstrued as a short transient desynchro-

nization episode between two recorded neuronal

populations (see Fig. 2, right column).

For frequencies f related to the main oscillatory compo-

nents of the evoked signals, the same effects described in

cases 1 and 2 will also be observed in the time-varying

spectral coherence function:

GZ1Z2
ð f ; tÞ ¼

ukSr
1ð f ; tÞSr*

2 ð f ; tÞl1 kj r
1ð f ; tÞj r*

2 ð f ; tÞluffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuSr

1ð f ; tÞu2l1 kuj r
1ð f ; tÞu2l

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuSr

2ð f ; tÞu2l1 kuj r
2ð f ; tÞu2l

q ; ð2:21Þ

which is computed in a sliding time window centered at

time t. This can be easily verified considering the similarity

between Eqs. (2.21) and (2.17).
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Fig. 3. Sites for the transcortical electrodes placement. Labels: striate (str); pre-striate (pstr); posterior inferior temporal (pit); anterior inferior temporal (ait);

posterior superior temporal (pst); anterior superior temporal (ast); posterior parietal (ppr); somatosensory (som); motor (mot); pre-motor (prm); frontal (frn).

Recordings in LU and TI are from the left hemisphere.



Even though we have only considered fluctuations in

signal-to-noise ratio that originate from trial-to-trial ampli-

tude variability of the evoked signals, latency variability

will result in similar fluctuations, and consequently in

temporal modulation of the same interdependence

measures. For latency variability that is not too large,

peaks in the signal-to-noise ratios are expected to coincide

with inflexion points of the AERP waveform, rather than

with extrema as in the case of amplitude variability just

described. For the more realistic case where both amplitude

and latency variability occur, the combined effect will

depend on which one dominates the modulation of ensemble

variance, as exemplified in Fig. 1.

2.2. Experiments and data analysis

2.2.1. Behavioral task

Experiments were performed on four macaque monkeys

(LU, GE, PE and TI) in the Laboratory of Neuropsychology

at the National Institute of Mental Health. Animal care was

in accordance with institutional guidelines at the time. A

detailed description of the experiment has previously been

presented (Bressler et al., 1993). The monkeys performed a

visual pattern discrimination task in which they sat facing a

visual display screen. Each trial began with self-initiated

depression of a hand lever with the preferred hand. Follow-

ing a random interval from 0.5 to 1.2 s, a visual stimulus

appeared on the screen for 100 ms. The stimulus was one of

two pattern types: four dots arranged as a diamond or as a

line. The monkey indicated its discrimination of line and

diamond patterns by releasing (GO) or maintaining (NO-

GO) pressure on the lever. The monkey received a water

reward for correct GO performance. GO and NO-GO trials

were randomly presented with equal probability in 1000-

trial sessions. The contingency between stimulus pattern

and response type was reversed across sessions. The present

study focuses on the initial stages of the visual evoked

response to presentation of the line pattern type. For each

ensemble, the following number of trials were used: 2344,

888, 914 and 2053 for the monkeys LU, GE, PE and TI,

respectively. For each monkey, the ensemble of trials was

balanced for response type (GO and NO-GO).

2.2.2. Recording and data preprocessing

LFPs were sampled at 200 Hz from chronically implanted

surface-to-depth transcortical bipolar electrodes at 11 to 15

cortical sites in the cerebral hemisphere contralateral to the

preferred hand. Approximate localization of the electrodes

in each monkey are shown in Fig. 3. Each trial was recorded

from approximately 115 ms pre-stimulus onset to 500 ms

post-stimulus. The LFPs in each trial were linearly

detrended, 60 Hz removed, and normalized to zero mean

and unit variance (time normalization). After these pre-

processing steps, the AERPs (ensemble averages) and

ensemble variance time functions were computed, and

constitute then normalized quantities. In addition, each

ensemble of trials was normalized at each time point to

zero ensemble mean and unit ensemble variance (ensemble

normalization). The resulting residual time series were

employed in the computation of the phase histograms,

cross-correlations and spectral quantities described below.

2.2.3. AMVAR spectral estimation

Power and coherence time functions were estimated by

the application of adaptive multivariate autoregressive

(AMVAR) models to the residual time series (Ding et al.,

2000). Each single trial residual (600 ms long) was divided

into 110 consecutive and overlapping (shifted by one data

point) windows of 10 points (50 ms) each. An MVAR

model of order 5 was adaptively computed for each succes-

sive window using the LWR algorithm (Haykin and Kesler,

1983). A spectral matrix was derived for each time window

from the model coefficients, and then used as the basis for

computing power and coherence spectra in the range of 0–

100 Hz. The squared coherence values were used. The

moving time windows then allowed the construction of

power and coherence time functions for any frequency

bin. AMVAR spectral estimation was employed instead of

the traditional non-parametric approach of directly applying

the direct Fourier transform (DFT) to the time series data

because the DFT is an extremely biased estimate when used

in such short time windows. The choice of 50 ms as the time

window duration came from previous experience with the

application of AMVAR analysis to this data set (Ding et al.,

2000). Overall, the use of short time windows in this paper

was motivated by the need for tracking non-stationary tran-

sient cortical processes on a sub-second time scale. Particu-

lar attention was given to power and coherence at the 12 Hz

spectral component. This had two main motivations.

Following the VSPN hypothesis, the stimulus phase-locked

component in the residual should have the same frequency

content as that of the AERP. For many of the channels

having a significant evoked response, the early post-stimu-

lus portion of the AERP was found to have a clear charac-

teristic oscillation with a period around 80 ms (12.5 Hz). In

agreement, previous results on this data set (Bressler et al.,

1999) highlighted the existence of peaks near 12 Hz in

power and coherence spectra for many cortical sites,

specially during the early stages of the evoked response

(up to approximately 200 ms after stimulus onset).

2.2.4. Absolute phase histograms

In order to compare predictions of the SPN and VSPN

models regarding the distribution of phase, spectral phase

estimates from Fourier transformed single trial residual time

series were computed. In AMVAR spectral estimation,

absolute phase information for single trials is lost and

cannot be recovered. Alternative methods for calculating

the instantaneous phase, such as the Hilbert transform and

complex demodulation, were considered inadequate mainly

because they would require narrow band-pass filtering of the

data, and consequently high order filters and very long time
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segments of data. We approached the phase estimation

problem in terms of optimal fitting in the least square

sense. It is known that the Fourier transform of a time series

at a specific frequency represents an optimal fit of the time

series by sine and cosine functions at that frequency (Chat-

field, 1995). For this reason, the FFT was used to obtain

single trial phase estimates for constructing the phase distri-

bution. The choice of window length for the FFT was

constrained by three factors: (a) the use of short windows

to track the time evolution of the phase distributions from

pre-stimulus to post-stimulus periods; (b) the FFT constraint

on the window length being a power of 2 (the alternative of

zero padding introduces artifacts in the computation of

phase distributions); and (c) the choice of the 12 Hz Fourier

component as an indicator of the main characteristic

frequency of the AERPs (see Section 2.2.3 above). These

constraints resulted in the following procedure. FFTs were

performed on a time window (80 ms long) moving one data

point at a time, from 50 ms before the stimulus onset to

350 ms after. The phase estimates of the 12 Hz (12.5 Hz

being the actual frequency since we are using a 80 ms

window) components for a window starting at time t, from

the whole ensemble of single trials, were then collected to

build the phase histogram at time t for a specific channel and

subject. Each histogram’s bin width was set to p/50 rad.

2.2.5. Testing for departure from uniform phase distribution

The SPN model predicts a uniform phase distribution. To

assess whether a given absolute phase distribution departed

from the uniform distribution, the modified Kuiper test

(Fisher, 1995) for circular data was employed. In this proce-

dure, for a specific time window and for an ensemble of N

trials, the linear order statistics xr ¼ fr=2p;…; xr ¼ fr=2p

were first calculated, where f r was the phase of the 12 Hz

Fourier component for trial r. Second, we obtained from the

ensemble of N trials, the statistics:

D1
N ¼ max

1

N
2 x1;

2

N
2 x2;…; 1 2 xN

� �
ð2:22Þ

D2
N ¼ max x1; x2 2

1

N
; x3 2

2

N
;…; xN 2

N 2 1

N

� �

VN ¼ D1
N 1 D2

N

Third, we computed the final statistic V ¼ VNðN
1=2 1

0:155 1 0:24=N1=2Þ: V was compared to critical values (Vc)

given by the Kuiper modified statistics. At the significance

level of P , 0:01, Vcð0:01Þ ¼ 2:0. Since the phase distribu-

tions were computed as functions of time with the sliding

window approach, the Kuiper V was also calculated as a

time function for each channel from each monkey.

2.2.6. Cross-correlation time function

The cross-correlation at time t between the residual time

series from a channel pair Z1 and Z2 was computed using

CZ1Z2
ðt; tÞ ¼

XN
r¼1

½Zr
1ðtÞ2 kZr

1ðtÞl�½Z
r
2ðt 1 tÞ2 kZr

2ðt 1 tÞl�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
r¼1

½Zr
1ðtÞ2 kZr

1ðtÞl�
2
XN
r¼1

½Zr
2ðt 1 tÞ2 kZr

2ðt 1 tÞl�2
vuut

; ð2:23Þ

where t is the time lag and kZr
1ðtÞl denotes the trial ensemble

average at time t. The cross-correlation was smoothed by

computing it on the low-pass filtered (23 db at 22 Hz) and

pre-processed residual time series. Zero-phase forward and

reverse digital filtering was employed to prevent phase

distortion (FIR2 and FILTFILT functions from MATLAB,

version 6, Natick, MA).

2.2.7. Estimation of single trial evoked responses

The VSPN model asserts that the trial-to-trial variability

of evoked responses is responsible for temporal modulation

of interdependence measures. This implies that if one is able

to estimate the evoked response on a single trial basis and

then separate it from the ongoing activity, interdependence

measures computed on the new residual time series will not

exhibit any characteristic time dependence. To examine this

prediction, estimators for the single trial parameters were

derived based on a Bayesian approach (Appendix A). Eq.

(2.5) is written in terms of discrete times,

ZrðkÞ ¼ arEðk 1 trÞ1 j rðkÞ, and the latencies and ampli-

tudes are estimated following the three steps below:

1. To make the solution unique, the norm of the evoked

response E(k) is constrained to equal 1. Let ka # k # kb

be a post-stimulus time segment where E(k) is non-zero.

Here ka and kb are indices for the first and last data point

of the segment. The cross-correlation between the speci-

fied segment of the estimated evoked response and a

correspondent segment of single trial data, i.e.

kEðkÞZrðk 1 tÞlkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kE2ðkÞlkk½Zrðk 1 tÞ�2lk

p ;

for the specific rth trial, is then computed for different

integer lags t , with k0 1 t . 0 for k0 corresponding to

the sample at stimulus onset.

2. The lag that gives the maximum positive cross-correla-

tion value is then chosen to represent the latency t r for

the rth trial.

3. The estimated latency shift is introduced in the evoked

response model and the amplitudes are then computed as:

ar ¼ kZrðkÞEðk 1 trÞlk. The values of E(k 1 t r) for

times k 1 t r that fall outside of the sampled time series

are set to zero.

The above algorithm was applied to the pre-processed

macaque LFP recordings. After the single trial amplitudes

and latencies were estimated, we subtracted the estimated

evoked responses from the corresponding single trial data.

Ensemble variance and coherence time functions were

computed on the new residual time series, after the corre-
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sponding time and ensemble normalization described in

Section 2.2.2.

3. Results

3.1. Single channel quantities: AERP, variance and power

Predictions of the VSPN model were tested using the

macaque LFP data. Fig. 4 shows example time functions of

AERP, the ensemble variance and power density at 12 Hz

(see Section 2 for the choice of this specific frequency) from

selected channels for each of the four monkeys. The AERP

functions often exhibited several extrema. The variance

function followed the expected temporal profile from the

VSPN model with amplitude variability as the main contri-

butor: the peak times roughly coincided with the first two

extrema times of the AERP. The power at 12 Hz computed

from the AMVAR model also followed the same predicted

time course but in most cases with less temporal resolution,

since its computation required a time window of 50 ms dura-

tion, which smeared the temporal structure.

We note that not every channel showed clear AERPs and

peaks in the variance functions. For those channels that

exhibited clear peaks, we examined the predicted correspon-

dence between the time of the largest variance peak and the

time of the largest AERP extremum. The scatter plot in Fig.

5 combines the data from 30 channels from the four

monkeys. The plot displays a general monotonic relation

with points clustering around a line having slope of 0.74

(the VSPN model predicts a slope close to 1 for the case

where the trial-to-trial amplitude variability is the dominant

factor). The computed correlation coefficient was R ¼ 0:87

ðR2 ¼ 0:76Þ. The same analysis for each individual monkey

yielded the following results: GE, R ¼ 0:94, including 6

channels in the striate, pre-striate, and parietal cortices;

LU, R ¼ 0:72, including 8 channels in the striate, pre-stri-

ate, inferior temporal, and superior temporal cortices; TI,

R ¼ 0:89, 9 channels in the striate, pre-striate, temporal, and

frontal cortices; and PE, R ¼ 0:97, 7 channels in the striate,

pre-striate, inferior temporal and pre-motor.

3.1.1. Bimodal phase distributions

When amplitude variability is the main factor in the trial-

to-trial variability of the evoked response, the VSPN model
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Fig. 4. Example time functions of ensemble mean (AERP), ensemble variance (s 2(t)) and power density at 12 Hz. Variance and power are computed from the

residual time series. To facilitate the comparison between the shapes, all quantities were normalized by their own maximal amplitude. Stimulus onset is at time

0 ms.



predicts a bimodal phase distribution for the residuals. This

was tested by computing phase distributions of the 12 Hz

component over the length of the trial (see Section 2.2.5).

The Kuiper V statistic was computed for each phase distri-

bution. Phase distributions having a Kuiper V value greater

than Vc ¼ 2:0 were judged to be significantly different ðP ,

0:01Þ from the uniform distribution.

Fig. 6 shows time functions of the Kuiper V statistic for

selected channels from each monkey. As predicted by the

VSPN model, the departure from uniform phase distribution

is only observed following stimulus onset, during the stimu-

lus evoked response. We found that all channels for all 4

monkeys had uniform phase distributions in the pre-stimulus

period. By contrast, most channels in each monkey showed

departure from the uniform distribution during stimulus

processing period (0–200 ms), with exceptions being: GE

(pstr2, som, frn2), LU (ppr, som1, mot2), TI (pst) and PE

(pst, ppr1, ppr2, prm2). Notice that the maximum of the

Kuiper V function tends to occur near 100 ms, which is

about the time when maximal variance is observed (Fig. 6).

Since the Kuiper statistic only tells whether or not a

distribution is uniform, the phase distributions that signifi-

cantly departed from uniformity were visually inspected to

further determine whether or not they were bimodal. Fig. 7

shows a representative phase distribution from each

monkey, demonstrating clear-cut bimodality. For all the

channels where we observed departure from the uniform

distribution, the phase distributions were ascertained to

have bimodality.

3.2. Cross-correlation and spectral coherence

Cross-correlation time functions were observed to be

modulated by the signal-to-noise ratio at a variety of cortical

sites, including striate, pre-striate, inferior temporal, parie-

tal, motor and pre-frontal. Examples are shown in Fig. 8.

The oscillatory nature of the cross-correlation time function

predicted by the VSPN model, and the temporal relation of

its peaks with peaks in variance, are evident. The period of

the oscillations in the cross-correlation functions agrees

roughly with that in the variance functions, and is half the

period of the main AERP oscillatory component, as

expected from the VSPN model.

To estimate the prevalence of this effect, we needed to

examine the time relation between the time peaks in

variance and cross-correlation for the whole data set. A

problem that complicated this analysis was that the

AERPs and variance functions from different channels

often did not peak at the same time. This discrepancy was

perhaps due to temporal delays in direct or indirect trans-

mission between the channel pair, or to the difference in the

arrival times of a common input signal to both channels. To

circumvent this difficulty, we chose the time lag t in the

cross-correlation function as the separation time between

the largest variance peaks from each channel in the

concerned pair. When the main characteristic frequency of

the AERPs from two channels are similar and amplitude

variation is the main factor for the temporal modulation of

variance, then the VSPN model predicts that the time of the

largest peak in the cross-correlation function, lagged by t ,

should coincide roughly with the time of the earliest large

variance peak of the two channels. This prediction was

tested in a total of 144 channel pairs from the 4 monkeys,

selected according to the following criteria: (1) existence of

clear peaks in the AERPs and variance functions; (2) the

existence of non-uniform phase distributions events during

the evoked response period; and (3) exceeding a conserva-

tive cross-correlation threshold (ucross-correlation

extremau$ 0.2). Fig. 9 shows the relation between cross-

correlation and first variance peak times. Superimposed is

the line (slope ,0.94) obtained from the least square linear

fit for the relation between peak-times in variance and cross-

correlation. The VSPN model predicts a slope close to 1 for

the case where the trial-to-trial variability in amplitude is

the main contributor to fluctuations in signal-to-noise ratio.

The correlation coefficient for the data in Fig. 9 is R ¼ 0:87

(R2 ¼ 0:76), supporting the role of the time-dependent

signal-to-noise effect on the temporal modulation of the

cross-correlation function. The coefficients computed indi-

vidually for each monkey were: LU, 44 channel pairs,

R ¼ 0:90; GE, 41 pairs, R ¼ 0:92; TI, 43 pairs, R ¼ 0:86;

PE, 16 pairs, R ¼ 0:94.

Similar time-dependent signal-to-noise ratio effects were

also observed for coherence time functions. Two important

characteristics were detected. First, a commonly observed

effect was the existence of peaks around 12 Hz in the coher-
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Fig. 5. Time of the largest peak in the variance function plotted against the

time of the largest AERP extremum. Results from 30 channels from the 4

monkeys are shown. The dashed line is the least square linear fit (slope

equal to 0.74) relating the peak-times of the AERP and variance time

function. The VSPN model predicts a slope close to 1 for the case where

the amplitude is the main source of trial-to-trial variability.



ence time function during the post-stimulus period. Those

peaks tended to coincide with 12 Hz peaks in the power

spectrum time function of at least one of the two channels

contributing to the coherence. As shown in the beginning of

this section, power peak times were correlated with changes

in the ensemble variance time function and AERP. Fig. 10

illustrates the relation between power and coherence peaks

at 12 Hz. Second, since the computation of the spectral

quantities required time segments of about 50 ms or longer,

the coherence time function resembled a smoothed version

of the cross-correlation time function (Fig. 11). Thus,

although modulation in the coherence time functions clearly

occurred, the relation between the peaks in coherence and

the extrema of the AERP or the peaks in variance, was not

always as evident.

3.3. Trial-to-trial variability removal and its effect on the

statistical measures

We next estimated the evoked response on a single trial

basis, and then formed a new residual time series by

subtracting that estimated evoked response from the corre-

sponding trial (see Section 2.2.7). This allowed further

confirmation of the signal-to-noise ratio effect by testing

whether the temporal modulation of the statistical measures

computed on this new residual time series was significantly

attenuated or removed. Fig. 12 illustrates the result of this

procedure when only amplitude variability was incorporated

in the model. It is evident that most of the event-related

modulation of the ensemble variance has been removed.

Similar results were obtained for most channels and

subjects. Additional reduction of this modulation was

obtained by also estimating the single trial latency of the

evoked response. Fig. 13 shows that event-related modula-

tion of the ensemble variance time functions is almost

entirely removed using a model that takes into account

both amplitude and latency variability of the evoked

response. An exception to this result is seen by the remain-

ing peak in the variance function of subject GE. This

occurred because different parts of the AERP can have

different latency variability, thus requiring a more sophisti-

cated estimation procedure than that employed here.
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Fig. 6. Four representative Kuiper V time functions. Notice that during the pre-stimulus period, the absolute phase distributions of the 12 Hz Fourier component

is not significantly different from uniform. During the evoked response, the distributions depart significantly from the uniform distribution. The horizontal line

represents the critical level Vc ¼ 2:0. Stimulus onset is at time 0 ms. The phase of the 12 Hz component was obtained by applying FFT on data segments from a

moving window centered at time t.



Theoretical considerations described in Section 2 show

that temporal modulation of the ensemble variance under-

lies temporal modulation of interdependence measures.

Thus, once event-related modulation of the variance time

function has been removed or highly attenuated from the

LFP time series of all channels, the time-dependent signal-

to-noise ratio effect on the interdependence measures should

also be significantly reduced. Evidence of this is seen in the

coherence time functions for the 12 Hz component. Histo-

grams of maximum coherence values during the post-stimu-

lus period (0–200 ms) were computed for all channel pairs

for each subject, both on the original residual time series

ensembles and on the new residual ensembles, i.e. the single

trial-evoked-responses subtracted time series. The results

are shown in Fig. 14. In summary, with the original residual

time series, 88% (GE), 71% (LU), 65% (TI) and 53% (PE)

of the post-stimulus (0–200 ms) coherence maxima for each

channel pair are greater than 0.1, compared to only 9%

(GE), 5% (LU), 6% (TI) and 18% (PE) for the coherence

maxima computed on the new residual time series ensem-

bles.

4. Discussion

4.1. Variability of cortical recordings

In the traditional SPN model, trial-to-trial variability is

entirely attributed to independent ongoing activity, with

which a repeatable (trial-to-trial stationary) evoked response

is linearly combined. The assumptions of linear combina-

tion and trial-to-trial stationarity have often been questioned

in the past: non-stationarity of the evoked response has been

considered as another possible source of variability in EEG

and LFP recordings, while multiplicative effects between

ongoing and evoked activities have been treated as leading

to transient modulation of both of their variances. Substan-

tial experimental support for variability of the evoked

response, including amplitude, latency and even waveform

variability, has been provided in previous studies (Coppola

et al., 1978; Horvath, 1969; Lange et al., 1997; Mocks et al.,

1987; Woody, 1967). The issue of whether the neural

system behaves in a linear regime during the evoked

response has been more controversial, with experimental
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Fig. 7. Four representative examples of absolute phase distributions of the Fourier component at 12 Hz (see Section 2.2.4.), computed from a time window

centered at the times 95 ms (GE), 80 ms (LU), 80 ms (TI) and 75 ms (PE) during the evoked response period. The modes of the distribution are separated by

approximately p radians, as expected from the VSPN model having amplitude variability as the main factor in the trial-to-trial variability of the evoked

responses. The dispersion around the modes depends on the signal-to-noise ratio of the stimulus phase-locked component in the residuals and also on the

latency variability of the evoked response.



evidence either supporting or contradicting the linearity

assumption (Aertsen et al., 1994; Arieli et al., 1996;

Azouz and Gray, 1999; Chawla et al., 2000; Kisley and

Gerstein, 1999; Vijn et al., 1991).

As a first refinement of the SPN model, the VSPN model

assumes that the stimulus-evoked response has a stereo-

typed waveform but that the amplitude and latency of this

waveform can vary from trial to trial. A number of possible

factors may contribute to this trial-to-trial variability. For

example, slow changes of global brain state involving arou-

sal and attention could lead to fluctuations in the excitability

of cortical and subcortical neuronal populations, thereby

causing variability in the magnitude and timing of the

evoked response (Brody, 1998; Mangun and Hillyard,

1991), without significantly affecting the shape of the

response. Also, in the context of visual evoked responses,

eye movements could change the location of retinal stimu-

lation and consequently the location of cortical excitation in

retinotopically organized areas (Gur et al., 1997), contribut-

ing to variability of the recorded activity from fixed electro-

des. Trial-to-trial variability could also be related to the

previously observed dependence of single trial evoked

response amplitude on the level of pre-stimulus ongoing

activity (Basar et al., 1976, 1998; Brandt and Jansen,

1991). Although all these sources of variability are

commonly considered to be a violation of the stationarity

assumed in ideally controlled experimental designs (Aertsen

et al., 1989), we argue that some of them, like state depen-

dent neural excitability, constitute in practice an inevitable

aspect of multi-trial experiments, even for situations where

the recording session might last only a few minutes.

4.2. Observed effects of the trial-to-trial variability on

recorded local field potentials

Analysis of the local field potential data was intended to

verify the predicted effects of trial-to-trial variability of the

evoked response in a very common type of experimental

design. Several lines of evidence for amplitude variability

were: (1) the predicted relationship between variance and
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Fig. 8. Oscillatory modulation of cross-correlation time functions. Illustrative examples of zero-lag point-by-point cross-correlation coefficients from 4 channel

pairs are shown (bottom row) with the respective channels AERPs (top row) and ensemble variances (center row), for 4 monkeys (from left to right: GE, LU, TI

and PE). The variance was computed from low-pass filtered (23 dB at 22 Hz), AERP-subtracted, and variance-normalized time series. Stimulus onset is at

time 0 ms. The period of the oscillations in both variance and cross-correlation functions corresponds approximately to half the period of the main

characteristic oscillation of the AERPs. Furthermore, peaks in variance of at least one of the channels in the pair and extrema in cross-correlation tend to

coincide in time.



AERP waveform; (2) the bimodal histograms for phase of

the 12 Hz Fourier component computed on residual time

series; and (3) the diminished temporal modulation in

ensemble variances after removal of single trial evoked

responses. In all four subjects, the majority of recorded

channels showed phase distributions that, according to the

Kuiper V statistics, departed from uniformity, supporting

the existence of stimulus phase-locked signals in the resi-

dual time series. This effect was observed during the initial

period of the evoked response (50–200 ms) in almost all of

the recorded cortical regions, from the primary visual cortex

to the motor and frontal cortices (Fig. 6). Visual inspection

of the non-uniform distributions showed them to be clearly

bimodal (Fig. 7). This implies that the signal-to-noise ratio

was high and that the latency variability was not severe.

Large latency variability would lead to broader modes in

the phase distribution. In extreme cases, the distribution

would look uniform. Low signal-to-noise ratios would result

in the distributions being dominated by the 12 Hz compo-

nent of the ongoing activity, which again would be expected

to be uniform.

The VSPN model predicted that peaks in the ensemble

variance should coincide in time with extrema of the AERP

for cases where amplitude variability is the main contribut-

ing factor (see Eq. 2.8). Examination of the data revealed

this to be approximately the case, especially for AERP

extrema before 150 ms (Figs. 4 and 5). Deviations from

this prediction possibly arose because of substantial latency

variability. Analysis of the power spectrum time function

revealed that the main increase in variance occurred for

Fourier components around 12 Hz, which was the main

characteristic frequency of the AERPs (Figs. 4, 10 and

11). After subtracting single trial amplitude-estimated

evoked responses from the data, we obtained removal of

most of the observed temporal modulation on ensemble

variance (Fig. 12). For most of the channel recordings,

complete removal was obtained by estimating both the

amplitude and latency (Fig. 13). These results indicate

that trial-to-trial variability in amplitude was indeed the

main contributor to temporal modulation of the variance

and the 12 Hz power, followed by a smaller contribution

from latency variability.

Regarding interdependence measures, i.e. cross-correla-

tion and spectral coherence time functions, the VSPN

model’s main implication was described in terms of a

time-dependent signal-to-noise ratio effect. Two main

scenarios were described in Section 2.1.2. First, if the

trial-to-trial amplitudes or latencies of the evoked responses

recorded from two channels co-vary, the time-dependent

signal-to-noise ratio effect implies that characteristic transi-

ent increases in the cross-correlation should be observed

during the evoked response period. In the second scenario,

the trial-to-trial amplitudes or latencies do not co-vary, but

the pre-stimulus ongoing activity is correlated between the

two channels. In this case, instead of a transient increase in

the cross-correlation, as compared to the pre-stimulus

period, a decrease should be observed. The experimental

results presented in this paper related exclusively to the

case of increase in cross-correlation and coherence. As

expected, event-related transient increases in variance and

in 12 Hz power were accompanied by transient increases in

cross-correlation and 12 Hz coherence time functions for

many channel pairs (Figs. 8–11 and 14). The most definite

evidence for the hypothesis of trial-to-trial co-variation of

stimulus time-locked components in the residual time series

was the great reduction in 12 Hz coherence values of the

single trial evoked response removed time series as

compared to the original residuals (Fig. 14).

The coherence values2 that remained above 0.1 for the

new residual time series may still have been due to the time-

dependent signal-to-noise ratio effect. For example,

consider that two parietal sites receive a common input

from a striate site, and moreover, that the evoked responses

in both parietal sites are dominated by components other

than the common one from the striate input. In this case,

the single trial estimation might not capture the common

striate component in the parietal recordings. The trial-to-

trial variability of this component would affect the interde-
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2 Our experience with assessing the statistical significance of coherence

values through bootstrap methods in this data set suggests that in general

values above 0.1 are statistically significant.

Fig. 9. Peak-time of the lagged point by point cross-correlation time func-

tion versus the peak-time of the variance function for the channel with the

earliest peak in variance in the pair (see Section 2 and text). Data from 144

channel pairs selected from the 4 monkeys are shown (see text). Because of

the time resolution employed (sampling interval of 5 ms), many points are

superimposed. The dashed line is given from the least square linear fit

(slope equal to 0.94). The VSPN model predicts a slope close to 1 for the

case where amplitude variation is the key factor for the temporal modula-

tion in the signal-to-noise ratio.



pendence measures, even after subtraction of the estimated

single trial evoked responses. Thus, with the application of

the current estimation algorithm, it is not yet possible to

completely remove the time-dependent signal-to-noise

ratio effect. However, the available evidence strongly

suggests that the effect is indeed the main contributor to

the observed event-related modulation of interdependence

in this data set.

The relation between variance peak times and cross-

correlation peak times (Fig. 9) was nearly linear with

slope close to one, supporting the hypothesis of amplitude

co-variation. Observed deviations may have originated

again from latency variability or from two other factors. A

complete coincidence between the peak times would be

observed if the AERPs of different channels were identical,

which was not the case (see Section 2.1.2 and Fig. 2). In the

scatter plot (Fig. 9), many channel pairs were grouped

together. Some of these channels may have had their statis-

tical interdependence arising from higher order interactions

(e.g. indirect interaction through one or more cortical areas).

As in the hypothetical example of two parietal channels

given above, even though a common striate input might

be the main factor contributing to the modulation of their

interdependence, it might only have a minor influence on

the characteristic shape of their ensemble variances. In the

spectral domain, a much more consistent time coincidence

was observed between peaks in 12 Hz coherence and 12 Hz

power (an example of this is provided in Fig. 10).

4.2.1. Possible explanations of event-related modulation of

statistical quantities computed on residual time series

Power spectral density, cross-correlation and coherence

functions are quantities computed on residual time series,

i.e. on time series from which the average event-related

potential (AERP) has been removed. Several explanations

have been proposed to account for event-related temporal

modulation of these measures. Perhaps the simplest source

of such effect in pairwise measures is a common input to the

two neuronal populations. If temporal fluctuations in the

input itself are event-dependent, the statistical measures

should show transient changes. A more complex mechanism

would involve non-linear interaction between the popula-

tions. In this case, the assumption of linear combination of

the stimulus evoked response and ongoing activity does not

hold because the ongoing component could modulate, and

be modulated by, the stimulus-evoked response. A simple

illustration is provided in the following scenario. Dynamical
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Fig. 10. Event-related changes in power and coherence spectrum time

functions. In both pre-striate and frontal channels (monkey GE), the

event-related changes in power and coherence concentrate around the

12 Hz component. Also, peaks in power and coherence roughly coincide

in time. The spectral quantities were derived from the AMVAR modeling

of the residual time series (see Section 2). Stimulus onset is at time 0 ms.

Squared coherence values are used.

Fig. 11. The time-dependent signal-to-noise ratio effect on the coherence

time function. The shape of the zero-lag cross-correlation C(t) is clearly

related to the ensemble variance and AERPs. The squared coherence time

function of the 12 Hz component G2(12,t) resembles a smoothed version of

the cross-correlation time function because of its computation within a time

window. The plotted quantities refer to striate and posterior inferior

temporal sites (monkey LU).



models of neuronal population activity relate the field

potential and pulse density (the number of spikes per unit

volume) by a non-linear sigmoid function (Eeckman and

Freeman, 1991; Freeman, 1975). A resulting property of

networks of such populations is the dynamic modulation

of gain and effective connectivity by the network’s mean

activity level (Truccolo et al., 2000, 2001). This modulation

can affect both the local population properties and the inter-

actions among local populations. First, transient changes in

the population’s mean level of activity, like that produced

by stimulus-evoked responses, can change the gain of the

population’s output sigmoid function, resulting in amplifi-

cation or attenuation of its ongoing activity. This effect can

be measured by transient changes in the time course of the

ensemble variance time function, k½hrðtÞ�2l, and in power

spectrum density time functions of the residual time series,

kuhrðf ; tÞu2l. Such changes are likely to be observed over a

range of frequencies, especially if the pre-stimulus activity

is broadband. Second, as the gain level of the output sigmoid

function of a population changes, its effective connectivity

with other populations may also be modulated, leading to

possible changes in the level of synchrony between the

neuronal population activities. In this way, the residual

time series from two interacting populations can exhibit

event-related modulation of their statistical interdepen-

dence, as measured by fast transients in the time course of

cross-correlation and coherence time functions. Other non-

linear mechanisms, based on the effect of the background

level of activity and evoked transients on effective connec-

tivity (Aertsen et al., 1994, 1989; Chawla et al., 1999a,

2000; Friston, 2000) are similar in spirit. Changes in intrin-

sic parameter regulating the frequency characteristics of

neuronal populations could also lead either to resonance

or to decoupling between the populations (Baird and Eeck-

man, 1993; Hoppensteadt and Izhikevich, 1999; Izhikevich,

1999), producing similar event-related modulations in inter-

dependence measures.

The VSPN model considered here provides yet another

possible mechanism. The residual time series contain two

components: the stimulus phase-locked component and the

ongoing component. Since the variance of the residual

phase-locked component is modulated by the AERP magni-

tude, its strength relative to the ongoing component, as

measured by the signal-to-noise ratio s 2
S ðtÞ=s

2
j ðtÞ; is modu-

lated in a similar way (Eqs. (2.9) and (2.16)). When the ratio

is high, the signal stands more above the noise background

compared to when the ratio is low. Temporal fluctuations in

this ratio give rise to modulation of interdependence

measures if the amplitudes of the phase-locked components

from two different channels co-vary and/or if the channels’

ongoing activities are themselves correlated (as implied by
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Fig. 12. Amplitude variability effect on ensemble variance time functions.

The ensemble variance time function from LFP time series recorded from a

posterior inferior temporal site (pit) from subject LU is shown by the thin

curve. After the evoked response, scaled by the single trial estimated ampli-

tude, has been subtracted from the corresponding single trial data, the

resulting ensemble variance (thick curve) shows significantly decreased

peaks. This result gives further support for the hypothesis that the trial-

to-trial amplitude variability is a major contributor to the event-related

modulation of the variance. Variance values were computed on normalized

time series (see Sections 2.2.2 and 2.2.7).

Fig. 13. Trial-to-trial variability effect on ensemble variance time functions.

Examples of event-related modulation of the ensemble variances from 4

cortical sites of 4 subjects are shown by the thin curves. After the estimated

single trial evoked response has been subtracted from the time series,

approximately all the event-related modulation of the variance time func-

tions has also been removed (thick curves). Here both the amplitude and

latency of the evoked response were estimated following a Bayesian

approach (see Section 2.2.7). The amplitude variability together with the

latency variability seem to be the two major contributors to the event-

related modulation of the variance, with the amplitude contributing most

significantly (compare LU (pit) in this figure to that in Fig. 12). Ensemble

variances were computed on normalized time series.



Eqs. (2.17) and (2.19)). Similar relations between trial-to-

trial variability in excitability and temporal modulation of

cross-correlation have previously been investigated in spike

train recordings (Baker et al., 2001; Brody, 1999; Friston,

1995). Although the trial-to-trial variability of amplitude

and latency seems to be a ubiquitous characteristic of differ-

ent types of recordings, including non-invasive EEG and

MEG measures, the strength of the effect of this variability

on statistical measures may vary depending on the type of

the recordings. The crucial aspect is the level of signal-to-

noise ratio. We expect that the higher this ratio, the stronger

the effect of the trial-to-trial variability of evoked responses

on the temporal modulation of power and interdependence

measures. In this way, the effect in non-invasive recordings

should present the same qualitative properties but be weaker

compared to intra-cortical and sub-dural LFP recordings.

4.2.2. Separation of stimulus phase-locked and non-phase-

locked components in cortical recordings

Event-related recordings commonly contain evoked and/

or induced components (Freeman, 1994; Pfurtscheller and

Lopes da Silva, 1999) in addition to unrelated background

ongoing activities. The evoked component is usually

considered to result from phase-locked responses of cortical

populations to thalamic afferents, while the induced compo-

nent is time-locked but not phase-locked to the stimulus, and

results from transient changes in neural parameters control-

ling interactions among cortical populations. The evoked

component tends to have a low frequency profile that can

exhibit phase-locking properties in the presence of latency

variability. On the other hand, induced components tend to

have higher frequencies (e.g. in beta or gamma ranges) and

need more careful analysis to discover. In the present work,

induced activity and background activity are not differen-

tiated and are collectively called the ongoing noise compo-

nent.

Although early evoked components stemming from

sensory processing (100–200 ms post-stimulus) can be

separated from the ongoing activity, as our result has

shown, a more difficult problem is the extraction of later

evoked components, where the latency variability is larger.

We know of no technique that can estimate the induced

components on a trial-by-trial basis because of the lower

signal-to-noise ratios. Thus more improved techniques

will be required and will depend mainly on better models

of evoked response and ongoing activity. For instance, the

prior probabilities for the amplitudes and latencies are prob-

ably not uniform and the ongoing activity is clearly not a

white Gaussian process and cannot be assumed to be

stationary during the transition from pre- to post-stimulus

periods (Truccolo et al., 2001). Furthermore, improved

models of the evoked response signal may stipulate that,

even for very localized intra-cortical LFP recordings, the

evoked response is the combination of multiple and possibly

overlapping components, each having its own trial-to-trial

amplitude and latency variability (Gratton et al., 1989; Jung
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Fig. 14. Removal of the trial-to-trial variability effect on the coherence time functions. Each plot shows the maximum coherence value histograms during the

post-stimulus period (0–200 ms) for all the channel pair combinations from a single subject. Histograms were computed on the original residual time series

ensemble (open bars) and on the new residuals, i.e. the single trial-evoked-response subtracted time series ensemble (solid bars). As can be seen, after the single

trial responses have been subtracted from the time series, the majority of the coherence maximum values are close to zero. Squared coherence values were

employed.



et al., 1999; Lange et al., 1997). All these issues are funda-

mental for the enterprise of identifying the origins of event-

related transients using statistical measures and will be

addressed elsewhere (Truccolo et al., in preparation),

together with the presentation of an approach for the concur-

rent estimation of amplitudes, latency and waveform of

multi-component single trial evoked responses.
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Appendix A. Bayesian estimation of single trial
amplitudes and latencies of evoked responses.

A Bayesian inference framework for estimating single

trial parameters is outlined in this appendix. For the special

case of evoked responses that only vary in their amplitude,

the problem reduces to estimating the amplitude a r for the

rth trial. Writing Eq. (2.5) in terms of discrete times,

ZrðKÞ ¼ arEðkÞ1 j rðkÞ, where k is the sample index, the

posterior probability of the model parameters {a r} and

{E(k)}, given the data {Zr(k)}, is:

pð{ar}; {EðkÞ} j {ZrðkÞ}Þ

¼
pð{ZrðkÞ}u{ar}; {EðkÞ}Þpð{ar}; {EðkÞ}Þ

pð{ZrðkÞ}Þ
ðA1Þ

Note that

pð{ZrðkÞ}u{ar}; {EðkÞ}Þ ¼
ðpð{hrðkÞ}; {ar}; {EðkÞ}Þ

pð{ar}; {EðkÞ}Þ ¼ pð{hrðkÞ}Þ
;

since the ongoing activity h r(k) and model parameters are

assumed to be independent. Assume uniform prior distribu-

tions for the model parameters. Let h r(k), in a first approx-

imation, be a white Gaussian process with time independent

variance s 2. The posterior probability can then be written

as:

pð{a r}; {EðkÞ}u{ZrðkÞ}Þ

/ s2NT exp 2
1

2s 2

XN
r¼1

XT
k¼1

½ZrðkÞ2 arEðkÞ�2
 !

ðA2Þ

where N and T are the number of trials and sampled data

points, respectively. We chose the Maximum a Posteriori

(MAP) solution, i.e. the amplitude estimates are chosen to

be the amplitudes that maximize the posterior probability. In

other words, we solve for the amplitude that makes the

derivative of the logarithm of the posterior with respect to

a r equal to zero:

2

2ar
log pð{a}; {EðkÞ} j {ZðkÞ}

¼
1

s 2

XT
k¼1

ZrðkÞEðkÞ2 arE2ðkÞ ¼ 0 ðA3Þ

After a few algebraic steps, the solution is given by:

ar ¼
kZrðkÞEðkÞlk
kE2ðkÞlk

ðA4Þ

To make the solution unique, the norm of the evoked

response is constrained to equal 1. Then, the solution simpli-

fies to:

ar ¼ kZrðkÞEðkÞlk ðA5Þ

which is a matching filter solution, i.e. the dot product

between the single trial recording and the normalized

evoked response. Furthermore, the constraint a r . 0 is

introduced to accommodate the known fact that the evoked

response does not invert from trial to trial. For our purpose,

the ensemble mean kZr(k)l is taken as a good estimation of

the single trial evoked response E(k).

This approach, as shown in Section 3.3 and Fig. 12,

captures most of the single trial variability of the evoked

response. Further improvement is obtained by also estimat-

ing single trial latencies. To a first approximation, a practi-

cal and easy solution in discrete time that is faithful to

maximization of the posterior probability is achieved by

estimating latency and amplitude variability following the

three steps given in the Section 2.2.7. In those three steps,

the AERP is again taken as the estimator of the evoked

response E(k). The resulting algorithm is similar to the

Woody method for latency estimation (Woody, 1967).

Related maximum-likelihood solutions have been used by

Pham et al. (1987) and by Jaskowski and Verleger (1999)

for the estimation of single trial latency and amplitude in the

frequency domain. A more detailed treatment of the estima-

tion issues, as well improvements on the model and proce-

dure, are beyond the scope of the present paper and are

addressed elsewhere (Truccolo, Ding, Knuth, and Bressler,

in preparation).
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