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In this article we consider the stochastic modeling of neurobiological time series from cognitive
experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model
a differentially variable component analysis strategy is developed from a Bayesian perspective to
estimate event-related signals on a single trial basis. After subtracting out the event-related signal
from recorded single trial time series, the residual ongoing activity is treated as a piecewise sta-
tionary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strat-
egy which yields power, coherence, and Granger causality spectra. Results from applying these
methods to local field potential recordings from monkeys performing cognitive tasks are
presented. © 2006 American Institute of Physics. �DOI: 10.1063/1.2208455�
n a typical cognitive experiment, the subject often per-
orms the same task repeatedly and each repetition is
alled a trial. The recorded neurophysiological signals ex-
ibit large variability from trial to trial. Traditionally, it
as been assumed that (1) the evoked response is invari-
nt across trials and (2) the trial-to-trial variability is due
o background noise. The analysis method has thus been
o average the single-trial time series across an ensemble
f trials, triggered either on the stimulus onset or the
ovement onset, to attenuate the effect of noise and en-

ance the evoked signal. This event-related potential
ERP) strategy has been the dominant approach in
ognitive neuroscience. Evidence over the past few
ears has begun to challenge the two assumptions under-
ying this strategy. In this article we review recent
esults in this area starting with the introduction of a
enerative signal model of event-related recordings. We
roceed to discuss statistical strategies for estimating the
arameters in the model. Examples of applying the
nalysis framework to local field potential data recorded
rom monkeys performing a visuomotor task are in-
luded. With suitable generalization, data from genetic
etworks may also be analyzed within the framework
iscussed here.
054-1500/2006/16�2�/026113/8/$23.00 16, 02611
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I. INTRODUCTION

Cognitive functions are often studied by recording elec-
tric potentials from the brain, either invasively or noninva-
sively, over repeated presentations of a sensory stimulus or
task performance.1 The traditional analysis framework mod-
els the recorded signal as the linear combination of back-
ground activity that is considered noise and evoked activity
�signal� that is phase locked to event onset. This model,
which we henceforth refer to as the signal-plus-noise �SPN�
model, further assumes that the evoked response has a char-
acteristic waveform whose amplitude and latency stay the
same each time the event is repeated on multiple trials, and
that the noise is not phase locked to the event and is unin-
formative. The signal is retrieved and noise eliminated by
performing an average across an ensemble of trials triggered
by the event onset. This simple averaging method has played
a predominant role in cognitive neuroscience and contributed
significantly to our understanding of brain functions. How-
ever, mounting evidence suggests that: �1� the background
activity is not simply noise, but in fact contains high fre-
quency oscillatory activity critical for cognitive
performance2 and �2� the amplitude and latency of the
evoked signal is not invariant across trials, but vary signifi-
cantly from trial to trial.3–7 In this article we review some

recent results where more realistic models of event-related

© 2006 American Institute of Physics3-1
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ignals are considered.5–7 We start by presenting some evi-
ence revealing the trial-to-trial variability in amplitude and
atency of evoked responses and then propose a generative
ignal model, which we refer to as the variable-signal-plus-
ngoing-activity �VSPOA� model, to describe both the vari-
ble evoked activity and ongoing activity. Based on the
SPOA model we describe a Bayesian analysis framework

or separating evoked activity from ongoing activity. After
uch separation, the ongoing activity is treated as a piecewise
tationary stochastic process and a multivariate autoregres-
ive spectral analysis strategy is formulated to extract useful
nformation including power, coherence, and Granger causal-
ty spectra from the ongoing activity. Some results of appli-
ations to neurobiological local field potential time series
ecordings are shown to demonstrate the utility of the
SPOA model and the effectiveness of the analysis strategy.

I. VARIABLE SIGNAL PLUS ONGOING ACTIVITY
VSPOA… MODEL

To motivate the VSPOA model we examine single-trial
vent-related time series and demonstrate the presence of the
rial-to-trial variability in both amplitude and latency of
timulus evoked responses. In Fig. 1 �top left-hand side� we
uperimpose 50 single-trial local field potential �LFP� time
races recorded from the parietal cortex of a monkey per-
orming a visuomotor task �see the following for experimen-
al details�.8,9 The lower left-hand panel is the average using
88 trials from the same condition. The key observation is
hat much greater variability over trials is seen around the
ime of the N1 component, the peak time of which is indi-
ated by the vertical bar, than during the time preceding the
voked activity �say 25 ms�. The SPN model would predict
he same degree of variability over trials at every point in the
ime series. Plotting ensemble variance as a function of time,
areful analysis5 attributes the increased ensemble variance
round the N1 component to the trial-to-trial amplitude vari-
bility of the N1 component. In Fig. 1, the top right-hand
anel is the raster plot of single-trial LFPs from another pa-
ietal electrode under the same condition sorted according to

IG. 1. �Color� Top left-hand panel: 50 single trial LFP time traces from a
hannel and same experimental condition. Top right-hand: raster plot of 22
ifferent parietal channel. Lower right-hand: average of the signals from th
vent-related potential.
eaction time �RT�. The LFP amplitude is coded by color.
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The ensemble average is shown in the lower right-hand
panel. The latency of the evoked response clearly varies from
one trial to the next. In addition, the latencies of different
components vary with respect to one another, with the com-
ponent around 280 ms clearly correlated with RT �the black
curve�.

The previous empirical evidence suggests that a genera-
tive model for the recorded single-trial LFP signal should
incorporate at least four main properties in the event-related
paradigm: �a� the existence of event-related signals that are
relatively phase locked to a specific event onset; �b� the trial-
to-trial variability in amplitude and latency of the event-
related signals; �c� the possibility that the event-related re-
sponse may be the superposition of multiple components
with differential variability in their single-trial amplitudes
and latencies; and �d� the existence of signals that are not
phased locked to the event, including activity that is unre-
lated to the experiment �e.g., measurement noise� and activ-
ity that is induced by the event but not phase locked to it.10

The model that incorporates these properties, which we call
the VSPOA model, is written as5–7

xr�t� = �
n=1

N

anrsn�t − �nr� + �r�t� , �1�

where xr�t� is the LFP recording from the rth trial, sn�t� is the
nth event-related component waveform with trial-to-trial
variable amplitude and latency given by anr and �nr, respec-
tively, and N is the total number of components. The process
�r�t�, referred to as the ongoing activity, includes all the
non-phase-locked signals and is assumed to have a zero
mean.

The VSPOA model treats the recorded single-trial time
series as composed of two distinct parts, evoked and ongoing
activities. In Sec. III, we show that the parameters in the
model, including the amplitude, latency, and the waveform
of each evoked component, can be estimated in a Bayesian
framework. After estimating the evoked signal on a single-
trial basis, we obtain the ongoing activity as the residual of

tal channel. Lower left-hand panel: the average of 888 trials from the same
le-trial LFP time traces sorted according to the reaction time �RT� from a
e channel. Time 0 denotes stimulus onset. Here AERP stands for average
parie
2 sing
e sam
the recorded single-trial time series minus the evoked signal.
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he ongoing activity is known to contain oscillatory activity
hat provides rich information about cognition.2 Tradition-
lly, the ongoing activity is extracted by removing the en-
emble average from each trial. Careful analysis has shown
hat, in the face of trial-to-trial variability of stimulus evoked
esponses, this approach can lead to spurious results.5 By
odeling the event-related signal on a single-trial basis we

an better recover the ongoing activity. In Sec. IV we de-
cribe an adaptive multivariate autoregressive modeling ap-
roach for analyzing the ongoing activity. The spectral quan-
ities derived from this approach include power, coherence
nd Granger causality. Together they allow a detailed evalu-
tion of synchronized neural activities in local as well as in
arge scale cortical networks.

II. SINGLE TRIAL ANALYSIS
F THE EVOKED ACTIVITY

Many current single-trial analysis methods are empirical

nd lack a rigorous theoretical foundation within which to

wnloaded 07 Jul 2006 to 192.58.150.41. Redistribution subject to AIP
understand the performance of the method and to refine the
method in the face of complications inherent in real-world
data. This realization has led us to the development of the
following Bayesian approach which was first published in
Ref. 6 from which the following text is adapted. A multivari-
ate version of the approach has recently appeared in Ref. 7.

A. Bayesian estimation framework

The problem of estimating the single-trial parameters
sn�t�, anr, and �nr is formulated from a Bayesian perspective.6

According to Bayes’ theorem, the posterior probability of
model parameters M given data D and prior information I,
can be written as

p�M�D,I� =
p�D�M,I�p�M�I�

p�D�I�
. �2�

For the VSPOA model in �1�, the posterior probability

becomes
p��sn�t��,�anr�,��nr�,���t���xr�t��,I�=
p��xr�t����sn�t��,�anr�,��nr�,���t�,I�p��sn�t��,�anr�,��nr�,���t��I�

p��xr�t���I�
, �3�
here �·� refers to the set of parameters for all the compo-
ents and the whole ensemble of trials, ���t� denotes the
arameters for the ongoing process and

p��sn�t�� , �anr� , ��nr� ,���t� � I� is the prior probability for the
odel parameters. For this additive model, the likelihood

p��xr�t�� � �sn�t�� , �anr� , ��nr� ,���t� , I� turns out to be simply
iven by the probability model of the ongoing activity, i.e.,

p���t� � I�. In the absence of precise knowledge about the
emporal structure of the ongoing activity, we assign ��t� to
e independent identically distributed with a �unknown�
ime-independent variance ��

2 and zero mean. In this way,
q. �3� is rewritten as

p��sn�t��,�anr�,��nr�,����xr�t��,I�

=
p����t�����,I�p��sn�t��,�anr�,��nr�,���I�

p��xr�t���I�
. �4�

nder the constraint of a given mean and ��
2 and following

he principle of maximum entropy,11 a Gaussian density is
ssigned to the likelihood function. After dropping the nor-
alization term 1/ p��xr�t�� � I�, the posterior can be rewritten

s

p��sn�t��,�anr�,��nr�,����xr�t��,I�

� p��sn�t��,�anr�,��nr�,���I��2���
2�−RT/2

�exp	− �r=1
R �t=1

T �xr�t� − �n=1
N anrsn�t − �nr��2

2��
2 
 ,

�5�
where R is the total number of trials and T is the total num-
ber of sampled data points in a given trial. For notational
simplicity we have assumed the sampling interval to be unity
in the previous expression. In practice, the real time can be
recovered by multiplying the integer time index t by the
sampling interval.

In the absence of detailed knowledge about the param-
eters anr, �nr, and sn�t�, we take their prior distributions to be
uniform, with appropriate cutoffs reflecting physiologically
reasonable ranges of values. That is,

p�sn�t��I� = const., " n , �6�

p�an�I� = const. for 0 � an 	 amax, " n , �7�

p��n�I� = const., for �min � �n 	 �max, " n . �8�

Treating the variance of the ongoing activity as a nuisance
parameter and assigning the Jeffrey’s prior p����=��

−1,11 we
marginalize the posterior over ��:

p��sn�t��,�anr�,��nr���xr�t��,I�

� p��sn�t��,�anr�,��nr��I��
−





�2���
2�−RT/2��

−1

�exp�−
1

2��
2 �

r=1

R

�
t=1

T 	xr�t� − �
n=1

N

anrsn�t − �nr�
2
d��,

�9�
and obtain
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p��sn�t��,�anr�,��nr���xr�t��,I�

� p��sn�t��,�anr�,��nr��I��2��−RT/2

���RT

2

��

r=1

R

�
t=1

T 	xr�t� − �
n=1

N

anrsn�t − �nr�
2
−RT/2

,

�10�

here ��·� is the gamma function.
The evaluation of the posterior probability and compu-

ation of its moments can be obtained via Markov chain
onte Carlo methods. Although highly informative, these
ethods carry the disadvantage of being computationally in-

ensive. Here, instead, we summarize the posterior density by
eeking the maximum a posteriori �MAP� solution, i.e., a set
f parameters that maximize the posterior probability. In the
ontext of �2�, the MAP solution for the model parameters M
s

M̂ = arg max
M

�p�D�M,I�p�M�I��

= arg max
M

�ln p�M�I� + ln p�D�M,I�� . �11�

ecause waveforms, amplitudes and latencies are being esti-
ated simultaneously, the model has degeneracy. We solve

his problem by constraining the ensemble mean of the am-
litude and latency of each component to equal one and zero,
espectively.

Intuition about the characteristics of the MAP solution
an be gained by examining the partial derivatives of the
ogarithm of the posterior probability with respect to each of
he model parameters. This leads to a practical and simple
stimation algorithm. In what follows, the time t assumes
iscrete values corresponding to digital sampling. Let

Q = �
r=1

R

�
t=1

T 	xr�t� − �
n=1

N

anrsn�t − �nr�
2

. �12�

et P represent the posterior probability in �11�. Then its
ogarithm can be simply written as

ln P = −
RT

2
ln Q + const. �13�

or the partial derivatives we use j , p ,q to denote specific
ndex values for the generic running indices n ,r, and t, re-
pectively. The first partial derivative with respect to sj�q� is

� ln P

�sj�q�
= −

RT

2
Q−1 �Q

�sj�q�
, �14�

here

�Q

�sj�q�
= − 2�

r=1

R

�Wajr − �ajr�2sj�q�� , �15�

nd

W = xr�q + � jr� − �
n=1,n�j

N

anrsn�q − �nr + � jr� . �16�
etting �Q /�sj�q�=0 gives

wnloaded 07 Jul 2006 to 192.58.150.41. Redistribution subject to AIP
ŝ j�q� =
�r=1

R Wajr

�r=1
R �ajr�2 , �17�

with ŝ j�q� denoting the estimated parameter. The previous
equation does not have a closed-form solution as the right-
hand side depends on the other estimated parameters. How-
ever, intuition about the type of solution can be obtained by
examining the term W. Basically, this term involves the fol-
lowing two elements: �a� the data is shifted according to the
latency of the estimated component, i.e., xr�q+� jr� and
�b� the other scaled and time shifted components, i.e.,
anrsn�q−�nr+� jr�, for n� j are subtracted from the data. The
properly scaled residuals, where the scaling is given by the
term ajr, are then averaged across trials.

Similarly, we obtain the estimate for the amplitude anr:

âjp =
�t=1

T UV

�t=1
T V2 , �18�

where U=xp�t�−�n=1,n�j
N anpsn�t−�np� and V=sj�t−� jp�. No-

tice that the formula derived for âjp is related to a matched
filter solution. That is, âjp is given by projecting U, which is
the data after removing the contribution from the other
scaled and time shifted components, onto V, which is the
current component under estimation.

For the latency estimation, setting �Q /�� jp=0 leads to
the following equation:

2�
t=1

T 		xp�t� − �
n=1
n�j

N

anpsn�t − �np�
ajpsj��t − � jp�

− ajp
2 sj��t − � jp�sj�t − � jp�
 = 0, �19�

where sj��t−� jp� is the time derivative of sj�t−� jp�. The solu-
tion for �̂ jp is more difficult as � appears in the argument of
the waveform function. Again, intuition can be gained by
directly examining the condition for the maximization of the
logarithm of the posterior, which is equivalent to the mini-
mization of the term Q in �12�. Expansion of this term results
in

�
r=1

R

�
t=1

T 	xr
2�t� + 	�

n=1

N

anrsn�t − �nr�
2

− 2xr�t��
n=1

N

anrsn�t − �nr�
 . �20�

As � jp is varied, only the cross terms in xp�t��n=1
N anpsn�t

−�np�, for n= j are relevant for the minimization of �12� �as
long as the event-related components sn�t� can be considered
zero outside some time interval �t0 , tf��. Thus the optimal
parameter �̂ jp is found by maximizing

���� = �
t=1

T 	ajpsj�t − ��	xp�t� − �
n=1,n�j

N

anpsn�t − ��

 , �21�

which, if properly normalized, is just the cross correlation

between the estimated component and the data after the con-
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ributions from the other components have been subtracted
ut. Thus,

�̂ jp = arg max
�

���� . �22�

his result corresponds to Woody’s matched filter algorithm
or latency estimation.3

. Algorithm implementation

The analysis in the previous section suggests a simple
euristic algorithm. After an initial guess, at each iteration
tep, the parameters for all components are updated in se-
uence as mentioned before: first the latency, then the wave-
orms, and finally the amplitude. Specifically, let sj

m�t�, ajr
m,

jr
m denote the estimated values of the parameters in the mth
teration. Also, let the latency assume only discrete integer
alues, with units corresponding to the sampling interval. To
void degeneracy in the model, the averages of the ampli-
udes and latencies in each iteration are constrained to
ajr

m�r�1 and �� jr
m�r�0. In this way, if there is no trial-to-trial

ariability both in amplitude and latency, the superposition
f the estimated component waveforms should equal the
imple average. For a single channel data set �xr�t��, the al-
orithm consists of the following steps:

�1� At m=0, the initial guess for the amplitudes and la-
encies are set to ajr

0 =1, � jr
0 =0, "j ,r. For simplicity, the de-

ision on the number of components N is based on inspection
f the average event-related potential �AERP� according to
onventionally defined ERP components.10 �A more statisti-
ally principled way of determining N can be found in Ref.
.� Similarly, N nonoverlapping segments of the AERP are
aken as the initial guesses for the N components’ waveforms

j
0�t�. After this initialization, each iteration consists of four
teps:

�2� For all the trials, estimate the single-trial latencies for
ne component at a time, starting with the first and proceed-
ng up to the Nth component, according to � jr

m+1

arg max� �m���. Re-expressed in time units, the estimated
atency is simply � jr
t, where 
t is the sampling interval.
iven an approximate knowledge of where in time the com-
onent is expected to happen, an interval for the search of the
ptimal latency � jr can be stipulated. In this way, the possi-
ility that the component matches by chance the waveform
f unrelated ongoing activity is diminished.

�3� Estimate the waveforms according to

sj
m+1�t� =

�r=1
R Wajr

m

�r=1
R �ajr

m�2 ,

ith

W = xr�t + � jr
m+1� − �

n=1,n�j

N

anr
m sn

m�t − �nr
m+1 + � jr

m+1� .

�4� For all the trials and components, estimate the am-
litude according to:

ajr
m+1 =

�t=1
T UV

�t=1
T V2 ,

ith U=x �t�−�N am sm+1�t−�m+1� and V=sm+1�t−�m+1�.
r n=1,n�j nr n nr j jr

wnloaded 07 Jul 2006 to 192.58.150.41. Redistribution subject to AIP
�5� Increment the iteration index: m=m+1; repeat steps
�1�–�4� for M iterations.

We note that the differential variability of the compo-
nents on a trial-by-trial basis is the foundation of the estima-
tion technique. We thus term our algorithm differentially
variable component analysis �dVCA�.6,7

C. Application to local field potential recordings

The experimental data used in this study was collected
by Dr. Richard Nakamura in the Laboratory of Neuropsy-
chology at the U. S. National Institute of Mental Health.8,9

We henceforth refer to the dataset as the Nakamura data set.
In this experiment, differential LFPs were simultaneously re-
corded from surface-to-depth bipolar Teflon-coated platinum
electrodes, chronically implanted at up to 16 sites distributed
over either the left-hand or the right-hand cerebral hemi-
sphere, contralateral to the preferred hand, of four highly
trained macaque monkeys performing a visuomotor pattern
discrimination task. �Here differential bipolar recordings are
essential for generating local signals by rejecting common
mode and volume conduction.� The sampling rate was
200 Hz. The monkey initiated each trial by depressing and
holding steady a mechanical lever with the preferred hand
and began to anticipate the imminent onset of visuomotor
processing. The anticipation period lasted 1 s on average.
Data collection commenced about 115 ms prior to stimulus
onset �time 0� and continued until 500 ms poststimulus. Each
stimulus consisted of four dots arranged as a �left- or right-
hand slanted� line or diamond on a display screen. The mon-
key indicated whether the stimulus was a line or diamond
pattern by a GO �lever release� or NOGO �pressure mainte-
nance� response. GO and NOGO trials were presented with
equal probability in around 1000-trial sessions. The response
contingency was randomly switched across sessions.

Consider the case in the top right-hand panel of Fig. 1 in
which 222 GO response single-trial time series from a pari-
etal channel are displayed as a raster plot. Here diamond is
the stimulus. Two components were identified and their esti-
mated waveforms are shown in Fig. 2 �top panel�. Single-
trial amplitude and latency distributions for both components
are displayed in Fig. 2, middle and bottom panels, respec-
tively. The two latency histograms both exhibit a single peak
distribution, suggesting that the estimation captured the la-
tencies of the underlying single-trial events that were rela-
tively phase locked to the stimulus onset.

By inspecting the raster plot in Fig. 1 it is apparent that,
the latency of the second component �200–320 ms� clearly
tracks the RT and should have a positive correlation with RT
on a trial-by-trial basis, whereas the first component does not
have such a clear tendency. We tested this intuitive observa-
tion. Figure 3 replicates the average evoked response shown
in the bottom right-hand panel of Fig. 1, with vertical lines
now demarcating the time regions of the main peaks of the
two estimated components �top panel�. Scatter plots of the
latency estimates for each component with RT are shown in
the bottom panel of Fig. 3. The r2 values were found to be
0.09 and 0.25 for the first and second components, the r2

value for the second component being significantly greater
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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than that of the first �p�0.02�, confirming the closer relation
of the second component to RT as was observed in the raster
plot from Fig. 1.

IV. SPECTRAL ANALYSIS
OF THE ONGOING ACTIVITY

It is known that ongoing neural activity plays an impor-
tant role in the cognitive operations of the brain.2,12 As on-
going activity is usually embedded in event-related activity,
more accurate signal models, such as the VSPOA model pro-
posed here, help to better estimate ongoing activity. Using
the VSPOA model in step �1�, we write the ongoing activity,
�̂r�t�, so estimated, as

�̂r�t� = xr�t� − �
n=1

N

ânrŝn�t − �̂nr� , �23�

which is performed on each trial for every recording channel.
When multiple, spatially distributed channels are re-

corded, examination of the interactions between channels is
of general interest. In the following, we present a short-
window adaptive multivariate autoregressive �AMVAR�
method to perform spectra analysis on the ongoing activity.13

A. Short window AMVAR spectral analysis

Let p channels of ongoing activity at time t be denoted
by �t= ��1t ,�2t , . . . ,�pt�T where T stands for matrix transpo-
sition. Assume that the data over an analysis window are
described by a multivariate autoregressive �MVAR� model:

�
k=0

m

Ak�t−k = Et, �24�

where Et is a temporally uncorrelated residual error series
with covariance matrix �, and Ak are p� p coefficient ma-
trices which are obtained by solving the multivariate Yule-
Walker equations �of size mp2� using the Levinson, Wiggins,
and Robinson algorithm.13 Here repeated trials for the same
experimental condition are treated as realizations of a piece-
wise stationary stochastic process. The order m of the MVAR
model was determined by the Akaike information criterion
�AIC�,14 a quantity based on the tradeoff between sufficient
spectral resolution and overparameterization. Once the
model coefficients Ak and � are estimated, the spectral ma-
trix can be evaluated as

S�f� = ���f��*�f�� = H�f��H*�f� , �25�

where the asterisk denotes matrix transposition and complex
conjugation, �.� stands for the ensemble average, and H�f�
= ��k=0

m Ake
−2�ikf�−1 is the transfer function of the MVAR

model. The power spectrum of channel l is given by Sll�f�
which is the lth diagonal element of the spectral matrix S�f�.
The coherence spectrum between channel l and channel k is

Clk�f� = �Slk�f��/�Sll�f�Skk�f��1/2. �26�

The value of coherence can range from 1, indicating maxi-
mum linear interdependence between channel l and channel
k at frequency f , down to 0, indicating no linear interdepen-
IG. 2. Top: two estimated component waveforms; middle: amplitude dis-
ributions of the two components; and bottom: latency distribution of the
wo components. Taken from Ref. 6.
IG. 3. Average evoked response for the parietal channel in Fig. 1�top
ight-hand panel�. Latency vs RT for the two components. Taken from
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Do
ence. The phase of the complex quantity Slk�f� plotted as a
unction of f gives the phase spectrum.

Granger causality is a quantity for assessing the direc-
ional interdependence between channels. When a bivariate
utoregressive model is estimated for a given channel pair, k
nd l, according to the procedure described earlier, Granger
ausality spectral estimates can be computed according to
eweke’s formulation as15–17

Ik→l�f� = − ln�1 −
��kk − �lk

2 /�ll��Hlk�f��2

Sll�f�

 �27�

nd

Il→k�f� = − ln�1 −
��ll − �kl

2 /�kk��Hkl�f��2

Skk�f�

 , �28�

here �kk, �ll, �kl, and �lk are elements of the covariance
atrix for the noises in the bivariate autoregressive model on

hannels k and l, and Skk and Sll are the power spectra of
hannel k and l, respectively.

In a typical cognitive experiment the brain undergoes
apid transitions in its functional state, from anticipation to
ensation to decision making to movement execution, all
ithin 300-400 ms. This implies that the ongoing activity

ecorded during a trial may be nonstationary. The strategy we
dopt here is to assume that the data can be treated as piece-
ise stationary in intervals on the order of 50-100 ms. Com-
utation of the MVAR model in a short analysis window,
hich adapts to the temporally localized within-window dy-
amics as it is shifted along the entire trial, constitutes the
MVAR approach, yielding a finely resolved temporal pic-

ure of cortical cognitive dynamics.

. Model validation, variability assessment
nd significance testing

According to the methodology outlined previously, spec-
ral quantities such as power, coherence and Granger causal-
ty are estimated once a MVAR model has been fitted to the
ata within a given short analysis window from many trials.
t is thus critical that the MVAR model properly represents
he statistical properties of the time series data. A number of
odel validation steps were designed to ensure this. �a� A
odel order is suitably identified by the AIC criterion.14 The

tatistical results should be robust against small variations in
he model order. �b� For the MVAR model to adequately
epresent the data set, the residual error process should be
ncorrelated �white noise�. A white noise residual is a strong
wnloaded 07 Jul 2006 to 192.58.150.41. Redistribution subject to AIP
indication that the data are well represented by the MVAR
model.18 Thus, one examines whether the whiteness require-
ment is met after the model has been fit.13 �c� As a cross-
validation step we also compute spectral quantities from the
same data using other methods.19 We only proceed with the
AMVAR methodology after obtaining similar results with
these other methods.

To assess the variability of the spectral quantities derived
from the MVAR model, we use a bootstrap resampling
technique.20 It involves randomly sampling a pool of trials
with replacement from the total ensemble, and then estimat-
ing the MVAR model for this pool. Repeating this process
many times for different pools of the same size we estimate
the mean and standard deviation of any given spectral quan-
tity over the whole collection of estimated bootstrap values.
The standard deviation gives a measure of the variability of
the estimator.13

For interdependence measures such as coherence and
Granger causality, we have adopted a random permutation
technique16,17 to build a baseline for statistical significance
assessment which is similar to the shift-predictor approach
used in other applications.21 Consider two channels of re-
cordings with many repeated trials. We can reasonably as-
sume that the data from different trials are independent of
one another. Randomly pairing data for channel 1 with data
for channel 2 from a different trial leads to the creation of a
synthetic ensemble of trials. In this synthetic ensemble, no
interdependence between the two channels is expected, due
to the construction, yet the temporal structure within a chan-
nel is preserved. Performing such random pairing with many
different permutations produces a distribution of coherence
or causality spectra corresponding to the null hypothesis �i.e.,
a distribution under the condition of no statistical interdepen-
dence�. Then the distribution for a given statistic from boot-
strapping the actual data is compared with this baseline null
hypothesis distribution for the assessment of significance
levels.

C. Application to local field potential recordings

The same Nakamura dataset as that used in Sec. III is
considered here. MVAR spectral analysis is applied to the
ongoing activity. Past work has identified a set of channels in
sensorimotor cortex forming a synchronized beta oscillatory
network related to the facilitation of motor maintenance in
the period before stimulus presentation.16 Figure 4 shows the
average power, coherence and Granger causality spectra for

FIG. 4. �A� Mean power spectra aver-
aged over all recording sites, �B� mean
coherence, and �C� mean Granger cau-
sality spectra averaged over all signifi-
cant site pairs. Taken from Ref. 16.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Do
wo subjects �GE and LU�. Consistent peaks around 20 Hz
re seen in all spectral quantities, indicating that synchro-
ized beta-range oscillations are present in local neuronal
ssemblies at the recording sites, and that the oscillations
ind together the local assemblies into a large-scale sen-
orimotor network.

To further understand the functional role of each cortical
ite we plot Granger causality graphs in Fig. 5.22 The thick-
ess of the lines connecting recording sites encodes the mag-
itude of significant causality values at the peak frequency.
hree cortical areas are common to the graphs of both mon-
eys: primary motor �M1�, primary somatosensory �S1�, and
osterior parietal area 7b. Among the sites in these three
reas, Granger causal influence patterns common to both
onkeys are: �1� S1→M1, �2� S1→7b, and �3� 7b→M1.
here is an additional small influence from 7b to S1 in the
raph of one monkey. These patterns suggest the hypothesis
hat the beta oscillation network exists to support the main-
enance of steady pressure on the depressed lever. The rea-
ons are as follows. First, steady pressure maintenance is
kin to closed loop control, and as such, sensory feedback is
xpected to provide the input needed for cortical assessment
f the current state of behavior. It is well known that the
aintenance of sustained motor output is severely impaired
hen somatosensory input is lacking.23 This notion is con-

istent with our observation that primary somatosensory area
1 serves as the dominant source of causal influences to
ther areas in the network. Second, posterior parietal area 7b
s known to be involved in the control of nonvisually guided
ovement and, as a higher-order association area, it may
aintain representations relating to the current goals of the
otor system.24 This would imply that area 7b receives sen-

ory updates from area S1 and outputs correctional signals to
he motor cortex �M1�. This conceptualization is consistent
ith the causality patterns in Fig. 5. Third, previous work
as implicated beta-range oscillations as a neural correlate of
sometric pressure maintenance in the motor cortex.25,26 Our
ork demonstrates that a sensorimotor beta network exists
n a much larger scale, with postcentral areas �i.e., S1 and
b� playing a key role in organizing the network dynamics.
e emphasize that the latter conclusion is made possible by

he directional information provided by Granger causality.

. SUMMARY

Recognizing the trial-to-trial variability of event-related

IG. 5. Granger causality graphs for the beta oscillatory network in sen-
orimotor cortex of �a� the right-hand hemisphere of GE and �b� the left-
and hemisphere of LU. Adapted from Ref. 22.
esponses and the importance of ongoing activity, we pro-

wnloaded 07 Jul 2006 to 192.58.150.41. Redistribution subject to AIP
pose a VSPOA model to capture the statistical characteristic
of neurobiological time series obtained from typical cogni-
tive experiments. An algorithm based on Bayesian inference,
called differentially variable component analysis �dVCA�, is
shown to provide reliable estimates of the single-trial param-
eters in the model. Ongoing activity is better estimated by
employing the more realistic VSPOA model than the simple
SPN model. An MVAR modeling approach is adopted to
describe the temporal dynamics of ongoing activity. From
each MVAR model we derive power, coherence and Granger
causality spectra. These quantities provide the basis for un-
derstanding the role of ongoing activity in cognition and mo-
tor control. Applications to neurobiological local field poten-
tial time series recordings are used to illustrate the
effectiveness of the approach.
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