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Abstract We consider the analysis of brain networks based on multi-electrode neural
recordings. Granger causality and its spectral decomposition are used to assess the
directions of dynamic interactions. The effectiveness of the method is illustrated
by applying it to simulated data. Then multichannel local field potential recordings
from monkeys performing a visuomotor pattern recognition task are analyzed to gain
deeper understanding of the organization and functionality of large-scale oscillatory
cortical networks.

Keywords Multiple time series · Multivariate autoregressive model (MVAR) ·
Coherence · Granger causality · Local field potentials (LFPs)

1 Introduction

Networks are often defined structurally. When each node in the network is itself a
dynamical system then one can also define a functional network according to the
patterns of temporal interactions among the network nodes. Depending on the sta-
tistics applied to characterize the temporal dynamics we may or may not be able to
assess the directionality of these interactions. Traditional measures such as cross-
correlation functions in the time domain and coherence functions in the spectral do-
main yield functional networks without directions. Granger causality has emerged
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in recent years as a statistically principled way of assessing directions of dynamical
interactions. Here we review recent progress in applying this technique to analyze
brain networks based on multi-electrode neural recordings. The organization of this
paper is as follows. First, we present the analysis method with particular emphasis
on the spectral aspect of Granger causality. Second, we illustrate the effectiveness of
the method by applying it to simulated data. Third, we apply the method to analyze
multichannel local field potential recordings from monkeys performing a visuomotor
pattern discrimination task. Here our focus is on directional networks and the insights
revealed by such networks into the underlying physiological control processes.

2 Methods

There are two basic classes of methods for analyzing functional networks: parametric
and nonparametric. Here we assume that the experimental data are generated by a sto-
chastic process and employ the parametric method to extract autoregressive models
from these data.

2.1 Autoregressive models

In the parametric analysis, it is assumed that the time series can be well represented
by autoregressive processes. The theoretical autoregressive processes have infinite
model orders which in practice must be truncated to a finite order according to suit-
able statistical criteria. Here we discuss how to estimate autoregressive models from
empirical time series data with emphasis on the incorporation of multiple time se-
ries realizations into the estimation procedure (Ding et al. 2000). This consideration
is motivated by the goal of applying autoregressive modeling to neuroscience. It is
typical that in behavioral and cognitive neuroscience experiments the same event is
repeated in many successive trials. Under appropriate conditions, time series data
recorded from these repeated trials may be viewed as realizations of a common un-
derlying stochastic process.

Let Xt = [X1t ,X2t , . . . ,Xpt ]T be a p dimensional random process. Here T de-
notes matrix transposition. In multivariate neural data, p represents the total number
of recording channels. Assume that the process Xt is stationary and can be described
by the following mth order autoregressive equation

Xt + A(1)Xt−1 + · · · + A(m)Xt−m = Et , (1)

where A(i) are p × p coefficient matrices and Et = [E1t ,E2t , . . . ,Ept ]T is a zero
mean uncorrelated noise vector with covariance matrix �.

To estimate A(i) and �, we multiply (1) from the right by XT
t−k , where k =

1,2, . . . ,m. Taking expectations, we obtain the Yule-Walker equations

R(−k) + A(1)R(−k + 1) + · · · + A(m)R(−k + m) = 0, (2)

where R(n) = 〈XtXT
t+n〉 is Xt ’s covariance matrix of lag n. In deriving these equa-

tions, we have used the fact that 〈EtXT
t−k〉 = 0 as a result of Et being an uncorrelated

process.



Assessing functional connectivity with Granger causality 331

For a single realization of the X process, {xi}Ni=1, we compute the covariance ma-
trix in (2) according to

R̃(n) = 1

N − n

N−n∑

i=1

xixT
i+n. (3)

If multiple realizations of the same process are available, then we compute the above
quantity for each realization, and average across all the realizations to obtain the
final estimate of the covariance matrix. (Note that for a single short trial of data
one uses the divisor N for evaluating covariance to reduce inconsistency. Due to the
availability of multiple trials in neural applications, we have used the divisor (N −n)

in the above definition (3) to achieve an unbiased estimate.) It is quite clear that, for
a single realization, if N is small, one will not get good estimates of R(n) and hence
will not be able to obtain a good model. This problem can be overcome if a large
number of realizations of the same process is available. In this case the length of each
realization can be as short as the model order m plus 1.

Equations (1) contain a total of mp2 unknown model coefficients. In (2) there
is exactly the same number of simultaneous linear equations. One can simply solve
these equations to obtain the model coefficients. An alternative approach is to use
the Levinson, Wiggins, Robinson (LWR) algorithm, which is a more robust solution
procedure based on the ideas of maximum entropy. This algorithm was implemented
in the analysis of neural data described below. The noise covariance matrix � may
be obtained as part of the LWR algorithm. Otherwise one may obtain � through

� = R(0) +
m∑

i=1

A(i)R(i). (4)

Here we note that RT (k) = R(−k).
The above estimation procedure can be carried out for any model order m. The cor-

rect m is usually determined by minimizing the Akaike Information Criterion (AIC)
(Akaike 1974) defined as

AIC(m) = 2 log[det(�)] + 2p2m

Ntotal
(5)

where Ntotal is the total number of data points from all the trials. Plotted as a func-
tion of m the proper model order correspond to the minimum of this function. It is
often the case that for neurobiological data Ntotal is very large. Consequently, for a
reasonable range of m (say, up to 20 for a sampling rate of 200 Hz), the AIC function
does not achieve a minimum. An alternative criterion is the Bayesian Information
Criterion (BIC) (Raftery 1986, 1995), which is defined as

BIC(m) = 2 log[det(�)] + 2p2m logNtotal

Ntotal
. (6)

This criterion can compensate for the large number of data points and may perform
better in neural applications. A final step, necessary for determining whether the au-
toregressive time series model is suited for a given data set, is to check whether the
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residual noise is white. Here the residual noise is obtained by computing the differ-
ence between the model’s predicted values and the actually measured values.

Once an autoregressive model is adequately estimated, it becomes the basis for
both time domain and spectral domain causality analysis. Specifically, in the spectral
domain (1) can be written as

X(ω) = H(ω)E(ω), (7)

where

H(ω) =
(

m∑

j=0

A(j)e−iωj

)−1

(8)

is the transfer function with A(0) being the identity matrix. From (7), after proper
ensemble averaging, we obtain the spectral matrix

S(ω) = H(ω)�H∗(ω). (9)

Once we obtain the transfer function, the noise covariance, and the spectral matrix,
we can then carry out coherence and causality analysis according to the procedures
outlined in the following sections.

2.2 Coherence analysis

The coherence between two time series components Xit and Xjt is defined as

Cij (f ) = |Sij (f )|2
Sii(f )Sjj (f )

, (10)

where Sij (f ) is the (i, j )th element of the spectral matrix. The value of coherence
is normalized between 0 and 1, and it measures the degree of linear interdependence
between Xit and Xjt . If it is near 1 at certain frequency f , then the two processes
are maximally interdependent at that frequency. On the other hand, a value near 0
indicates independence of the two processes at frequency f .

2.3 Granger causality analysis

The basic idea of Granger causality can be traced back to Wiener (1956) who con-
ceived the notion that, if the prediction of one time series could be improved by
incorporating the knowledge of a second one, then the second series is said to have
a causal influence on the first. Wiener’s idea lacks the machinery for practical im-
plementation. Granger later formalized the prediction idea in the context of linear
regression models (Granger 1969). This formulation is implemented based on two
time series. For more than two time series, it can be applied in a pairwise fashion. We
refer to this approach as pairwise Granger causality in contrast to conditional Granger
causality introduced later.
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2.3.1 Bivariate time series and pairwise Granger causality: time domain measure

Consider two stochastic processes Xt and Yt . Assume that they are jointly stationary.
Individually, under fairly general conditions, each process admits an autoregressive
representation

Xt =
∞∑

j=1

a1jXt−j + ε1t , var(ε1t ) = �1. (11)

Yt =
∞∑

j=1

d1j Yt−j + η1t , var(η1t ) = �1. (12)

Jointly, they are represented as

Xt =
∞∑

j=1

a2jXt−j +
∞∑

j=1

b2j Yt−j + ε2t , (13)

Yt =
∞∑

j=1

c2jXt−j +
∞∑

j=1

d2j Yt−j + η2t , (14)

where the noise terms are uncorrelated over time and their contemporaneous covari-
ance matrix is

� =
(

�2 ϒ2
ϒ2 �2

)
. (15)

The entries are defined as �2 = var(ε2t ),�2 = var(η2t ),ϒ2 = cov(ε2t , η2t ). (It is
worth noting that the autoregressive models we use in this section are theoretical
with infinite orders. For empirical implementation, the models are finite order. We
have discussed how to estimate models from empirical data in the preceding section.)

If Xt and Yt are independent, then {b2j } and {c2j } are uniformly zero, ϒ2 = 0,
�1 = �2 and �1 = �2. This observation motivates the definition of total interdepen-
dence between Xt and Yt as

FX,Y = ln
�1�1

|�| , (16)

where | · | denotes the determinant of the enclosed matrix. According to this definition,
FX,Y = 0 when the two time series are independent, and FX,Y > 0 when they are not.

Consider (11) and (13). The value of �1 measures the accuracy of the autoregres-
sive prediction of Xt based on its previous values, whereas the value of �2 represents
the accuracy of predicting the present value of Xt based on the previous values of both
Xt and Yt . According to Wiener (1956) and Granger (1969), if �2 is less than �1 in
some suitable statistical sense, then Yt is said to have a causal influence on Xt . We
quantify this causal influence by

FY→X = ln
�1

�2
. (17)
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It is clear that FY→X = 0 when there is no causal influence from Y to X and FY→X >

0 when there is. Similarly, one can define causal influence from X to Y as

FX→Y = ln
�1

�2
. (18)

It is possible that the interdependence between Xt and Yt cannot be fully explained
by their interactions. The remaining interdependence is captured by ϒ2, the covari-
ance between ε2t and η2t . This interdependence is referred to as instantaneous causal-
ity and is characterized by

FX·Y = ln
�2�2

|�| . (19)

When ϒ2 is zero, FX·Y is also zero. When ϒ2 is not zero, FX·Y > 0.
The above definitions imply that (Geweke 1982)

FX,Y = FX→Y + FY→X + FX·Y . (20)

Thus we decompose the total interdependence between two time series Xt and Yt

into three components: two directional causal influences due to their interaction pat-
terns, and the instantaneous causality due to factors possibly exogenous to the (X,Y )

system (e.g. a common driving input).

2.3.2 Pairwise Granger causality: frequency domain formulation

To begin we define the lag operator L to be LXt = Xt−1. Rewrite (13) and (14) in
terms of the lag operator

(
a2(L) b2(L)

c2(L) d2(L)

)(
Xt

Yt

)
=

(
ε2t

η2t

)
, (21)

where a2(0) = 1, b2(0) = 0, c2(0) = 0, d2(0) = 1. Fourier transforming both sides of
(21) leads to

(
a2(ω) b2(ω)

c2(ω) d2(ω)

)(
X(ω)

Y (ω)

)
=

(
Ex(ω)

Ey(ω)

)
, (22)

where the components of the coefficient matrix A(ω) are

a2(ω) = 1 −
∞∑

j=1

a2j e
−iωj , b2(ω) = −

∞∑

j=1

b2j e
−iωj ,

c2(ω) = −
∞∑

j=1

c2j e
−iωj , d2(ω) = 1 −

∞∑

j=1

d2j e
−iωj .

Recasting (22) into the transfer function format we obtain
(

X(ω)

Y (ω)

)
=

(
Hxx(ω) Hxy(ω)

Hyx(ω) Hyy(ω)

)(
Ex(ω)

Ey(ω)

)
, (23)
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where the transfer function is H(ω) = A−1(ω) whose components are

Hxx(ω) = 1

det A
d2(ω), Hxy(ω) = − 1

det A
b2(ω),

Hyx(ω) = − 1

det A
c2(ω), Hyy(ω) = 1

det A
a2(ω). (24)

After proper ensemble averaging we have the spectral matrix

S(ω) = H(ω)�H∗(ω), (25)

where ∗ denotes complex conjugate and matrix transpose.
The spectral matrix contains cross spectra and auto spectra. If Xt and Yt are in-

dependent, then the cross spectra are zero and |S(ω)| equals the product of two auto
spectra. This observation motivates the spectral domain representation of total inter-
dependence between Xt and Yt as

fX,Y (ω) = ln
Sxx(ω)Syy(ω)

|S(ω)| , (26)

where |S(ω)| = Sxx(ω)Syy(ω)−Sxy(ω)Syx(ω) and Syx(ω) = S∗
xy(ω). It is easy to see

that this decomposition of interdependence is related to coherence by the following
relation:

fX,Y (ω) = − ln(1 − C(ω)), (27)

where coherence is defined in (10).
To obtain the frequency decomposition of the time domain causality defined in the

previous section, we look at the auto spectrum of Xt :

Sxx(ω) = Hxx(ω)�2H
∗
xx(ω) + 2ϒ2Re(Hxx(ω)H ∗

xy(ω))

+ Hxy(ω)�2H
∗
xy(ω). (28)

It is instructive to consider the case where ϒ2 = 0. In this case there is no instanta-
neous causality and the interdependence between Xt and Yt is entirely due to their
interactions through the regression terms on the right hand sides of (13) and (14). The
spectrum has two terms. The first term, viewed as the intrinsic part, involves only the
variance of ε2t , which is the noise term that drives the Xt time series. The second
term, viewed as the causal part, involves only the variance of η2t , which is the noise
term that drives Yt . This power decomposition into an “intrinsic” term and a “causal”
term will become important for defining a measure for spectral domain causality.

When ϒ2 is not zero it becomes harder to attribute the power of the Xt series to
different sources. Here we consider a transformation introduced by Geweke (1982)
that removes the cross term and makes the identification of an intrinsic power term
and a causal power term possible. The procedure is called normalization and it con-
sists of left-multiplying

P =
(

1 0
−ϒ2

�2
1

)
(29)
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on both sides of (22). The result is

(
a2(ω) b2(ω)

c3(ω) d3(ω)

)(
X(ω)

Y (ω)

)
=

(
Ex(ω)

Ẽy(ω)

)
, (30)

where c3(ω) = c2(ω) − ϒ2
�2

a2(ω), d3(ω) = d2(ω) − ϒ2
�2

b2(ω), Ẽy(ω) = Ey(ω) −
ϒ2
�2

Ex(ω). The new transfer function H̃(ω) for (30) is the inverse of the new coef-

ficient matrix Ã(ω):

H̃(ω) =
(

H̃xx(ω) H̃xy(ω)

H̃yx(ω) H̃yy(ω)

)
= 1

det Ã

(
d3(ω) −b2(ω)

−c3(ω) a2(ω)

)
. (31)

Since det Ã = det A we have

H̃xx(ω) = Hxx(ω) + ϒ2

�2
Hxy(ω), H̃xy(ω) = Hxy(ω),

H̃yx(ω) = Hyx(ω) + ϒ2

�2
Hxx(ω), H̃yy(ω) = Hyy(ω). (32)

From the construction it is easy to see that Ex and Ẽy are uncorrelated, that is,
cov(Ex, Ẽy) = 0. The variance of the noise term for the normalized Yt equation is

�̃2 = �2 − ϒ2
2

�2
. From (30), following the same steps that lead to (28), the spectrum of

Xt is found to be:

Sxx(ω) = H̃xx(ω)�2H̃
∗
xx(ω) + Hxy(ω)�̃2H

∗
xy(ω). (33)

Here the first term is interpreted as the intrinsic power and the second term as the
causal power of Xt due to Yt . This is an important relation because it explicitly iden-
tifies that portion of the total power of Xt at frequency ω that is contributed by Yt .
Based on this interpretation we define the causal influence from Yt to Xt at frequency
ω as

fY→X(ω) = ln
Sxx(ω)

H̃xx(ω)�2H̃ ∗
xx(ω)

. (34)

Note that this definition of causal influence is expressed in terms of the intrinsic power
rather than the causal power. It is expressed in this way so that the causal influence is
zero when the causal power is zero (i.e., the intrinsic power equals the total power),
and increases as the causal power increases (i.e., the intrinsic power decreases).

By taking the transformation matrix as
( 1 −ϒ2/�2

0 1

)
and performing the same analy-

sis, we get the causal influence from Xt to Yt :

fX→Y (ω) = ln
Syy(ω)

Ĥyy(ω)�2Ĥ ∗
yy(ω)

, (35)

where Ĥyy(ω) = Hyy(ω) + ϒ2

�2
Hyx(ω).
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By defining the spectral decomposition of instantaneous causality as (Gourierous
and Monfort 1997)

fX·Y (ω) = ln
(H̃xx(ω)�2H̃

∗
xx(ω))(Ĥyy(ω)�2Ĥ

∗
yy(ω))

|S(ω)| , (36)

we achieve a spectral domain expression for the total interdependence that is analo-
gous to (20) in the time domain, namely:

fX,Y (ω) = fX→Y (ω) + fY→X(ω) + fX·Y (ω). (37)

We caution that the spectral instantaneous causality may become negative for some
frequencies in certain situations and may not have a readily interpretable physical
meaning.

It is important to note that, under general conditions, these spectral measures relate
to the time domain measures as (Geweke 1982):

FY,X = 1

2π

∫ π

−π

fY,X(ω)dω,

FY→X = 1

2π

∫ π

−π

fY→X(ω)dω,

FX→Y = 1

2π

∫ π

−π

fX→Y (ω)dω,

FY ·X = 1

2π

∫ π

−π

fY ·X(ω)dω. (38)

The existence of these equalities gives credence to the spectral decomposition proce-
dures described above.

2.3.3 Trivariate time series and conditional Granger causality: time domain
formulation

For three or more time series one can perform a pairwise analysis and thus reduce
the problem to a bivariate problem. This approach has some inherent limitations. For
example, for the two coupling schemes in Fig. 1(a), a pairwise analysis will give
the same patterns of connectivity like that in Fig. 1(b). Another example involves

Fig. 1 Two distinct patterns of
connectivity among three time
series. A pairwise causality
analysis cannot distinguish these
two patterns
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three processes where one process drives the other two with differential time delays.
A pairwise analysis would indicate a causal influence from the process that receives
an early input to the process that receives a later input. To disambiguate these sit-
uations requires additional measures. Here we define conditional Granger causality
which has the ability to resolve whether the interaction between two time series is di-
rect or is mediated by another recorded time series and whether the causal influence
is simply due to differential time delays in their respective driving inputs.

Consider three stochastic processes Xt , Yt and Zt . Suppose that a pairwise analy-
sis reveals a causal influence from Yt to Xt . To examine whether this influence has a
direct component (Fig. 1(b)) or is mediated entirely by Zt (Fig. 1(a)) we carry out the
following procedure. First, let the joint autoregressive representation of Xt and Zt be

Xt =
∞∑

j=1

a3jXt−j +
∞∑

j=1

b3jZt−j + ε3t , (39)

Zt =
∞∑

j=1

c3jXt−j +
∞∑

j=1

d3jZt−j + γ3t , (40)

where the covariance matrix of the noise terms is

�3 =
(

�3 ϒ3
ϒ3 �3

)
. (41)

Next we consider the joint autoregressive representation of all three processes Xt , Yt

and Zt

Xt =
∞∑

j=1

a4jXt−j +
∞∑

j=1

b4jYt−j +
∞∑

j=1

c4jZt−j + ε4t , (42)

Yt =
∞∑

j=1

d4jXt−j +
∞∑

j=1

e4j Yt−j +
∞∑

j=1

g4jZt−j + η4t , (43)

Zt =
∞∑

j=1

u4jXt−j +
∞∑

j=1

v4j Yt−j +
∞∑

j=1

w4jZt−j + γ4t , (44)

where the covariance matrix of the noise terms is

�4 =
⎛

⎝
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

⎞

⎠ .

From these two sets of equations we define the Granger causality from Yt to Xt

conditional on Zt to be

FY→X|Z = ln
�3

�xx

. (45)
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The intuitive meaning of this definition is quite clear. When the causal influence from
Yt to Xt is entirely mediated by Zt (Fig. 1(a)), {b4j } is uniformly zero, and �xx = �3.
Thus, we have FY→X|Z = 0, meaning that no further improvement in the prediction
of Xt can be expected by including past measurements of Yt . On the other hand,
when there is still a direct component from Yt to Xt (Fig. 1(b)), the inclusion of past
measurements of Yt in addition to that of Xt and Zt results in better predictions of
Xt , leading to �xx < �3, and FY→X|Z > 0.

2.3.4 Conditional Granger causality: frequency domain formulation

To derive the spectral decomposition of the time domain conditional Granger causal-
ity we carry out a normalization procedure like that for the bivariate case. For (39)
and (40) the normalized equations are

(
D11(L) D12(L)

D21(L) D22(L)

)(
xt

zt

)
=

(
x∗
t

z∗
t

)
, (46)

where D11(0) = 1,D22(0) = 1,D12(0) = 0, cov(x∗
t , z∗

t ) = 0, and D21(0) is generally
not zero. We note that var(x∗

t ) = �3 and this becomes useful in what follows.
For (42), (43) and (44) the normalization process involves left-multiplying both

sides by the matrix

P = P2 · P1

where

P1 =
⎛

⎜⎝
1 0 0

−�yx�
−1
xx 1 0

−�zx�
−1
xx 0 1

⎞

⎟⎠ ,

and

P2 =
⎛

⎝
1 0 0
0 1 0
0 −(�zy − �zx�

−1
xx �xy)(�yy − �yx�

−1
xx �xy)

−1 1

⎞

⎠ .

We denote the normalized equations as

⎛

⎝
B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)

⎞

⎠

⎛

⎝
xt

yt

zt

⎞

⎠ =
⎛

⎝
εxt

εyt

εzt

⎞

⎠ , (47)

where the noise terms are independent, and their respective variances are �̂xx , �̂yy

and �̂zz.
To proceed further we need the following important relation (Geweke 1984)

FY→X|Z = FYZ∗→X∗ (48)
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and its frequency domain counterpart:

fY→X|Z(ω) = fYZ∗→X∗(ω). (49)

To obtain fYZ∗→X∗(ω), we need to decompose the spectrum of X∗. The Fourier trans-
form of (46) and (47) gives:

(
X(ω)

Z(ω)

)
=

(
Gxx(ω) Gxz(ω)

Gzx(ω) Gzz(ω)

)(
X∗(ω)

Z∗(ω)

)
, (50)

and
⎛

⎝
X(ω)

Y (ω)

Z(ω)

⎞

⎠ =
⎛

⎝
Hxx(ω) Hxy(ω) Hxz(ω)

Hyx(ω) Hyy(ω) Hyz(ω)

Hzx(ω) Hzy(ω) Hzz(ω)

⎞

⎠

⎛

⎝
Ex(ω)

Ey(ω)

Ez(ω)

⎞

⎠ . (51)

Assuming that X(ω) and Z(ω) from (50) can be equated with that from (51), we
combine (50) and (51) to yield,

⎛

⎝
X∗(ω)

Y (ω)

Z∗(ω)

⎞

⎠ =
⎛

⎝
Gxx(ω) 0 Gxz(ω)

0 1 0
Gzx(ω) 0 Gzz(ω)

⎞

⎠
−1⎛

⎝
Hxx(ω) Hxy(ω) Hxz(ω)

Hyx(ω) Hyy(ω) Hyz(ω)

Hzx(ω) Hzy(ω) Hzz(ω)

⎞

⎠

⎛

⎝
Ex(ω)

Ey(ω)

Ez(ω)

⎞

⎠

=
⎛

⎝
Qxx(ω) Qxy(ω) Qxz(ω)

Qyx(ω) Qyy(ω) Qyz(ω)

Qzx(ω) Qzy(ω) Qzz(ω)

⎞

⎠

⎛

⎝
Ex(ω)

Ey(ω)

Ez(ω)

⎞

⎠ , (52)

where Q(ω) = G−1(ω)H(ω). After suitable ensemble averaging, the spectral matrix
can be obtained from which the power spectrum of X∗ is found to be

Sx∗x∗(ω) = Qxx(ω)�̂xxQ
∗
xx(ω) + Qxy(ω)�̂yyQ

∗
xy(ω) + Qxz(ω)�̂zzQ

∗
xz(ω). (53)

The first term can be thought of as the intrinsic power and the remaining two terms as
the combined causal influences from Y and Z∗. This interpretation leads immediately
to the definition

fYZ∗→X∗(ω) = ln
|Sx∗x∗(ω)|

|Qxx(ω)�̂xxQ∗
xx(ω)| . (54)

We note that Sx∗x∗(ω) is actually the variance of ε3t as pointed out earlier. On the
basis of the relation in (49), the final expression for Granger causality from Yt to Xt

conditional on Zt is

fY→X|Z(ω) = ln
�3

|Qxx(ω)�̂xxQ∗
xx(ω)| . (55)

It can be shown that fY→X|Z(ω) relates to the time domain measure FY→X|Z via

FY→X|Z = 1

2π

∫ π

−π

fY→X|Z(ω)dω,

under general conditions (Geweke 1984).



Assessing functional connectivity with Granger causality 341

The above derivation is made possible by the key assumption that X(ω) and
Z(ω) in (50) and in (51) are identical. This certainly holds true on purely theoret-
ical grounds, and it may very well be true for simple mathematical systems. For
actual physical data, however, this condition may be very hard to satisfy due to prac-
tical estimation errors. In a recent paper we developed a partition matrix technique to
overcome this problem (Chen et al. 2008, in press). The subsequent calculations of
conditional Granger causality are based on this partition matrix procedure.

3 Numerical examples

In this section we consider three examples that illustrate various aspects of the general
approach outlined above. Although the time in each model has arbitrary units, for
concreteness one may think that each time step corresponds to 5 ms. In other words,
the sampling rate is 200 Hz, and thus the Nyquist frequency is 100 Hz.

3.1 Example 1

Consider the following AR(2) model:

x(t) = 0.9x(t − 1) − 0.5x(t − 2) + ε(t),

y(t) = 0.8y(t − 1) − 0.5y(t − 2) + 0.16x(t − 1) − 0.2x(t − 2) + η(t),
(56)

where ε(t), η(t) are Gaussian white noise processes with zero means and variances
σ 2

1 = 1, σ 2
2 = 0.7, respectively. The covariance between ε(t) and η(t) is 0.4. From

the construction of the model, we can see that Xt has a causal influence on Yt and
that there is also instantaneous causality between Xt and Yt .

We simulated (56) to generate a data set of 500 realizations of 100 time points
each. Assuming no knowledge of (56) we fitted a MVAR model on the generated
data set and calculated power, coherence and Granger causality spectra. The result is
shown in Fig. 2. The interdependence spectrum is computed according to (27) and the
total causality is defined as the sum of directional causalities and the instantaneous
causality. The result clearly recovers the pattern of connectivity in (56). It also illus-
trates that the interdependence spectrum, as computed according to (27), is almost
identical to the total causality spectrum as defined on the right hand side of (37).

3.2 Example 2

Here we consider two models. The first consists of three time series simulating the
case shown in Fig. 1(a), in which the causal influence from Yt to Xt is indirect and
completely mediated by Zt :

x(t) = 0.8x(t − 1) − 0.5x(t − 2) + 0.4z(t − 1) + ε(t),

y(t) = 0.9y(t − 1) − 0.8y(t − 2) + ξ(t),

z(t) = 0.5z(t − 1) − 0.2z(t − 2) + 0.5y(t − 1) + η(t).

(57)
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Fig. 2 Simulation results for an
AR(2) model consisting of two
coupled time series. Power
(black for x, gray for y) spectra,
interdependence spectrum
(related to the coherence
spectrum), and Granger
causality spectra are displayed.
Note that the total causality
spectrum, representing the sum
of directional causalities and the
instantaneous causality, is nearly
identical to the interdependence
spectrum. The horizontal axis is
frequency in the unit of Hz

The second model creates a situation corresponding to Fig. 1(b), containing both
direct and indirect causal influences from Yt to Xt . This is achieved by using the
same system as in (57), but with an additional term in the first equation:

x(t) = 0.8x(t − 1) − 0.5x(t − 2) + 0.4z(t − 1) + 0.2y(t − 2) + ε(t),

y(t) = 0.9y(t − 1) − 0.8y(t − 2) + ξ(t),

z(t) = 0.5z(t − 1) − 0.2z(t − 2) + 0.5y(t − 1) + η(t).

(58)

For both models ε(t), ξ(t), η(t) are three independent Gaussian white noise processes
with zero means and variances of σ 2

1 = 0.3, σ 2
2 = 1, σ 2

3 = 0.2, respectively.
Each model was simulated to generate a data set of 500 realizations of 100 time

points each. First, pairwise Granger causality analysis was performed on the sim-
ulated data set of each model. The results are shown in Fig. 3(a), with the dashed
curves showing the results for the first model and the solid curves for the second
model. From these plots it is clear that pairwise analysis cannot differentiate the two
coupling schemes. This problem occurs because the indirect causal influence from
Yt to Xt that depends completely on Zt in the first model cannot be clearly distin-
guished from the direct influence from Yt to Xt in the second model. Next, condi-
tional Granger causality analysis was performed on both simulated data sets. The
Granger causality spectra from Yt to Xt conditional on Zt are shown in Fig. 3(b),
with the second model’s result shown as the solid curve and the first model’s result as
the dashed curve. Clearly, the causal influence from Yt to Xt that was prominent in
the pairwise analysis of the first model in Fig. 3(a), is no longer present in Fig. 3(b).
Thus, by correctly determining that there is no direct causal influence from Yt to Xt in
the first model, the conditional Granger causality analysis provides an unambiguous
dissociation of the coupling schemes represented by the two models.

3.3 Example 3

We simulated a 5-node oscillatory network structurally connected with different de-
lays. This example has been analyzed with partial directed coherence and directed
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Fig. 3 Simulation results for
three coupled time series. Two
distinct patterns of connectivity
as that illustrated in Fig. 1 are
considered. Results for the case
with a direct causal influence are
shown as solid curves and the
results for the case with indirect
causal influence are shown as
dashed curves. (a) Pairwise
Granger causality analysis gives
very similar results for both
cases which indicates that the
pairwise analysis cannot
differentiate these two patterns
of connectivity. (b) Conditional
causality analysis shows a
nonzero spectrum (solid) for the
direct case and almost zero
spectrum (dashed) for the
indirect case

transfer function methods in (Baccala and Sameshima 2001). The network involves
the following multivariate autoregressive model

x1(t) = 0.95
√

2x1(t − 1) − 0.9025x1(t − 2) + ε1(t),

x2(t) = 0.5x1(t − 2) + ε2(t),

x3(t) = −0.4x1(t − 3) + ε3(t),

x4(t) = −0.5x1(t − 2) + 0.25
√

2x4(t − 1) + 0.25
√

2x5(t − 1) + ε4(t),

x5(t − 1) = −0.25
√

2x4(t − 1) + 0.25
√

2x5(t − 1) + ε5(t),

(59)

where ε1(t), ε2(t), ε3(t), ε4(t), ε5(t) are independent Gaussian white noise processes
with zero means and variances of σ 2

1 = 0.6, σ 2
2 = 0.5, σ 2

3 = 0.3, σ 2
4 = 0.3, σ 2

5 = 0.6,
respectively. The structure of the network is illustrated in Fig. 4(a).
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Fig. 4 Simulation results for a five-node network structurally connected with different time delays.
(a) Schematic illustration of the system. (b) Calculated power spectra are shown in the diagonal panels,
results of pairwise (solid) and conditional Granger causality analysis (dashed) are in off-diagonal panels.
Granger causal influence is from the horizontal index to the vertical index. Features of Granger causality
spectra (both pairwise and conditional) are consistent with that of power spectra. The horizontal axis is
frequency in the unit of Hz

We simulated the network model to generate a data set of 500 realizations each
with 10 time points. Assuming no knowledge of the model, we fitted a 5th order
MVAR model on the generated data set and performed power spectra, coherence and
Granger causality analysis on the fitted model. The results of power spectra are given
in the diagonal panels of Fig. 4(b). It is clearly seen that all five oscillators have
a spectral peak at around 25 Hz and the fifth has some additional high frequency
activity as well. The results of pairwise Granger causality spectra are shown in the
off-diagonal panels of Fig. 4(b) (solid curves). Compared to the network diagram in
Fig. 4(a) we can see that pairwise analysis yields connections that include both direct
and indirect causal influences. We further performed a conditional Granger causality
analysis in which the direct causal influence between any two nodes are examined
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while the influences from the other three nodes are conditioned out. The results are
shown in dashed curves in Fig. 4(b). For many pairs the dashed curves and solid
curves coincide (e.g. 1 → 2). For other pairs the dashed curves becomes zero indi-
cating that the solid curve results reflect either indirect causal influence (e.g. node 1
and node 4) or differential time delays (e.g. node 2 and node 4). These results show
that conditional Granger causality furnishes a more precise network connectivity di-
agram that matches the known structural connectivity. One noteworthy feature about
Fig. 4(b) is the consistency of spectral features (e.g. peak frequency) across both
power and Granger causality spectra. This is important since it allows us to link local
dynamics with that of the network.

4 Analysis of a beta oscillation network in sensorimotor cortex

A number of studies have appeared in the neuroscience literature where the issue
of causal effects in neural data is examined (Chen et al. 2008, in press; Baccala and
Sameshima 2001; Freiwald et al. 1999; Bernasconi and Konig 1999; Bernasconi et
al. 2000; Kaminski et al. 2001; Goebel et al. 2003; Hesse et al. 2003; Brovelli et al.
2004). Three of these studies (Bernasconi and Konig 1999; Bernasconi et al. 2000;
Brovelli et al. 2004) used the measures presented in this article. Below we review one
study published by our group (Chen et al. 2008, in press; Brovelli et al. 2004).

Local field potential data were recorded from two macaque monkeys using
transcortical bipolar electrodes at 15 distributed sites in multiple cortical areas of
one hemisphere (right hemisphere in monkey GE and left hemisphere in monkey
LU) while the monkeys performed a GO/NO-GO visual pattern discrimination task
(Bressler et al. 1993). The prestimulus stage began when the monkey depressed a
hand lever while monitoring a display screen. This was followed from 0.5 to 1.25 sec
later by the appearance of a visual stimulus (a four-dot pattern) on the screen. The
monkey made a GO response (releasing the lever) or a NO-GO response (maintaining
lever depression) depending on the stimulus category and the session contingency.
The entire trial lasted about 500 ms, during which the local field potentials were
recorded at a sampling rate of 200 Hz.

Previous studies have shown that synchronized beta-frequency (15–30 Hz) oscil-
lations in the primary motor cortex are involved in maintaining steady contractions of
contralateral arm and hand muscles. Relatively little is known, however, about the role
of postcentral cortical areas in motor maintenance and their patterns of interaction
with motor cortex. Making use of the simultaneous recordings from distributed corti-
cal sites we investigated the interdependency relations of beta-synchronized neuronal
assemblies in pre- and postcentral areas in the prestimulus time period. Using power
and coherence spectral analysis, we first identified a beta-synchronized large-scale
network linking pre- and postcentral areas. We then used Granger causality spectra to
measure directional influences among recording sites, ascertaining that the dominant
causal influences occurred in the same part of the beta frequency range as indicated by
the power and coherence analysis. The patterns of significant beta-frequency Granger
causality are summarized in the schematic Granger causality graphs shown in Fig. 5.
These patterns reveal that, for both monkeys, strong Granger causal influences oc-
curred from the primary somatosensory cortex (S1) to both the primary motor cortex
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Fig. 5 Granger causality graphs
for monkey GE (a) and monkey
LU (b) by pairwise analysis

(M1) and inferior posterior parietal cortex (7a and 7b), with the latter areas also
exerting Granger causal influences on the primary motor cortex. Granger causal in-
fluences from the motor cortex to postcentral areas, however, were not observed.1

Our results are the first to demonstrate in awake monkeys that synchronized beta
oscillations not only bind multiple sensorimotor areas into a large-scale network dur-
ing motor maintenance behavior, but also carry Granger causal influences from pri-
mary somatosensory and inferior posterior parietal cortices to motor cortex. Further-
more, the Granger causality graphs in Fig. 4 provide a basis for fruitful speculation
about the functional role of each cortical area in the sensorimotor network. First,
steady pressure maintenance is akin to a closed loop control problem and as such,
sensory feedback is expected to provide critical input needed for cortical assessment
of the current state of the behavior. This notion is consistent with our observation
that primary somatosensory area (S1) serves as the dominant source of causal influ-
ences to other areas in the network. Second, posterior parietal area 7b is known to
be involved in nonvisually guided movement. As a higher-order association area it
may maintain representations relating to the current goals of the motor system. This
would imply that area 7b receives sensory updates from area S1 and outputs correc-
tional signals to the motor cortex (M1). This conceptualization is consistent with the
causality patterns in Fig. 5. As mentioned earlier, previous work has identified beta
range oscillations in the motor cortex as an important neural correlate of pressure
maintenance behavior. The main contribution of our work is to demonstrate that the
beta network exists on a much larger scale and that postcentral areas play a key role
in organizing the dynamics of the cortical network. The latter conclusion is made
possible by the directional information provided by Granger causality analysis.

Since the above analysis was pairwise, it had the disadvantage of not distinguish-
ing between direct and indirect causal influences. In particular, in monkey GE, the
possibility existed that the causal influence from area S1 to inferior posterior parietal

1A more stringent significance threshold was applied here which resulted in elimination of several very
small causal influences that were included in the previous report.
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Fig. 6 Comparison of pairwise
and conditional Granger
causality spectra for monkey GE
(a and b), and monkey LU (c).
The indirect causal influence
from S1 to 7a and the direct
causal influence from S1 to M1,
which are revealed by the
conditional Granger causality
analysis, are consistent with the
anatomical axon projections

area 7a was actually mediated by inferior posterior parietal area 7b (Fig. 5(a)). We
used conditional Granger causality to test the hypothesis that the S1 → 7a influence
was mediated by area 7b. In Fig. 6(a) is presented the pairwise Granger causality
spectrum from S1 to 7a (S1 → 7a, light solid curve), showing significant causal
influence in the beta frequency range. Superimposed in Fig. 6(a) is the conditional
Granger causality spectrum for the same pair, but with area 7b taken into account
(S1 → 7a|7b, dark solid curve). The corresponding 99% significance thresholds are
also presented (light and dark dashed lines coincide). These significance thresholds
were determined using a permutation procedure that involved creating 500 permuta-
tions of the local field potential data set by random rearrangement of the trial order
independently for each channel (site). Since the test was performed separately for
each frequency, a correction was necessary for the multiple comparisons over the
whole range of frequencies. The Bonferroni correction could not be employed be-
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Fig. 6 (Continued)

cause these multiple comparisons were not independent. An alternative strategy was
employed following Blair and Karniski (1993). The Granger causality spectrum was
computed for each permutation, and then the maximum causality value over the fre-
quency range was identified. After 500 permutation steps, a distribution of maximum
causality values was created. Choosing a p-value at p = 0.01 for this distribution
gave the thresholds shown in Fig. 6(a), (b) and (c) as dashed lines.

We see from Fig. 6(a) that the conditional Granger causality is greatly reduced in
the beta frequency range and no longer significant, meaning that the causal influence
from S1 to 7a is most likely an indirect effect mediated by 7b. This conclusion is
consistent with the known neuroanatomy of the sensorimotor cortex (Felleman and
Essen 1991) in which area 7a receives direct projections from area 7b which in turn
receives direct projections from the primary somatosensory cortex. No pathway is
known to project directly from the primary somatosensory cortex to area 7a.

From Fig. 5(a) we see that the possibility also existed that the causal influence
from S1 to the primary motor cortex (M1) in monkey GE was mediated by area 7b.
To test this possibility, the Granger causality spectrum from S1 to M1 (S1 → M1,
light solid curve in Fig. 6(b)) was compared with the conditional Granger causality
spectrum with 7b taken into account (S1 → M1|7b, dark solid curve in Fig. 6(b)).
In contrast to Fig. 6(a), we see that the beta-frequency conditional Granger causality
in Fig. 6(b) is only partially reduced, and remains well above the 99% significance
level. From Fig. 5(b), we see that the same possibility existed in monkey LU of the
S1 to M1 causal influence being mediated by 7b. However, just as in Fig. 6(b), we
see in Fig. 6(c) that the beta-frequency conditional Granger causality for monkey LU
is only partially reduced, and remains well above the 99% significance level.

The results from both monkeys thus indicate that the observed Granger causal
influence from the primary somatosensory cortex to the primary motor cortex was not
simply an indirect effect mediated by area 7b. However, we further found that area 7b

did play a role in mediating the S1 to M1 causal influence in both monkeys. This was
determined by comparing the means of bootstrap re-sampled distributions of the peak
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beta Granger causality values from the spectra of S1 → M1 and S1 → M1|7b by the
Student’s t-test. The significant reduction of beta-frequency Granger causality when
area 7b is taken into account (t = 17.2 for GE; t = 18.2 for LU, p � 0.001 for both),
indicates that the influence from the primary somatosensory to primary motor area
was partially mediated by area 7b. Such an influence is consistent with the known
neuroanatomy (Felleman and Essen 1991) where the primary somatosensory area
projects directly to both the motor cortex and area 7b, and area 7b projects directly
to primary motor cortex.
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