1. Course ID
 Neural Time Series Analysis; ISC 5930; 3 credit hours

2. Course Prerequisites
 systems neuroscience

3. Course Logistics
 Term: Spring 2017
 Course Web Site: http://www.ccs.fau.edu/~bressler/EDU/NTSA/NTSA.html
 Location; time: FL 426; W 04:00PM-06:50PM

4. Instructor Contact Information:
 Dr. Steven Bressler
 Office: BS 304
 Phone: 7-2227
 Email: bressler@fau.edu
 Office Hours: W 03:00PM-04:00PM

5. No TA

6. Course Description
 This course is intended to give the student a strong understanding of the neural
 basis of electrocortical data such as the EEG, MEG, etc., of the principles and
 concepts necessary to record such data, and

7. Course Objectives
 The student is expected to gain a working understanding of the genesis of
 electrocortical data, of the principles and concepts necessary to record such data,
 and advanced methods for its analysis.

8. Course Evaluation Method
 Performance in the course is evaluated by the total course score, which is
determined as a weighted sum of 3 components: midterm exam (40%); final exam
(40%); attendance & participation (20%).

9. Course Grading Scale
 The final letter grade in the course is derived from the total course score
according to the following scale:
 A 92-100
 A- 89-91
 B+ 86-88
 B 83-85
 B- 79-82
 C+ 75-78
 C 70-74
 C- 65-69
10. Reasonable Accommodation Statement for Makeups
 Reasonable accommodation will be made for students participating in a religious
 observance or in University-approved activities, including athletic or scholastics
 teams, musical and theatrical performances and debate activities.

11. Out-of-Classroom Requirements
 This course involves 50 minutes of in-classroom instruction for each credit hour
 per week, and a minimum of two hours of out-of-classroom assignments each
 week for 15 weeks. To master the material covered in this course it is
 expected that the student will spend a minimum of two hours per week per credit
 hour on the out-of-classroom assignments.

12. Classroom Etiquette Policy
 Students are expected to show respect to all other students and to the instructor at
 all times. Students who do not adhere to this policy will be asked to leave the
 classroom so as not to disturb the other students.

13. Disability Policy Statement
 In compliance with the Americans with Disabilities Act (ADA), students who
 require special accommodation due to a disability to properly execute coursework
 must register with the Office of Students with Disabilities (OSD) – in Boca Raton,
 SU 133 (561-297-3880); in Davie MOD 1 (954-236-1222); in Jupiter, SR 117
 (561-799-8585); or at the Treasure Coast, CO 128 (772-873-3305) – and follow
 all OSD procedures.

 Students at Florida Atlantic University are expected to maintain the highest
 ethical standards. Academic dishonesty is considered a serious breach of these
 ethical standards, because it interferes with the university mission to provide a
 high quality education in which no student enjoys an unfair advantage over any
 other. Academic dishonesty is also destructive of the university community,
 which is grounded in a system of mutual trust and places high value on personal
 integrity and individual responsibility. Harsh penalties are associated with
 academic dishonesty. For more information, see University regulation 4.001 at

15. Required Text
 None

16. Supplementary Readings
 The list of supplementary readings is found at:
 http://www.ecs.fau.edu/~bressler/EDU/NTSA/Readings.htm
17. Course Topical Outline

Jan 11 Neural Generators & The Model Neuron
Jan 18 Electrical Generation & EEG Genesis
Jan 25 Time Series Data Acquisition
Feb 1 Time Series & Random Processes
Feb 8 Signal Estimation
Feb 15 Covariance Analysis
Feb 22 Spectral Analysis
Mar 1 Midterm Exam (4:00pm)
Mar 8 Spring Break – No Class
Mar 15 Power Spectra & Bandwidth-Limited Time Series
Mar 22 Spectral Leakage
Mar 29 Power Spectral Estimation
Apr 5 Cross Spectral Analysis
Apr 12 Digital Filtering & Linear Modeling
Apr 19 MVAR Spectral Analysis
May 3 Final Exam (4:00pm)