Neurobiological Signal Processing

ISC 6466 (84634 & 84741)

Fall 2008

Class Web Site: http://www.ccs.fau.edu/~bressler/EDU/NSP/NSP.html

 

Assignments:

 

 

Aug 27

Neural Generators, The Model Neuron, Electrical Generation, Genesis of the EEG

Module I

Freeman WJ. Mass Action in the Nervous System, Chapter 1.

Module II

Freeman WJ. Mass Action in the Nervous System, Chapter 1.

Module III

Freeman WJ. Mass Action in the Nervous System, Chapter 4.

Module IV

Elul R. The Genesis of the EEG. International Review of Neurobiology, 15:227-272 (1972).

 

Speckmann E-J, Elger CE. Neurophysiological Basis of the EEG and of DC Potentials. In: Niedermeyer E, Lopes da Silva FH (eds.) Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Urban & Schwarzenberg, Baltimore-Munich, pp. 1-13 (1982).

 

Lopes da Silva F, Van Rotterdam A. Biophysical Aspects of EEG and MEG Generation. In: Niedermeyer E, Lopes da Silva F (eds.), Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Urban & Schwarzenberg, Baltimore-Munich, pp. 15-26 (1982).

 

Gloor P. Neuronal Generators and the Problem of Localization in Electroencephalography: Application of Volume Conductor Theory to Electroencephalography. Journal of Clinical Neurophysiology, 2(4):327-354 (1985).

 

Extra Reading:

Electromagnetic Field Definitions, courtesy of HPPLC at Indiana University.

 

Mitzdorf U. Current Source-Density Method and Application in Cat Cerebral Cortex: Investigation of Evoked Potentials and EEG Phenomena. Physiological Reviews, 65(1):37- 100 (1985).

 

Plonsey R, Fleming DG. Volume-conductor Fields. In: Bioelectric Phenomena. McGraw-Hill, New York, pp. 202-275 (1969).

 

Sep 3

Temporal Characteristics of the EEG, Data Acquisition

Module V

Niedermeyer E. The Normal EEG of the Waking Adult. In: Niedermeyer E, Lopes da Silva FH (eds.), Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Lippincott Williams & Wilkins, Baltimore, pp. 149-173 (1999).

Module VI

Glaser EM, Ruchkin DS. Principles of Neurobiological Signal Analysis (1976).

Analog-To-Digital Conversion

 

Sep 10

Time Series and Random Processes

Module VII

Glaser EM, Ruchkin DS. Principles of Neurobiological Signal Analysis (1976).

Biological Time Series

 

Matousek M. (ed.) Frequency and Correlation Analysis, Part A. In:  Brazier MAB, Walter DO (eds.), Evaluation of Bioelectrical Data from Brain, Nerve, and Muscle, II, Volume 5. In: Remond A (ed.) Handbook of Electroencephalography and Clinical Neurophysiology. Elsevier, Amsterdam (1973).

Section II.C. Random Processes (G. Dumermuth). 

 

Otnes RK, Enochson L. Applied Time Series Analysis. Volume I: Basic Techniques (1978).

Van Etten WC. Introduction to Random Signals and Noise. Wiley, New York (2005).

Chapter 1: Introduction

 

Sep 17

Signal Estimation

Module VIII

Glaser EM, Ruchkin DS. Principles of Neurobiological Signal Analysis (1976).

Evoked Potentials: Averaging

 

Sep 24

Covariance Analysis

Module IX

Matousek M. (ed.) Frequency and Correlation Analysis, Part A. In:  Brazier MAB, Walter DO (eds.), Evaluation of Bioelectrical Data from Brain, Nerve, and Muscle, II, Volume 5. In: Remond A (ed.) Handbook of Electroencephalography and Clinical Neurophysiology. Elsevier, Amsterdam (1973).

Section V. Autocorrelation and Crosscorrelation Analysis (J.S. Barlow)

 

Oct 1

Covariance Analysis (continued)

 

Oct 8

Spectral Analysis

Module X

Complex2Real Tutorials

   Fourier Analysis Made Easy - Part 1

   Fourier Analysis Made Easy - Part 2

   Fourier Analysis Made Easy - Part 3

Fourier Transform Concepts

 

Oct 15

MIDTERM EXAM

 

Oct 22

Power Spectra

Module XI

 

Oct 29

Bandwidth Limited Time Series

Module XII

 

Nov 5

Leakage

Module XIII

 

Nov 12

Power Spectral Estimation

Module XIV

 

Nov 19

Power Spectral Estimation (continued)

 

Nov 26

Cross Spectral Analysis

Module XV

 

Dec 3

Digital Filtering

Module XVI

 

Dec 4

Reading Day

Dec 5

FINAL EXAM (10:30AM -1:00PM)