1. **Coulomb's Law** - electrostatic force between two charges
 \[F = \frac{kq_1q_2}{r^2} \]

2. **Electric Field** - force experienced by **positive** test charge \(q_0 \)
 \[E = \frac{F}{q_0} \]
 a. Force on charge in electric field:
 \[F = qE \]
 b. Direction of field lines (tangent to curve) indicates direction of force experienced by positive test charge.
 c. **Number** of field lines in given area indicates **intensity** of field.
 d. **Field lines begin on +, end on -**

3. **Flux** – number of field lines passing through given area.
 \[\Phi_E = E \cdot A \]
 \[\Phi_B = B \cdot A \]
 (\(A \) is a vector perpendicular to surface.)
ELECTRIC FIELD AND POTENTIAL

4. Electric Potential

\[V = \frac{U}{q_0} \quad \text{(joule/coulomb = volt)} \]

\[\Delta V = \frac{\Delta U}{q_0} \]

a. A **potential difference** means that a **charge will lose or gain** a certain amount of **potential energy** as it goes from spot to another.

b. For a test charge moving in the field of a **point charge**, its potential is

\[V_{pt\ chg} = \frac{kq}{r} \]

c. **Equipotential lines** - contours of equal potential. Field will be perpendicular to these lines.

PROBLEM 1
1. **Capacitors**- device for storing charge; capacity depends on geometry, materials

\[C = \frac{Q}{V} \] (coulomb/volt = farad)

a. Combinations of capacitors

- **Series** \[\frac{1}{C_{eq}} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \ldots \right) \]
- **Parallel** \[C_{eq} = C_1 + C_2 + \ldots \]

b. Energy is stored in capacitors:

\[U = \frac{1}{2} CV^2 \]

c. The capacitance of a capacitor can be changed by inserting a material between the plates which has a high dielectric constant (\(\kappa \)).

\[C' = \kappa C \]

(\(\kappa \) of vacuum is 1, for air ~ 1)

2. **Resistors**- objects that resist flow of charge in circuit

\[R = \frac{V}{i} \] (for elements that obey Ohm's law)

a. Combinations of resistors

- **Series** \[R_{eq} = R_1 + R_2 + \ldots \]
- **Parallel** \[\frac{1}{R_{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \ldots \right) \]

b. **Power dissipated** in resistors: \[P = i^2R = VI = \frac{V^2}{R} \]
2. **Resistors** (continued)
 c. **Resistivity** - inherent property of materials

 \[R = \rho L / A \]
 (water analogy)

3. **Batteries** - supply **emf (electromotive force)** to circuit; somehow they "pump up" the energy of charges so that they are capable of making a round trip through the circuit

 a. Supplies power at rate \(P = \varepsilon i \)

 b. Often has **internal resistance** \(r \) to be considered.

 c. emfs are **added if in series**

4. **DC Circuits**

 a. **Current** \(i = \Delta q / \Delta t \) (ampere - 1 coulomb/s)

 1) **junction rule**
 sum of currents = sum of currents out

 2) **conventional current** is flow of **positive** charge carriers

 3) **current density**

 \[J=i/A \]
4. DC Circuits (continued)

b. Ohm's Law

\[V = IR \quad \text{or} \quad E = \rho J \]

(does not work for all materials)
Resistance increases with increasing temperature

c. Loop rule - sum of potential differences must sum to zero

1) go with current - lose potential
2) go from - to + on emf source, increase potential

d. RC circuits show time-dependent behavior:

\[i = \frac{\varepsilon}{R} \, e^{-t/RC} = i_0 \, e^{-t/RC} \quad \text{(discharging capacitor)} \]

What fraction of the original current remains after one time constant has passed? Could you draw the curve?

5. AC Circuits

a. The voltage varies

\[\varepsilon = \varepsilon_0 \sin(\omega t) \]
5. **AC Circuits** (continued)

b. The current can be calculated using the emf and the impedance (Z)

\[i = \frac{\varepsilon}{Z} \]

(the current will also have a sinusoidal behavior)

c. Since the direction of current varies, \(i^2 \) is averaged in order to average power:

\[P_{av} = i^2_{\text{rms}}R \]

Average power is 1/2 maximum power
(because average of \(\sin^2 \theta \) is \(\frac{1}{2} \)

PROBLEM 3
MAGNETIC FIELDS

1. Magnetic fields are created by moving charges. They can also exert a force on moving charges:

\[F = q \, v \times B \]

right hand rule
fingers point along \(v \), curl toward \(B \); thumb points along \(F \)

a. The force always acts \(\perp \) to \(v \) and \(B \)
b. mks unit of magnetic field is the **Tesla**
\[
1 \text{ tesla (T)} = 10000 \text{ Gauss (Ga)}
\]

2. Because of the nature of the force, **B never increases the speed** of charges, only **changes their direction**.

3. **Currents** also feel a force in a magnetic field

\[F = i \, L \times B \]

4. Right hand rules

a. magnetic field of a current carrying wire
 thumb - \(i \); fingers – \(B \)

b. magnetic field of a current loop or solenoid
 fingers - \(i \); thumb - \(B \)
MAGNETIC FIELDS

5. Magnetic field lines do not have beginning/ending points; they are loops.
 a. Bar magnets do have a north and south pole.
 b. Field lines run externally from north to south, internally from south to north.

6. Electromagnetic Induction - a changing magnetic field can induce an emf

PROBLEM 2