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Recent studies have shown that frontoparietal cortices and
interconnecting regions in the basal ganglia and the
cerebellum are related to motor skill learning. We propose that
motor skill learning occurs independently and in different
coordinates in two sets of loop circuits: cortex–basal ganglia
and cortex–cerebellum. This architecture accounts for the
seemingly diverse features of motor learning. 
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Abbreviations
BG basal ganglia
CB cerebellum
DA dopamine
M1 primary motor cortex
preSMA presupplementary motor area
SEF supplementary eye field
SMA supplementary motor area

Introduction
Neuroscience has evolved from the study of simple 
behaviors to examinations of complex behaviors. In particular,
we are beginning to learn more about complex motor
behaviors. We are usually unaware of how intricately our
tongue moves during conversation and how elaborate our
finger movements are during typing. Such awesome but
implicit complexities had discouraged scientific approaches
to skilled behaviors until recently. 

A major breakthrough occurred when human imaging
studies were developed. Recent imaging studies have
addressed complex motor learning in human subjects.
Their remarkable results have promoted neural theories of
motor learning and have also renewed interest in studies 
of motor control on animal subjects. 

In this review, we integrate diverse data obtained recently
on the motor control of complex behaviors and provide a
common ground for researchers working on motor skill
learning. Due to space limitations, we leave out several
important topics in motor learning, including visuomotor

associations, sensorimotor adaptations, cellular mechanisms
of neural plasticity, and motor learning in birds.

Multiple neural mechanisms for motor
skill learning
A complex motor skill is often composed of a fixed
sequence of movements [1,2]. It has been suggested that
the supplementary motor area (SMA) plays an important
role in sequential movements [3]. By training monkeys to
perform different movements in specific orders, Shima and
Tanji [4•] found that many neurons in the SMA become
active specifically at particular transitions, not in response
to particular movements. Neurons in the presupplementary
motor area (preSMA), a cortical area anterior to the SMA,
may be active specifically at certain rank orders in a
sequence. On the basis of these results, Tanji proposed
that the SMA and the preSMA work together to produce
sequential movements correctly [5••].

How are such motor sequences acquired in the brain? To
address this question, Hikosaka et al. [6] devised a sequential
button press task, called the 2×5 task, in which the subject
(either monkey or human) learned to press buttons in the
correct order, by trial and error. This task enables the testing
of an infinite number of different sequences and the effect
of well-learned motor skills simultaneously on the same
subject. Using this task, Nakamura et al. showed that the
preSMA, rather than the SMA, is crucial for learning new
sequences. Many neurons in the preSMA were activated
during learning of new sequences, but not during the 
performance of learned sequences [7]. Furthermore, func-
tional blockade of the preSMA led to selective deficits in
learning new sequences [8]. The anterior cingulate cortex,
ventral to the preSMA, may also contribute new sequence
learning [9•]. As well as higher premotor areas, the primary
motor cortex (M1) has been implicated in motor learning.
Functional [10•,11•] and structural [12] changes occur in
M1 during simple motor learning.

Consistent with these observations, functional neuroimaging
studies on human subjects revealed that motor skill 
learning is associated with activation of many brain areas in
the frontoparietal cortices. Researchers have begun asking
how these areas contribute to motor learning. By applying
the 2×5 task to human subjects (in a 2×10 version), Sakai
et al. [13] demonstrated learning-related transition of acti-
vation from frontal to parietal areas. By using functional
magnetic resonance imaging, they showed that the dorso-
lateral prefrontal cortex and the preSMA were activated
during early stages of learning, whereas more parietal areas
— the intraparietal sulcus and the precuneus — were acti-
vated at later stages. Toni et al. [14] and Petersen et al. [15]
also reported dynamic changes in human cortical activation
during motor learning. Furthermore, a change in motor
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effector (finger versus arm) affects activation of sensorimotor
cortex, but not parietal cortex [16]. Awareness of perfor-
mance — explicit learning — is correlated with activation
of the prefrontal cortex and preSMA, but not sensorimotor
cortex [17]. 

Related behavioral studies also suggest that different brain
areas control different aspects of motor learning. With
practice, accuracy of performance was acquired earlier than
speed of performance [6]. Accuracy was effector-unspecific,
in the early learning stage, whereas the speed was 
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Scheme of motor skill learning. We propose that motor skill learning
operates as the interaction of two orthogonal connections: intracortical
serial connections (horizontal arrows) and cortico–BG/cortico–CB
loop circuits (vertical arrows). A sequence of movements is
represented in two ways —spatial sequence and motor sequence.
The left side of the figure is characteristic of the spatial sequence, the
right side is characteristic of the motor sequence. The frontoparietal
cortices form loop circuits with the associative region of the BG and
CB, whereas the motor cortices form loop circuits with the motor
region of the BG and CB. At the beginning of learning, movements are
executed individually through the spatiomotor conversion process
(horizontal connections). After learning, the movement sequence is
represented by at least two networks in different coordinates: a spatial
sequence supported by the parietal–prefrontal cortical loops and a
motor sequence supported by the motor cortical loops (vertical
connections). Spatial sequences are effector-unspecific (unless coding
of space is effector-centered), are usually processed explicitly and
therefore quickly acquired (as they may be accompanied by spatial
attention or working memory), but require maximum attention. Motor
sequences are effector-specific (as different effectors may perform
different sequences), are usually processed implicitly and therefore
slowly acquired, but require minimum attention. Performance on the

basis of the spatial sequence mechanism is accurate in space but slow
(as its output must be converted to motor coordinates). Performance
on the basis of the motor sequence mechanism is quick. Long-term
retention of a motor skill is supported mainly by the motor sequence
mechanism so that its speed is maintained even without awareness.
Signals from the frontoparietal cortices and the motor cortices are 
sent to different functional divisions of the BG and CB (vertical
arrows). In the BG, the signals are evaluated for their reward or
likelihood values; in the CB, they are evaluated for their sensorimotor
or timing errors (gray lines). Hence, the performance of the spatial 
and motor sequence mechanisms can be optimized independently.
Note that the scheme may fail to account for the following kinds or
aspects of motor learning. First, non-sequential motor skills:
sequencing may not be important for some motor skills such as
adaptation in a force field [59] and arbitrary visuomotor associations
[60]. Second, non-spatial sequences: learning can occur for a
sequence of objects or colors, for which the preSMA [61], but not the
dorsolateral prefrontal cortex [62], is recruited. Third, abstract rules:
learning can transfer to another sequence that shares the same 
global structure, not elements [63,64]. Fourth, temporal sequences:
timing errors may be encoded in the cerebellar posterior lobe [38•], 
an important area for future research.



effector-specific [18,19•,20•]. Learning occurred independently
for the kinematics — the spatial reference — of movements
and for the dynamics — the load bearing — of movements
[21]. The motor skill, once established, was maintained 
for a long time, mainly in the form of speed [6]. For a more
extensive review on behavioral studies of motor skill 
learning, the reader is referred to Willingham [2], in which
important concepts are described.

These results suggest that motor skill learning may be the
integrative product of multiple neural mechanisms, each
contributing to a different aspect of learning. How, then,
do different neural mechanisms interact with each other to
acquire and store motor skills efficiently? The basal ganglia
and the cerebellum may play crucial roles. 

Learning is optimized by the basal ganglia and
the cerebellum
In addition to human functional imaging studies [22,23],
several lines of evidence suggest that both the basal 
ganglia (BG) and the cerebellum (CB) are involved in
motor sequence learning. Several studies implicate the
BG. Activity of monkey caudate neurons is related to 
spatial sequence [24]. Dopamine depletion disrupts skilful 
performance of sequential movements [25]. Population
activity of striatal neurons changes with long-term motor
learning [26]. Reversible blockade of the anterior striatum
(associative region) leads to deficits in learning new
sequences, and blockade of the posterior striatum (motor
region) leads to disruptions in the execution of learned
sequences [27].

The CB also seems necessary for motor skill learning.
Cerebellar blockade disrupts learning of complex goal-
directed behaviors [28]. Cerebellar lesions impair motor
sequence learning, but not conditional visuomotor learning
or spatial working memory [29]. In contrast, blockade of
the dorsal part of the dentate nucleus (which is connected
with M1) does not affect learning new sequences, but 
disrupts the performance of learned sequences [30]. 
Long-term memories for motor skills may be stored in 
the CB [31•]. The conclusions of these studies seem 
inconsistent but may reflect anatomical and functional 
differentiation in the CB between motor and associative
regions [32•]. 

What then is unique about the BG or the CB, compared
with the cerebral cortex? Doya [33••] proposed that learn-
ing in the BG and the CB is guided by error signals, unlike
in the cerebral cortex. This error signal may be mediated
by midbrain dopamine (DA) neurons in the BG and by
climbing fibers in the CB. DA neurons encode reward
expectation error [34] and/or novelty [35], whereas climb-
ing fibers encode sensorimotor error signals [36], which
possibly include a timing error [37•,38•] (Figure 1). In the
BG, cortical signals are integrated with reward error 
signals carried by DA neurons in striatal projection 
neurons: visual and memory responses of caudate neurons

were strongly modulated by reward expectation [39]. In
the CB, cortical signals and sensorimotor error signals 
carried by the climbing fibers are integrated in Purkinje
cells [40]. These signals would, at least partly, be relayed
back to the cerebral cortex.

Thus, signals originating from the cerebral cortex are 
optimized in terms of their reward value and sensorimotor
accuracy, by going through the BG and cerebellar loop 
circuits, respectively. This feedback is likely to be a 
critical process for motor skill learning. 

Rules, concepts, and models for motor learning
Having reviewed the literature on motor skill learning, we
are struck by the diversity of brain structures and 
mechanisms that are supposedly responsible for motor skill
learning. To understand the nature and mechanisms of
motor skill learning, it is necessary to integrate such diversity
of information into schemes or models [2,33••,41–45]. To
make such attempts realistic, the concepts of coordinate
transformation and loop circuits must be incorporated. For
simple reaching to a visual target, for example, the target
position is first coded in spatial coordinates — for example,
centered around the eye, head or object — and then 
converted to motor coordinates — for example, joint
angles or muscle forces. This coordinate transformation
process may roughly correspond to the intracortical 
connections from the association cortices to the motor 
cortices [46•,47,48•] (horizontal connections in Figure 1).
The frontoparietal cortices and the motor cortices form
loop circuits with different regions in the BG and the
CB (vertical connections in Figure 1) [49,50••,51].

The scheme shown in Figure 1 was derived from the
above considerations [52,53]. According to this model, a
motor sequence is learned by two sets of cortex–BG and
cortex–CB loop circuits independently, but in different
coordinates — spatial and motor. The scheme successfully
accounts for various lines of experimental observations,
including coordinate transformation, hand transfer, awareness,
and attentional cost. 

Nakahara et al. [54••] elaborated this scheme by 
formulating a neural network model and successfully 
replicated various experimental results of the 2´5 task in a
unified manner. One problem foreseen with this neural
network was that the spatial and motor mechanisms might
produce different results because they work independently.
Such ‘between network error’, which is inherent to any
parallel network model, was solved in this model by a kind
of conflict monitor, corresponding to the preSMA. The
proposed architecture turned out to be robust. Even if one
of the spatial or motor mechanisms was destroyed, the
other mechanism could still learn the sequence, though
not perfectly [54••]. Once a sequence is implemented as
a motor sequence, the spatial sequence mechanism can
work on other sequences so that eventually many
sequences can be learned. 
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Conclusions and future directions
Motor skills emerge from our experience, not from 
knowledge, as they easily escape our consciousness.
Naturally, we acquire many motor skills and execute them
without awareness. Such ever-changing and hidden prop-
erties of motor skills have impeded analytical approaches.
The discovery of synaptic plasticity in single neurons was
revolutionary, but was far from sufficient to explain motor
skills. Recent integrative and multidisciplinary approaches
have begun to suggest that essential features of motor
skills reside in dynamic interactions between multiple
neural networks. Such networks are composed of loop 
circuits formed by the frontoparietal cortices, the BG, and
the CB. These circuits acquire the same motor sequence
in different coordinates, at diverse speeds, with varying
robustness, and with different levels of attention and
awareness. Their operation is likely optimized by learning
mechanisms, each unique to the BG and CB. Such dynamic
interactions of neural networks would thus create the
emergent and ever-changing properties of motor skills. 

However, such integrative approaches have just started and
modeling attempts of motor learning mechanisms have 
created more questions. Let us raise one important issue:
timing. At the most advanced stage of a motor skill, move-
ments of different body parts are accurately coordinated in
time [55•]. A key structure for such a timing function might
be the CB [37•,38•,56]. Related to timing is a phenomenon
called ‘chunking’ [57] or ‘rhythm’ [58]. After practice, a
long sequence of movements is often grouped into a series
of chunks [1]. From these chunks may emerge the hierarchical
organization of learned behavior.

Update
Lu et al. [66••] have recently found that many neurons in the
supplementary eye field (SEF) were active in specific
learned sequences of saccadic eye movements. These data,
together with the preceding data on the SMA and preSMA,
suggest that the medial frontal cortex represents learned
sequences of eye–hand movements. They further suggest
that the relationship between the eye and hand mechanisms
is flexible, being either independent or well-coordinated,
depending on the context or the level of practice.
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