INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMt fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Statistical Analysis of

Dynamic Interdependence Patterns in the Cortex

by
Wilson A. Truccolo-Filho

A Dissertation Submitted to the Faculty of the
Charles E. Schmidt College of Science
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Florida Atlantic University
Boca Raton, Florida
December 2001



UMI Number: 3029070

®

UMI

UMI Microform 3029070

Copyright 2002 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howeli Information and Leaming Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Statistical Analysis of
Dynamic Interdependence Patterns in the Cortex

by
Wilson A. Truccolo-Filho

This dissertation was prepared under the direction of the candidate’s dissertation advisors,
Dr. Mingzhou Ding and Dr. Steven L. Bressler, Program in Complex Systems and Brain
Sciences, and has been approved by the members of his supervisory committee. It was
submitted to the faculty of The Charles E. Schmidt College of Science and was accepted

in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

SUPERVISORY CO

Dissertation Ad;risor 4

Dissertation Advisor

hairperson,“Program in Complex Systems
and Brain Sciences .

cod Nt

Dean, Charles E. Schmidt College of Science

Nt 1. bear 113 /o1

Dean of Graduate Studies and Research Date

ii



Acknowledgements

In the spring (South Hemisphere) of 1995 I was fortunate to read an exciting book
titled Dynamic Patterns: the Self-Organization of Brain and Behavior. That happened in a
time I had already been looking at several US universities for a Ph.D. training program
focused on the application of dynamical system theory to the study of brain function. I
had received a doctoral fellowship from the Brazilian government and decided then to
apply to the program in Complex Systems and Brain Sciences, at Florida Atlantic
University.

My heartiest thanks go to Scott Kelso and Betty Tuller, facuity, staff members and
students of the Center for Complex System and Brain Sciences for the invaluable
opportunity of studying and working here in the past five years.

In my research work and in the preparation of this dissertation I have counted with
the collaboration of several people, in special: my advisors Dr. Mingzhou Ding and Dr.
Steven Bressler, members of the dissertation committee Dr. Viktor Jirsa and Dr. Dawei
Dong, and research collaborators Dr. Kevin Knuth, Dr. Govindan Rangarajan and Dr.
Maciek Kaminski. Also, I am thankful to the Brazilian Research Council, CNPq, for
funding my first four years here and to friends in Brazil who introduced me to this field of
research: Lea Fagundes, Marcus Basso, Waldemar Paim and Elton Ferlin.

My especial thanks go to Mingzhou, Steve, Dawei and Gautam, with whom I had
the privilege of innumerous moving and inspiring discussions.

I dedicate this work to the ones I have missed the most: Wilson, Nelcy, Cristiane,
Eliane, Juliane, William, Ricardo, Augusto, Artenio, Deroni, and in memory of Susana

Klock.

1ii



Author:

Title:

Institution:

Dissertation Advisors:

Degree:

Year:

This dissertation is an investigation of the sources of commonly observed event-
related transients in statistical measures of interdependence: variance, cross-correlation,
power spectrum density and coherence spectrum density time functions. These measures

are often employed in the analysis of spatio-temporal interdependence patterns in neural

activity.

In order to understand the phenomenon, the origins of the variability of event-
related responses are revisited. The time series of single trial cortical event-related
- potentials typically have a random appearance, and their trial-to-trial variability is
commonly explained by the classic signal-plus-noise model, in which random ongoing
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we demonstrate that more realistic models, challenging both the linear superposition and
the trial-to-trial stationarity of the event-related responses, can account for such event-
related transients. In particular, two effects are considered: the nonlinear gain modulation
in neural networks coupled through sigmoid functions and the trial-to-trial variability in
amplitude and latency of the event phase-locked responses. An extensive analysis and
characterization of both effects in interdependence measures is carried out through both
analytical and numerical simulations in Chapter 2. Chapter 3 presents the outcome of
testing the predicted effects on LFP data recorded from implanted intracortical electrodes
in monkeys performing a visuo-motor pattern discrimination task. Overall, the results
point to a large contribution of the trial-to-trial variability of event phase-locked
responses on the observed event-related transient in statistical interdependence measures.
Because variability of the event-related responses is commonly ignored, event-related
modulations in power spectral density, cross-correlation, and spectral coherence are often
attributed to dynamic changes in functional connectivity within and among neural
populations. It becomes then crucial the separation or removal of the trial-to-trial
amplitude and latency variability effect from the statistical measures. In order to achieve
this goal, the reconstruction of the single trial event phase-locked potentials is required. In
Chapter 4, we approach this problem from a Bayesian inference perspective. The
posterior probability densify is derived for a specified number of event phase-locked
components using data from single or multiple sensors. The Maximum A Posteriori

solution is used to obtain the phase-locked component waveforms and their single trial



parameters. The outcome is a further and definitive support for predominance of the

effect of the nonstationarity of the phase-locked responses on the statistical quantities.
Based on the theoretical and experimental analysis conducted in Chapters 2,3 and

4, a framework for the statistical analysis of dynamic spatio-temporal interdependence

patterns in Local Field Potential data is articulated.
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Chapter 1

Introduction

1.1 Spatio-Temporal Interdependence Patterns in the Cortex

A primary goal in neural data analysis is to describe how coordinated actions of
neurons evolve in time conditioned on different behavioral events. Such coordinated
action can be expressed both in terms of (spatial) interdependence patterns among
neurons and in terms of (temporal) interdcpe_ndence patterns in their current and past
activities.

This goal is motivated in part by the fact that a number of cerebral cortical
functions are thought to involve transient task-dependent changes in the functional

interdependence of neurons in the same and/or different cortical areas. Examples include



perceptual binding and segmentation (Gray, 1999; von der Malsburg, 1994), multimodal
integration (Bressler, 1995; Bressler, 1996; Damasio, 1989a; Damasio, 1989b; Sporms,
Tononi, & Edelman, 1994; Tononi, Sporns, & Edelman, 1992), selective attention (Fries,
Reynolds, Rorie, & Desimone, 2001; Olshausen, Anderson, & Van Essen, 1993),
compositional representation (Bienenstock, Geman, & Potter, 1997), recognition
(Hopfield & Brody, 2001), and coordination dynamics (Kelso, 1995). Also, theories of
optimal coding in sensory systems invoke dynamic changes in the spatio-temporal
properties of the neural activity in order to achieve optimal transmission of relevant
information (Attick, 1992; Dong & Atick, 1995; Olshausen & Field, 1996; Truccolo &
Dong, 2001).

Generally, evidence for such changes purportedly comes from stimulus- or task-
related modulation of statistical interdependence measures, such as cross-correlation or
spectral coherence, that are derived from various types of cortical recordings. In addition,
changes in the level of interaction within a neuronal population are inferred from
temporal modulation of the power spectral density of population signals such as the local
field potential (LFP) or electroencephalogram (EEG) (Fries, Reynolds, Rorie, &
Desimone, 2001; Kalcher & Pfurtscheller, 1995; Pfurtscheller & Lopes da Silva, 1999).
Indeed, recent studies have provided evidence for the event-related modulation of all
these statistical measures in a number of different experimental preparations. Event-
related modulations in cross-correlation and spectral coherence have been usually
understood in terms of event-related changes in coupling strength between neuronal

components, leading subsequently to changes in the level of synchrony of neuronal pulse



activity. Fast transient changes in functional connectivity of the underlying neural
circuitry (i.e. changes in synaptic efficacy and/or effective connectivity occurring on time
scales of ~ 100 ms) are often pointed out as the sources of such events (Aertsen, Erb, &
Palm, 1994; Aertsen, Gerstein, Habib, & Palm, 1989; Buchel & Friston, 1997; Chawla,
Rees, & Friston, 1999; Gray, Konig, Engel, & Singer, 1989; Rodriguez, et al., 1999;
Srinivasan, Russell, Edelman, & Tononi, 1999; Tallon-Baudry, Bertrand, Delpuech, &
Pemier, 1997; Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998).

This dissertation has evolved as the result of the attempt to understand the origin
of these transient modulations in this particular type of experimental paradigm: the event-
related potentials recordings. Figure 1-1 shows an illustrative example of this
phenomenon.

In order to understand the difficulties involved, we need to reconsider the long-
standing question of how to model the cortical potentials that follow presentation of a
sensory stimulus. At least since the time of Dawson (Dawson, 1954), the most common
model of the post-stimulus cortical potential postulates that a recorded single trial
potential is the linear combination of an invariant stimulus phase-locked evoked
component (signal) and an ongoing background noise component. The evoked response
component is treated as being time-invariant since any changes over trials in its
amplitude, latency onset, or waveform are considered to be negligible. The usual method
of measuring this component is to repeatedly present the same sensory stimulus and then
average the post-stimulus potentials across an ensemble of trials (ensemble average).

Averaging is presumed to decrease the size of the noise component, while leaving the
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Figure 1-1: Event-related transient modulation of spectral coherence time functions.
Examples from two pairs of cortical sites: striate (str3) and pre-frontal sites (top plot) and
parietal sites (bottom plot). LFPs were recorded intracortically from a monkey performing
a GO-NOGO visuo-motor pattern discrimination task. Stimulus onset is at time zero and
coherence plots are computed for the GO-trials and a particular visual pattern. Notice that
shortly after 100 ms, there is a transient increase in the 12 Hz coherence in both pairs.
The parietal pair is even more interesting since there is a switch from coherence around
22 Hz to 12 Hz just after the initial sensory activation. After the event-related response is
over, the 22 Hz coherence returns. The green line is the estimated mean time for the GO-
NOGO decision and the red line gives the mean reaction time for the GO trials.



signal component unchanged, thereby enhancing the signal-to-noise ratio. Since
averaging is time-locked to a particular event onset, the result is called the average event-
related potential (AERP). From this still widely accepted conceptualization (McGillem &
Aunon, 1987), henceforth referred to as the signal-plus-noise (SPN) model, it follows
that: (1) all the variability in single trial recordings is due to the independent ongoing
noise component; (2) the AERP asymptotically approaches the true invariant evoked
response as the number of trials involved in the averaging increases; and, most
importantly, (3) when the AERP is subtracted from single trial recordings, the resulting
residual time series do not contain significant event-related information. Rigorous
acceptance of the SPN model assumptions would imply that no event-related modulation
should be observed in statistical measures that are, by definition, computed on the
residual time series, i.e. on time series from which the average event-related potential
(AERP) has been removed. An example of a single trial residual time series is given in
Figure 1-2. These measures include cross-correlation, spectral coherence and power
spectrum density time functions. However, as pointed out above, there is abundant
experimental evidence that event-related modulation does occur, suggesting that the SPN
model is significantly violated in its main principles: (1) the ongoing activity can be
event-related as a consequence of, for example, nonlinear interactions between the
evoked response and the ongoing activity, and/or (2) the evoked response may vary from
trial to trial. In this dissertation we explore both cases.

First, in the case of accepting nonlinear interactions of the stimulus evoked

response and ongoing activity, the ongoing component could modulate the stimulus-
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Figure 1-2: Single trial residual time series. The statistical measures of interdependence
are computed on the ensemble mean subtracted time series. In the top plot, a single trial
LFP time series recorded intracortically from a striate site in a monkey performing a GO-
NOGO visuo-motor pattern discrimination task. The ensemble average or AERP is shown
in red. In the bottom plot, the resulting residual time series after the AERP subtraction.
Stimulus onset is at time zero.



evoked response, and vice versa. A simple illustration is provided in the following
scenario. Dynamical models of neuronal population activity relate the field potential and
pulse density (the number of spikes per unit volume) by a nonlinear sigmoid function
(Eeckman & Freeman, 1991a; Freeman, 1975). A resulting property of networks of such
populations is the dynamic modulation of gain and effective connectivity by the
network’s mean activity level. This modulation can affect both the local population
properties and the interactions among local populations. Transient changes in the
population’s mean level of activity, like that produced by stimulus-evoked responses, can
change the gain of the population’s output sigmoid function, resulting in amplification or
attenuation of its ongoing activity. This effect can be measured by transient changes in the
time course of the ensemble variance time function and in power spectrum density time
functions of the residual time series. Such changes are likely to be observed over a range
of frequencies, especially if the pre-stimulus activity is broadband. Also, as the gain level
of the output sigmoid function of a population changes, its effective connectivity with
other populations may also be modulated, leading to possible changes in the level of
synchrony between the neuronal population activities. In this way, the residual time series
from two interacting populations can exhibit event-related modulation of their statistical
interdependence, as measured by fast transients in the time course of cross-correlation
and coherence time functions. This mechanism will henceforth be referred to as the
nonlinear gain modulation effect. Other nonlinear mechanisms, based on the effect of the

background level of activity and evoked transients on effective connectivity (Aertsen,

Erb, & Palm, 1994; Aertsen, Gerstein, Habib, & Palm, 1989; Chawla, Lumer, & Friston,



1999; Chawla, Lumer, & Friston, 2000; Friston, 2000) are similar in spirit. Besides being
a natural consequence in models of sigmoidally coupled neuronal populations, the effect
has potential functional relevance: slow spatio-temporal patterns of activity (say in the
alpha range) could determine the mean level of activity and subsequently soft-wire the
connectivity between neural components. The result would be a mechanism for dynamic
functional connectivity at either broad or specific frequency bands (say gamma band).
Changes in intrinsic parameter regulating the frequency characteristics of neuronal
populations could also lead either to resonance or to decoupling between the populations
(Baird & Eeckman, 1993; Hoppensteadt & Izhikevich, 1999; Izhikevich, 1999),
producing similar event-related modulations in interdependence measures.

Second, a concurrent, but not exclusive, explanation resorts to the possibility of
nonstationarity of the event-related responses and its consequences. Even though
stationarity is usually assumed as a pre-condition, we argue that in practice it might be
unattainable in most of the experimental designs involving behaving animals. Temporal
modulation of power and interdependence measures may result from trial-to-trial
nonstationarity of the cortical evoked response. Trial-to-trial variability in amplitude,
latency and waveform of the evoked response constitute manifestations of this
nonstationarity (Coppola, Tabor, & Buchsbaum, 1978; Lange, Pratt, & Inbar, 1997;
Mocks, Gasser, Tuan, & Kohler, 1987; Pham, Mocks, Kohler, & Gasser, 1987). We will
demonstrate that trial-to-trial variability in the amplitude and latency of evoked local field
potentials, can, in the appropriate context, lead to temporal modulation of the

aforementioned statistical measures, producing effects that could resemble either transient



synchronization or, alternatively, transient desynchronization events. Consequently, inter-
trial variability of the evoked response may appear as intra-trial stimulus- or task-related
modulation of intrinsic parameters in the neural system. To overlook this possibility, as is
commonly done, may result in the erroneous interpretation of trial-to-trial nonstationarity
as intra-trial task-related changes in functional connectivity. For the purpose of this work
we focus on the consequences of relaxing the SPN model’s assumption of invariant
amplitude and latency of the phase-locked event-related responses over trials. The
alternative model, henceforth referred to as the Variable Signal Plus ongoing Noise
activity (VSPN) model, asserts that the stimulus-triggered response has a stereotyped
waveform with variable amplitude and latency onset across trials. According to the VSPN
model, after subtracting out the AERP, the single trial residual time series contain two
components: (1) a stimulus phase-locked component resulting from the trial-to-trial
amplitude and latency variability; and (2) an ongoing noise component. Because the
VSPN model includes a residual stimulus phase-locked component, it differs from the
SPN mode! in its prediction conceming the post-stimulus modulation of power spectral
density and statistical interdependence time functions. In the SPN model, the residuals
remaining after AERP subtraction consist only of event-independent noise. Therefore, it
predicts that the ensemble variance will be constant for all post-stimulus times. By
contrast, the VSPN model predicts that the ensemble variance time function will of
necessity be nonstationary, with its time course modulated according to the AERP
waveform. Since the AERP is often oscillatory with clear characteristic frequencies, the

phase-locked component remaining in the residuals will contribute to the power spectral



density time function at these frequencies. Consequently, the power spectral density of
the LFP or EEG time series, after subtraction of the AERP, and computed as a function of
time in a sliding short window, can nonetheless be modulated according to the AERP
waveform. Moreover, the ratio of the variance of the residual stimulus phase-locked
component to the variance of the ongoing component may change in time according to
the AERP profile, especially if the time dependence of the variance of the ongoing
component is weak. This means that if the residual time series from two recording
channels co-vary, the time function of measures of those channels’ statistical
interdependence will also be modulated accordingly to the AERP profile. We refer to this
type of modulatory effect on any such statistical measure as the time-dependent signal-to-
noise ratio effect, where the signal refers again to remnants of the stimulus phase-locked
components in the residual time series. The existence of phase-locked components in the
residual leads to a second contrast between the two models, which will be important to
assert the source of the variability in the event-related phase locked components.
Specifically, the VSPN model predicts that peaks in the single trial stimulus-locked
component will be either larger or smaller than the average, resulting, after AERP
subtraction, in the peaks of the phase-locked component in the single trial residual time
series having either positive or negative polarity. If the latency variability is negligible,
then the phases of the Fourier components, at frequencies corresponding to the main
characteristic frequencies of the AERP, are predicted to have a bimodal distribution. This
again is in contrast with the SPN model, which predicts a flat phase distribution since the

residuals are considered to originate only from the independent ongoing activity.
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Given the postulation of these two possible explanations of the origins of fast
transient event-related modulation of interdependence measures, the objectives of this

dissertation are threefold:

(1) Provide a detailed analysis and characterization of the effects of nonlinear gain
modulation effect (in models of sigmoidally coupled neurons) and of the trial-to-trial
variability of the event phase-locked responses on measures of statistical
interdependence: variance, cross-correlation, power and coherence spectrum density time
functions.

(2) Test the existence of the derived effects in (1) on a local field potential data
set.

(3) Provide a statistical framework able to isolate the contribution of the trial-to-
trial variability of the phase-locked components to the statistical measures of

interdependences.

To address the three objectives above, the dissertation is organized as follows. A
detailed analysis and characterization of the nonlinear gain modulation and trial-to-trial
variability is carried out through both analytical and numerical simulations in Chapter 2.
The effects from each factor on the single channel quantities, variance and power time
functions, and for the phase distribution are derived first. Then, the predictions for time

functions of statistical interdependence measures (cross-correlation and coherence) are
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presented, with the nonlinear gain and signal-to-noise ratio effects illustrated using
simulated time series. Chapter 3 presents the outcome of testing these predictions on LFP
data recorded from implanted intracortical electrodes in monkeys performing a visuo-
motor pattern discrimination task (Bressler et al. 1993). Overall, the results point to a
large contribution of the signal-to-noise ratio effect on the observed event-related
transient in statistical interdependence measures. It becomes then crucial the separation or
removal of the trial-to-trial amplitude and latency variability effect from the statistical
measures. In order to achieve this goal, the reconstruction of the single trial event-related
phase locked potentials is considered. If one is able to reconstruct such potentials, then
the ensemble average of the aforementioned statistical measures, when calculated on the
new residual time series after removing the event-related phase-locked potentials on a
trial by trial basis, will exhibit no time behavior that is characteristically related to the
trial-to-trial nonstationarity of the responses. In Chapter 4 and based on the VSPN model,
we apply a Bayesian inference procedure to estimate the single trial evoked responses in
the LFP data set, which gives further and definitive support for predominance of the
signal-to-noise ratio effect on the statistical quantities. The single trial based procedure
again points to the importance of identifying the sources of nonstationary variance in LFP
data. The discussion and general conclusions are presented in Chapter 5. For the sake of
completeness, a thorough stability and bifurcation analysis of the neuronal population
model used in the investigation of the nonlinear gain effect is given in the appendix

section. The stability analysis is in itself of interest since it provides original and
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significant results on the coupling constraints for the stability of both symmetrically and
asymmetrically coupled neural networks of arbitrary size.

Based on the results to be further detailed in the next Chapters, we conclude this
chapter with a brief exposition of an initial framework for the analysis of dynamic spatio-

temporal interdependence patterns in local field potential data.

1.2 Framework for the Statistical Analysis of Dynamic Interdependence
Patterns

1.2.1 Probabilistic Models

Ideally, we would like to obtain the joint probability of relevant brain states and
how it evolves in time conditioned on specific events. The notion of state variables for a
stochastic system can intuitively be expressec. as the set of variables carrying the minimal
amount of information about the past history which is sufficient, given transition rules, to
uniquely determine their joint probability at future times, conditioned again on specified
events. Although the terms random variables and stochastic process are going to be used,
the use of “probabilities” has its epistemological ground on the Bayesian approach, where
probability represents a degree of belief that a proposition is true (Jaynes, 1994).

Given the difficulties in this task, an initial and more feasible goal is to start with
the description of the conditional joint probability:

p(Y@®), Y@ -1),...,¥(t—T)|Event), (LD
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where ¥(1) =[y, (), l//z(t),...,l/IM(t)]T represents the relevant brain states at time' ¢,
measured from a set of T time samples {¥(t),¥(—-1),...,¥(z—T-1)} relative to the
onset of the specified Event, over discrete space samples {m=12,...,M}. All the
stationary spatio-temporal structure, i.e., dynamics, will be captured by this probability.
For comparison, in the case that there is no dynamics at all, the joint conditional

probability should simply factorize:

MT
p(¥@), ¥(¢-1)...., ¥t -T)|Event)= []P(w,(t— p)|Event). (1.2)

m=1,p=0
The probability in Equation (1.1) is commonly seen in neuroscience in the context of
neural coding, e.g., as a description of how the occurrence of a stimulus or behavioral
action is expressed through neural activity. The reciprocal probability
P(Event|'¥¥(),¥(z—-1),...,'¥(-T)), (1.3)
usually studied in the context of neural decoding, is related, through the Bayesian
theorem, to the probability in Equation (1.1),

p(¥ (@), ¥(t—1),...,¥(t —T)| Event) p(Event) =

(1.4)
p(Event|'¥ (1), ¥(t - 1),..., ¥ (t - 1)) p(¥ (1), ¥t - ),..., ¥ (¢ - T))
Notice that the above is just the joint probability:
p(¥@),¥@-1),...,¥(@—T),Event). (1.5)

Following the discussion in the previous section, it is now evident that there are

two main challenges in the analysis of spatio-temporal interdependence patterns: a) latent

! The notation for discrete or continuous time should be clear from the context.
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variable issues stemming from the fact that our measures commonly record mixed signals
originated from many different processes, e.g., sensory activations, integration, motor
execution, and other unrelated ongoing processes; and b) the dual nonstationarity of the
brain processes; on the one hand, even a simple pattern discrimination task involves many
different stages, including preparation, sensory activation, decision and execution, that
can all happen in very short time intervals of less than 350 ms; on the other hand, in the
experimental paradigm of event-related responses we face yet another type of
nonstationarity stemming from the trial-to-trial variability of the event-related responses
themselves.

The problem of latent variables arises from the fact that we do not measure
directly the relevant brain states W¥(#). Instead our measurement vector Z_(¢) results from
a mixture of signals related to brain states, measurement noise and other unpredictable
components. When approaching this problem, a first step is to start with a measurement
or generative model specific to the experimental paradigm.

For the case of event-related potential measurements, three main components have
for a long time been taken as the main contributors to the recordings: the stimulus or
event phase-locked signals, the uncorrelated spontaneous activity and induced activities.
The most desirable approach would be to account for all these components in a unified
way, i.e., as the result of the behavior of dynamical models of neuronal populations.
Initial attempts in this direction were taken by Freeman (Freeman, 1975), who modeled
the phase-locked signals (estimated by the AERP) as resulting from the impulsive

behavior of specific dynamical systems. There are however difficulties in following here
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this approach. For example, the type of data will be employed in this dissertation consists
of very localized local field potentials. Yet the possibility of having recorded time series
containing mixed activities from neuronal populations with different dynamical
properties is still very likely. Also, experimental data that would allow for a detailed
parametric modeling of neuronal activity are basically unavailable. In the absence of more
detailed information about the dynamical properties of the neuronal population generating
the time series, a simpler data driven approach is adopted at this stage. A generative
model developed in this way should capture at least four main properties of LFP
recordings in the event-related paradigm: a) the existence of signals relatively phase-
locked to a specific event onset; b) the trial-to-trial variability of amplitude and latency of
the event-related signals or components; c) the possibility that event-related responses
may contain multi components with differential variability of their amplitudes and
latencies; and d) the existence of event unrelated signals (spontaneous activities plus
measurement noise) and also non-phase locked event-related or induced spontaneous
activities.

For the case of a single channel recording (see Chapter 4 for the full multivariate

treatment), the following generative model is employed:

N
(=) a,s,(t—7,)+n,@), (1.6)

n=1

where z,() is the LFP recording in the /” trial, s, (¢) is the n™ event-related component

waveform with a trial-to-trial variable amplitude and latency given, respectively, by a,,

and 7,.. The unpredictable component 77,(¢), henceforth simply referred as ongoing
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activity, denotes a zero mean activity including spontaneous activities and other
uncertainties such as measurement noise. A more detailed treatment of the modeling of
the ongoing activity is provided in the next section.

A graphical representation of this generative or latent variable model is shown in
Figure 1-3. The waveforms s,(r) and their correspondent amplitudes a, and latencies 7,
have their probability distributions specified by a set of parameters 6(z). Similarly, the
ongoing activity 7(¢) has its distribution specified by a set of parameters 0,(z). These
parameters can be a function of time: that is the case where, for example, the ongoing
activity is nonstationary. All those variables and parameters are latent or hidden, since the
only direct observable is the measurement itself: z(¢). The rectangles containing the
variables represent the sampling, which generates each sample trial » and sample time
point . The self-loop in the ongoing activity represents time dependence between
successive time points.

The analysis framework proposed here thus involves two main aspects. First, a
prior task in the statistical analysis of interdependence patterns is then to separate these
signal components and ongoing activities. It is fundamental to understand that the
problem is not the one of mathematical inversion, but of statistical inference, i.e,
probability calculus and inductive logic. The details of the inferential approach as well as
its relations to other decomposition techniques like PCA, ICA and wavelet like filters are

shown in the Chapter 4.
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Figure 1-3: Latent variable model for single channel cortical LFPs. The generative model
for event-related LFP measurements z(f) consists of a linear combination of latent
variables, namely event-related phase-locked components s,(z) and ongoing activities 7)(¢).

The event-related components have trial-to-trial variable amplitudes a, and latencies 7,.

All the latent variables are assumed to be generated from a particular distribution specified
by the parameters 6(f) and 0,(z). The rectangles represent the sampling process at trial r

and time t.
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Second, once the measured time series are decomposed, the analysis of spatio-temporal
interdependence patterns should be based on the models of the phase-locked event-related
components and on the analysis of the ongoing activities. Interdependences among the
phase-locked components should be investigated by correlation analysis on their trial-to-
trial amplitudes and latencies. Interdependence analysis of the ongoing activity is a more

complex issue that is addressed in the next section.

1.2.2 Linear Stochastic Models of Ongoing Activity

The interdependence analysis of the estimated ongoing activity leads to additional
problems. To start with, the spectral domain is preferred for the analysis of 2" order
statistical structure, instead of time domain measures like auto-correlation and correlation
functions. Spectral measures facilitate the discrimination between interdependences
happening at different time scales and also local error bars are possible, since for
stationary processes the correlations are independent in the frequency space. However,
the spectral estimation presents difficulties of its own. Direct spectral estimation is known
to be seriously biased (Percival & Walden, 1993), and this is particularly the case when
the data segments are short. In the signal processing community, less biased estimates are
obtained with the use of data windows followed by smoothing of the spectral estimator.
The resulting estimator is still inconsistent and does not provide a theoretical foundation
for the use of the data windows and their choice. Improvement in this direction was made
with the introduction of the multitaper estimators, providing both the theoretical base for

the use of tapers (windows) and also the optimal taper functions (Percival & Walden,
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1993; Thomson, 1982), making this approach the current choice for the serious non-
parametric spectral estimation. However, this technique is also not adequate for our
purpose. Given the goal of tracking the nonstationarity of cortical processes, very short
time windows need to be used. At this point, the multitaper technique is not appropriate
(e.g., for a SO ms window, frequencies under 20 Hz would be left out and the benefits of
the multitaper method would be reduced since in this case a single taper function would
be used). Spectral estimation based cn wavelets, now common for time-frequency
analysis, is also problematic since their statistical properties are not completely
understood yet. More recently, a better alternative appeared with the multitaper high-
resolution spectrograms (Thomson, 2000). Here, we chose instead a parametric
estimation that has been developed for the analysis of short time window LFPs by Ding et
al. (Ding, Bressler, Yang, & Liang, 2000). We will provide later an example showing that
it provides better temporal resolution than the multitaper high-resolution, while capturing
basically the same spectral structure.

Given its unpredictable nature, the ongoing activity will be modeled as a
stochastic process, specifically as a discrete time continuous state Markov or
autoregressive process. The probabilistic modeling will be based on the Wold
decomposition theorem (Wold, 1938) and the exposition of the rationale in this approach
will follow the derivations given by (Box, Jenkins, & Reinsel, 1994). The basic theorem
states that any wide sense stationary (WSS) stochastic process can be decomposed into a
component that is completely random and one that is deterministic. A deterministic

random process is one that is perfectly predictable based on infinite past. This is to say
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that z(r) may be expressed as Zapz(t-p) without error for some constants a,. An
=1

example of this would be the decomposition of a pure sinusoid (randomly phased to
ensure WWS) and white noise into a purely random component (the white noise) and a
deterministic component (the sinusoid). Alternatively, we may view this decomposition
in the spectral domain as one that separates the power spectrum density into a continuous
(i.e., smooth) component representing the white noise and a discrete component
(impulsive behavior) representing the sinusoid (Kay, 1988).

More importantly, the theorem also states that any purely non-deterministic zero-

mean stationary process z(f) possesses a linear representation in the form:

2(t) = &) + be(t = 1) + bye(t — 2)+...= £(1) + ibpe(t -p). (L.7)
p=1

with Z[bp]2 < oo, and &(¢) are uncorrelated with common variance a‘i but need not to be
p=1

independent. This process can also be represented, under suitable conditions, as an

autoregressive process, i.e. a weighted sum of past values, plus an added perturbation

&)

26) = 4,2 =) + a2~ D+ +80) = 3 0,2t~ p) + (0. (1.8)

p=l1

Notice that by writing the above in the form &(t) = Zapz(t— P), a; =1, the process can
p=0

be related to a filter of infinite order whose output results to be white, in other words, the

filter whitens the temporal series {z(?), z(z = 1), z(t — 2),2(¢ - 3),...}.
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as

The coefficients a and b may be related through a backward shift operator, defined

Bz(®)=2z(t—1), B*z(t)=z(t—k). (1.9)

For example, consider the model:

z(2) = (1) — Azt — 1) = (1- AB)£(?), (1.10)

with b, =—A and b, =0 for p > 1. Expressing &(7) in terms of z(r) we obtain

&) =1-AB)"'z(r). (1.11)

For |A|< 1, and after the Taylor expansion of (1 — AB)™!, the above can be written as

&)=+ AB+A2B* + B +..)z(1), (1.12)

or in the autoregressive form:

2(t) = Az(t —1) = Bzt —2) - Lzt =3)~...+&(2), (1.13)

with the previous a, expressed as a, =—A4°.

In general, Equation (1.7) can be written as:

=01+ ipr")e(t) =(Q_b,B%)e(t) = b(B)e(r), (1.14)
p=1

p=0

with b, = 1. Similarly,

e=01A- i a,B?)z(t) = a(B)z(?). (1.15)

p=1

Finally, the relation between the coefficients a and b is obtained by operating both sides

of Equation (1.15) by b(B):

or

b(B)&(t) = b(B)a(B)z(t) = z(¢), (1.16)
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a(B)=b7'(B). 1.17)
Two constraints are need for the application of the representations given by equations

(1.7) and (1.8): stationarity and invertibility. Stationarity is guarantee by the condition

Zlb[ < oo, in other words, the operator 5(B) must converge on or within the unit circle
p=0

for | BI< 1. Invertibility is required when we are interested in establishing the dependences

between present events and past happenings. Thus, we would like to move from the

representation z(t) = e(t)+pr£(t—p) to the representation in the regressive form
p=1

z(t) = Z a pz(t — p)+&(). For illustration, consider again the model z(r) = (1—AB)&(1).
p=1

Expressing the white noise as a function of the present and past of z(¢), we obtain
&) =(1-AB)'z,(t) = (1 + AB+ 2 B*+.. + AP B?)(1- AP*'BP*") ' 2(r). (1.18)
This corresponds to:
7, (1) = —Az(t =)= Rzt —1)—..—APz(t — p) + £(t) - APt —p—1). (1.19)
Notice that we did not obtain yet the desired autoregressive form given in Equation (1.8)
since there is an extra term A°*'&(t—p—1) in the expression above. However, if |A|<1,

on letting p tend to infinity, this extra term vanishes, and we finally obtain:

2(t) ==Az(t - 1) - Azt = )—.. +£(1), (1.20)
2(0) = iapz(t-1)+e(r), (1.21)
p=1
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where again a, =-A°. The stationarity and invertibility conditions are independent:
whatever the value of A, Equation (1.7) specifies a stationary process. Thus, if [4]|<1, the

series

a(B)=(1-4B)™' = iilf’B" (1.22)

p=0
converges on or within the unit circle for all | Bi<1.

In general, the process in Equation (1.7) is invertible and can be represented in a

autoregressive form a(B)z(r) = £(t), where a(B)=b"'(B) =1~ Z apB" , if

p=l

S 1A =Y Ja,|<oo. (1.23)

p=0 p=0

So far, we have seen that any purely non-deterministic stochastic process can be
represented in the form (1.7), and that given appropriate conditions, it can be further re-
expressed in the autoregressive form (1.8). However, both representations involve infinite
sets of coefficients and are in practice of little use. The goal is thus to achieve an

autoregressive representation with a finite set of coefficients {a,}, for p=12,..., P, for P

small. Basically, a low order model should be found that captures practically all the spatio
(for multivariate) and temporal statistical structure. Ultimately, the definite test is to
check if the residual errors of the model are completely independent, i.e., the model has
captured all the significant spatio-temporal statistical structure or dynamics. If the
stochastic input to the model is assumed to be Gaussian, checking if the residual errors

are uncorrelated would be sufficient. Another way of expressing this condition is in terms
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of filter output. From a finite set of the AR coefficients, a filter is derived. If this filter
when applied on the original time series results in a output time series that are completely
independent in time and space (across channels), a finite order representation has been
found that captures the statistical structure. In practice, parsimonic representations can be
achieved in many cases by application of information theoretic criteria (Rissanen, 1989),
like the Minimum Description Length, Akaike Information Criteria, and others. These
criteria are later explicitly stated. Exceptions are found when dealing with long-memory
processes. Those are processes where the correlations decay to zero at a slower rate than
in Markov processes (Beran, 1994). In this case, the correct representation would require
an infinite order AR model. Alternative approaches would include the Auto Regressive
Integrated Moving Averages (ARIMA) (Box, Jenkins, & Reinsel, 1994). In practice,
however, the issue is more complex and a clear-cut assertion that an underlying process
has the property of long-memory is commonly not the case. When dealing with finite data
sets, even low order AR models, e.g. order 5, can produce time series that will lead to
signatures of long-memory processes, like approximately 1/f power spectrum estimates
(Rangarajan & Ding, 2000).

A further restriction will be introduced for the approach undertaken in this

dissertation. Notice that in the model (1.7), &) are uncorrelated with common variance
o2 but need not to be independent. This means that £(f) could refer to nongaussian
processes with high order correlations. Here, &(f) will be restricted to Gaussian processes
and the analysis of spatio-temporal interdependences is then limited to interdependences

revealed at the level of 2™ order correlations.
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In this way the ongoing activity n(z) = [7,(?), r]z(t),...,nu(t)]r is modeled as a
Multivariate AutoRegressive (MAR) process of order P:
N =ANC-D+ANE-2)+..+A N0t - P)+E@), (1.24)
A, being the matrix containing the autoregressive coefficients, A,;=a,;, for
Lj=12,....M. E@®)=[g(),&®),....,64®]) is a multivariate zero-mean identically
distributed white gaussian process with diagonal covariance matrix V, with V,,, = 0',2,,
As a side note, it is interesting to make explicit the relation of Equation (1.24) to
first order Markov processes and transition probabilities. Consider the Markov process
expressed as:
Xa+D)=FX(®)+U(@®), (1.25)
where X(@)=M@e-1.,n¢-2).....n¢-P))", U@)=[E@)0,....0]", and the state

transition matrix F:

A, Apy Ap
I - 0 O

F=| . . . .| (1.26)
0 I o

Also, in this case the transition probability density is simply:

pX(@®),X(t-1)) - 1.27)
pX@-1)

pX@®)|X@-1)=

For Gaussian processes, the above probability can be completely specified from the
covariance matrices, which are derived from the coefficient matrices in F.
The specification of the coefficient matrices and noise covariance matrix can be

obtained by solving the Yule-Walker equation (Kay, 1988). A more efficient approach
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adopted here is the normalized form of the Levinson, Wiggins, Robinson (LWR)
algorithm (Haykin & Kesler, 1983; Morf, Vieira, Lee, & Kailath, 1978). The LWR
algorithm is a multivariate extension of the maximum entropy method proposed by Burg
(Burg, 1975). The intuitive rationale is as follows. When dealing with finite data sets, we
always have a correlation function that is truncated at a certain time lag. In other words,
the correlation function is not known after a certain time lag. The effects of this
truncation are particular severe in the spectral estimation of short time data. The
characteristic smearing of spectral density estimates due to this truncation can be alleviate
by an explicit extrapolation of the known segment of the correlation function to the
unknown segments, given certain constraints. Burg chose the maximum entropy principle
(Jaynes, 1957b; Jaynes, 1957a; Sivia, 1996) as a constraint. More specifically, among the
infinite possible choices of extrapolations that produce valid correlation functions, the
extrapolation that should be chosen is the one that results in the maximum entropy of the
time series characterized by the truncated correlation function.

Finding the adequate AMVAR parsimonic representation of a stochastic process
is a problem of model selection. Several criteria for the choice of model order are given
below (Haykin & Kesler, 1983; Rissanen, 1989). For the Akaike Information Criterion
(AIC):

AIC(0) = 2In[det(V)]+2M?0/ T, (1.28)

where T, is the total number of time samples of process for all the collected trials. The

total

optimal model order is then
P =arg min AIC(O). (1.29)
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When applying the maximum entropy estimation, the above criterion is given by:
AIC(O)=InP, +2M?*0/T,,,, (1.30)
where P,, is the output error power of the resulting MVAR filter of order O. In the

implementation used in this dissertation, we employed the Final Prediction Error (FPE)

criterion:
FPE(O)= Tow + MO +1 P, (1.31)
Tty —MO-1
where the optimal model order is
P = argmin FPE(O). (1.32)

Another interesting criteria is the Minimum Description Length (MDL):

MDL(0)=T,

Mai

MIn P, +OIn[MT, 1], (1.33)
with

P = argmin MDL(O). (1.34)
The above three criteria are related and can all be derived based on Bayesian inference
and on the Shannon coding theorem (for details see Chapter 4 and (Rissanen, 1989)). A
comparison between AIC and MDL is given in Rissanen, chapters 3 and 6 (Rissanen,
1989).

Once the coefficient matrices and the noise covariance matrix are known, a more
useful representation of the process in Equation (1.24) is given by its spectral
representation. By taking the Z-transform of Equation (1.24), we obtain:

n(f) =HHEW), (1.35)

where H(f) is the system’s transfer function:
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-1
P
H(f)= (-Z A e ™ ] , (1.36)

p=0

with A, = —I. The spectral density matrix results from the average:

S(f) =<n()M () >=<H(OENE (HH (f) >, (1.37)
S(H=H()<ENE (H>H (f), (1.38)
S(f)= H(f)VH (). (1.39)

From the spectral matrix, the power spectrum density and spectral coherences (ordinary,
partial and multiple) are derived. In particular the power for the m™ channel, and ordinary

coherences between the m™ and the n" channels, are given respectively by:
a pe

L (N=8,.(f), (1.40)
and
1S, (P
C =_’!."'____‘ 1_41
= (NS (14D

Another important quantity is the Directed Transfer Function (DTF), expressed as:
D,,()=lH,. (. (1.42)
The DTF is not a symmetric measure and thus provides an indication of the level of
statistical influence from channel n to channel m. It is a multivariate spectral
representation equivalent to the bivariate time domain Granger causality (Granger, 1969;
Kaminski, Ding, Truccolo, & Bressler, 2001). A normalized form is also easily obtained.
A very similar quantity called the partial DTF has been also proposed by Baccala et al

(Baccala & Sameshima, 2001).
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The above measures reveal the second order linear statistical structure: the
temporal correlations given by the power spectrum density; and the interdependence
between the channel pairs by the coherences and the DTF. As mentioned before,
detection of higher order temporal correlations are possible if we allow nongaussian &(7)
or nonlinearities. In this case, higher order spectra, e.g. bispectrum and bi-coherence, are
made possible (Nikias & Petropulu, 1993).

When dealing with the nonstationarity of the ongoing activity, a possible approach
is to model the propagation in time of the probability density. In the case of Gaussian
processes, a common solution is the Kalman filter model, which can be considered a
discrete time special case of the Fokker-Planck equation (Astrom, 1970), and where both
the mean and covariances functions are updated as time evolves, given new observations
or measurements. In this case, the diffusion (propagation) is purely linear and the density
function evolves as a Gaussian pulse that translates, spreads and is reinforced, remaining
Gaussian throughout. The random component of the dynainical model leads to spreading
— increasing uncertainty — while the deterministic component causes the density to drift.
The effect of an external observation z(t) is to superimpose a reactive effect on the
diffusion, such that the density then tends to peak in the vicinity of the observation (Isard
& Blake, 1998).

Here we chose a simpler, but perhaps more efficient and accurate approach when trying to
capture the current statistical structure underlying a time series ensemble. The ongoing
activity is treated to be locally WSS, i.e. over short time windows (e.g. 50 ms). In this

way, instead of directly modeling the time evolution of the probability density, an entirely

30



new model is generated for every particular short time window centered at time ¢. Fast
changes in brain dynamics and processes can then be tracked by the use of a moving time
window. More specifically, for each time window centered at time ¢, an appropriate

model order P is found together with a new set of coefficient matrices A ,, for

p=L12,...,P. In other words, now we have a time dependent model expressed in terms of

A o), for p=1,2,...,P(t), where the argument ¢ refers to time where the moving time

window is centered. This approach may be more reliable since by starting an entirely new
model for every time window, the estimation is not affected by inaccuracies being
propagated from the estimation at previous times. The moving window approach is
referred to as Adaptive Multivariate Auto-Regressive (AMVAR) modeling. Extensive
theoretical analysis, model validation and methods of assessment of statistical
significance through bootstrap methods, on the same experimental data employed in this
dissertation, has been presented in (Ding, Bressler, Yang, & Liang, 2000; Kaminski,
Ding, Truccolo, & Bressler, 2001). Furthermore, for linear Gaussian processes and given
an appropriate AMVAR model, the conditional joint probability

p(nk),nk~1),....nk-p),nk—p-1),...|Event) =

(1.43)
pk),nk-1),....nk—p).nk—-p—D....{tg.n)
can be completely specified from the knowledge of A ,(t,.,) and P(t,, ). The above

equation relates then to our original conditional probability in Equation (1.1).
The derived spectral quantities from the model are now time functions expressed

as:

L. (f.0)=8,.(f.0), (1.44)
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Ism(fat)'z , (1.45)
S (f+8)8,,(f>2)

Con([,0)=
D, (f.)=|Hp (D] (1.46)

A comparison between the MVAR and a nonparametric high-resolution
multitaper spectrogram is given in Figure 1-4. The AMVAR model and the
nonparametric estimation were computed on the ensemble mean-subtracted time series
from a parietal site. The spectral structure captured by the two methods agrees in general,
while the AMVAR provides higher temporal resolution. The model order was five and
the moving time window was 50 ms long. The multitaper estimation was computed on a
single time window 600 ms long.

Two more aspects deserve mention when modeling cortical ongoing activity:
continuous time models and mixture of deterministic and stochastic models. The fact that
under appropriate conditions a continuous time linear dynamical model that preserves the
same spectral structure can be derived from the fitted autoregressive model, gives yet
another useful application of this type of modeling (Franaszczuk & Blinowska, 1985).
For illustration, consider the univariate system

x(z) = H(2)&(2). (1.47)
The transfer function, derived from the AR modeling, is given by:

H@)=——— =1 (1.48)

P k4
1- Zapz“’ -Z a,z”?
p=1 p=0

with a; = —1. Multiplying both numerator and denominator by zk:
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Figure 1-4: Comparison between AMVAR spectral estimation and non-parametric high-
resolution multitaper spectrogram. The power spectrum density time function (top plot)
for a parietal LFP activity was computed from a adaptive multivariate autoregressive
model fitted on. the whole LFP data ensemble (15 channels recorded intracortically). The
model order was 5 (sampling interval 5 ms) and the moving window was 50 ms long
(shifted by one data point at time). In the bottom plot, the Multitaper power spectrum
computed on the single channel data from the same parietal site over the whole 600 ms
time segment (no moving time window). The time-frequency estimation is obtained by
projecting the Fourier components onto temporal eigenfunctions given by the Slepian
functions themselves (Thomson, 2000). Notice that the AMVAR estimation captures
basically the same spectral structure while allowing a better temporal resolution. Power is
given in arbitrary units. The colored vertical lines follow the same convention as in the
Figure 1-1. Ensemble size: 222 trials.
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H(z)=—5"—. (1.49)

P
Further, if f,,8,,....8, are the P roots of the polynomial —) a,z"?, then after

p=0
factorization of the denominator, H(?) is:
Zf
H(Z)=—7F————. (1.50)
-T1z-8»
p=1
If we assume that there are only single poles of H(2):
- z
H(z)=) c,(—=), (1.51)
=t %7 B P

where ¢, are the single pole coefficients, obtained according to:

_ (z=B,)H({)
o= i

(1.52)

Employing the inverse Z-transform Z~', the impulse response of the system (1.47) is

expressed as:

P
h(t) = Z 7 [H(2)]1=Y c e . (1.53)
p=1

According to Shannon’s sampling theorem, if the sampling interval Ar has been
appropriately chosen, the continuous time impulse response can be recovered from the
discrete time one. The transfer function in continuous time can then be obtained through

the Laplace transform:
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4
_l°8ﬂp

P P
H(s)= LD c,e®  "1=L[Y c,e™']
p=1

p=l

1

’
S‘ap

(1.54)

P
H(s)=) c,
p=l

or in a rational form:

1

. : (1.55)
cps ...t s+c,

H(s)=

Given that the variable s corresponds to the operator %’ the model x(s) = H(s)&(s) can

now be written as a P order differential equation:

d’x(1) dx(t)
Cp dt_P"l’.. .+Cl @

x(t) +cox(t) = €(t). (1.56)

A model of spontaneous cortical ongoing activity obtained in this way usually
corresponds to oscillatory damped modes with stochastic excitations (Franaszczuk &
Blinowska, 1985). Similar models where obtained by Freeman were the direct
experimental measure of the impulse responses of the neuronal populations were
employed to derive purely deterministic differential equation models (Freeman, 1975). If
the power spectrum of the time series contains many peaks, i.e. many characteristic
oscillatory band activities, the transfer function can be decomposed into several transfer
functions, each one accounting for the specific rhythms or time scales in the neural
activity, perhaps capturing more closely the dynamics of very localized neural
populations. As a result, the decomposed transfer functions may lead to 2" order

differential equations.
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As a last topic, the problem of mixture of deterministic and stochastic models is
briefly addressed. It could be thought that the apparent unpredictable nature of the
spontaneous cortical activity should be considered more in terms of lower dimensional
chaotic dynamics than in terms of a stochastic process. From a data analysis perspective,
this leads to the difficulty of dealing with the modeling of time series generated by
deterministic dynamics mixed with unpredictable components. This uncertainty can easily
arise from measurement noise or from the contribution of unknown or not modeled
factors. The difficulty resides in the fact that is practically impossible to decide on the
specific nature of the deterministic component given only the recorded time series. For
illustration, consider a time series X(z) obtained by appropriately sampling the following

stochastic dynamical system:

dx()
dt

= F(X(0)+&@), (1.57)

where F(X(z)) provides the dynamics of the Lorenz system, and E(z) is an unpredictable
component modeled as a white zero-mean Gaussian process, with diagonal covariance

matrix W, = ag For a'g =0, a Markov process representation of the ensemble time series

would require infinite order. That is because dynamical chaos has infinite memory, i.e.,
the mutual information between a state at time ¢ and any future states given at ¢+ p, i.e.
temporal interdependencies, does not decrease but remains constant as p increases (Deco
& Schurmann, 2000). However, as the variance of the white process incrementally
increases, the same mutual information will decrease and tend to zero as p increases. If

the contribution of the unpredictable component is large enough, a low order Markov
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process will account for the statistical structure in the time series. At this point, there is
no way of deciding, without specific additional information, if subjacent dynamical
process generating the time series is a deterministic chaotic system or not. Once again,
one of the central themes of this dissertation is played out here, namely, the role of signal-
to-noise ratio on the estimation of interdependencies, in this case, temporal

interdependencies.

37



Chapter 2

Sources of Event-Related
Transients in Interdependence
Measures

Chapter 1 has invoked two major sources of fast (~ 100 ms) event-related
transients in interdependence measures computed on zero-mean or residual time series:
nonlinear gain modulation and trial-to-trial variability of the event phase-locked
responses. These two possibilities are now explored in detail with analytical and

simulation tools.

2.1 Nonlinear Gain Modulation Effect

Dynamical models of neuronal population activities (Eeckman & Freeman,

1991b; Freeman, 1975) relate the field potentials and the pulse density (the number of
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spikes per unit volume) in a local neuronal population by a nonlinear function of a
sigmoid type. A resulting property of networks of such populations is the dynamic
modulation of gain or effective connectivity by the network’s mean activity level. This
modulation can affect both the local population properties and the interactions among
populations. First, transient changes in the population’s mean level of activity, like that
produced by stimulus-evoked responses, can place the system at regions of different gain
levels of their output sigmoid function, resulting in amplification or attenuation of the
ongoing activity measured by the transient changes in the time course of the ensemble
variance and power spectral density time functions of the AERP-subtracted time series or
residuals. Second, the residual time series from different populations, through the
transient modulation of their shared variances, can exhibit an event-related modulation of
their statistical interdependence measured by the fast transients in the time course of the
cross-correlation (or coherence) time functions. Besides being a natural consequence in
models of sigmoidally coupled neuronal populations, a possible functional relevance of
this effect can be hypothesized in terms of slow spatio-temporal patterns of activity (say
in the alpha range) determining the mean level of activity and subsequently soft-wiring
the connectivity between neural components. The result would be a mechanism for
dynamic functional connectivity in either broad or specific frequency bands (say gamma
band).

This phenomenon is analyzed in the context of a model of excitatory and

inhibitory neuronal populations coupled through sigmoid functions (Freeman, 1975). For
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illustration, consider the following model of two interacting cortical columns containing

excitatory and inhibitory neuronal populations:

2

d;l ﬂ““%””‘ = ~k001, ) + K0(%;, 0n) + £, + [,®)
2

—‘: 21 +(a+b)%+ aby, = k,O(x,,Q,,) + &,(t)
A 2.1

+(a +b)%+abx2 =-k0(y,,0,) +0O(x,, O, )+ & @)+ L,(¢t)

dz
_—dtyzz +(a+ b)%'*‘ aby, = k,0(x;,0,)+ £,

Here x(r) and y(r) are the local field potentials of the excitatory and inhibitory
populations, respectively, a and b are rate constants, and k gives the coupling gain
between the populations. The spontaneous or ongoing activity is modeled by the

introduction of the stochastic terms &(f), corresponding to white zero mean Gaussian
process with variance o>. I(f) denotes the external input to the populations, employed to

introduce fluctuations in the mean level of activity. The values of Q(x,0Qn) and Q(y,Qm)
represent pulse densities converted from x and y through a sigmoid function, with output
gain or slope modulated by the parameter Q,,. Commonly, modulation in excitability or
gain of the neural tissue resulting from attentional effects or other neuromodulatory
factors is implemented in terms of variations in O, Here we are considering a much
faster and transient type of modulation in excitability that does not resort to this type of
neuromodulatory effect, but relies exclusive on the nonlinear nature of the coupling
function and on fluctuations in the mean level of activity. For this reason Q,, is assumed

to be constant and it is henceforth dropped from the notation. An extensive stability and



bifurcation analysis of this system is provided in the Appendix for the sake of
completeness.
For illustration, consider the symmetric condition I,(¢) = L,(¢) = I, with new fixed

points after the input onset x; =x, and y; =y,. The linearized system can then be

rewritten:
d*x, dx,
y: +(a +b)?+ abx, = —-K;y, + K\x, + £,(1)
2
ANy @+5) Pt aby, = Kyx, +£,0)
dr? dt AL
d*x, dx, ' @2
o +(a +b)7+abx2 =-K;y, + K\ x, + £(1)
2

d°y
Tzz*'(a +b)%+aby2 = K,x, + £,(t)

with new coupling strengths K (effective connectivity) defined as:

K, =5Q'(x))=kQ'(x;)
K, =k,0'(x)) = k,Q’(x3). 2.3)
Ky =k0'(0n) =0 (y;)

1

Let H(f)= -w? +io(a+b)+ab

and w =27f . After the Fourier Transform of Equation

(2.2), we have:

x(f)= HAOKx, ()= Ky (N + ()]
()= HUN K% () + &5(f)]

x,(f) = HEKx ()~ Ky, () +6,(N)]
¥2(f) = HU Ko, () + £4(S)]

24

We are interested in obtaining the auto and cross-power density functions of x;, and x,

and examining how they are affected by variations in the sigmoid slope Q’(v"), around a
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certain operational point v° dependent on the mean level activity. Substitution of y,(f)

and y,(f) into the expressions for x;(f) and x,(f) results in:

x,(f) = HO[ K5, (f) - K HO)IK x5 () + £,(N1+&,(f)]

, (2.5)
X, (f) = HEN K, (f) — K HOP)UK x5, (F) + €.+ &5()]
or:
x,(f) =1+ KK H (O HOP[ K, () — K H(E () + 6,(f)] 26
%, (f) =1+ K K H (DY HUO[ K6, (f) — K H(EL() + €5())
After substituting x, (f) into the expression for x;(f), and letting:
___ HN+KKH(f) 27
A L+ K,KH> (NP -KEH*(f)’ @n
__KH N+ KKH(S) -
D = I K O - K ()’ @9
= KIH 2(f ) 2 9
DB - @9
D(f)= K.K:H (f) (2.10)

[+ KKH>(F)F - KT H*(f)
we obtain:
X ()= AUNES) - BU)E, () + C()Es () — DXNEL(S), (2.11)
and similarly,
%2(f) = A(NIE(F) - BUNHEL )+ CNIE )~ DNIELS). 2.12)
The power spectrum density of x,(z) and x,(r) are then respectively:
T, () =<x, () () >=| AP 6% + B o2, HC(HF oL, HD(f)f o2, (213)

and
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L., (N=<xNx (N >=| AN 67, HBUI o7, HCNI 0%, +ID(N 02, (2.14)
The cross-power spectrum density:

Fxlxz (f) =< X (.f)x; (f) >

. . . . . (.15
=A(N)C"(fHa;, + C(NHA (Hoe, + BUAD (foe, + D(HB (f)or,
The coherence then becomes:
Ty,
C = 2 . 2.16
X X2 (f) er[ ( f)I‘xz ( f) ( )

To investigate the dependence of the derived power and coherence spectral
density functions on the effective coupling strength K between the model columns, we fix
the couplings K, and K3 and vary K, the coupling between the two excitatory neuronal
populations. Variation in K, represents variations in the sigmoid slope, since
K, = k,Q'(x;) = k,Q’(x,), which is dependent on the operational point set by the location
of the new fixed points x, and x;, which themselves will depend on the level of the input
I. Figure 2-1 show the power and coherence as a function of frequency and of K;. Not
surprisingly, the power and coherence clearly increase with increasing coupling. Overall
the system behaves as combination of low pass filter, with a characteristic resonance in
the gamma band, as seen by the peak around 40 Hz both in the power and coherence
functions. This property results from the choice of values for the rate constants a and b,
originally specified to account for the gamma oscillations in neuronal population in the

olfactory system.
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Figure 2-1: Power and coherence spectrum density dependence on effective coupling
strength K,. Power and coherence for the LFPs of neuronal populations x, and x, from
the two columns linearized model are computed according to derived equations (see text).
The coupling strength K, is dependent on the slope of the sigmoid output function, which
itself depends on the level of LFP activity. As K increases, both power and coherence
increase. Model parameters: K, =10°, K; =4x10°, o, =1, a=220/s, b= 720/s.
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Next we investigate the effect in the original nonlinear system and in the context
the aimed situation of a transient fluctuation in the mean level of the activity of the
neuronal populations, here mimicked by the effect of an external sinusoidal input.

Transmission delays are also included, such that the system reads now:

2
‘fh’;‘ +(a+ b)%+ abx; = —k,Q(3, Q) + kK Q(x, (1 — 71,), 0, ) + £, (D) + L)
2
d—{*+(a + b)ﬁmbyl =k,0(x,,0,) + & (1)
c? dt . @17
d;z +(a+ b)%+ abx, = —k,0(y,.0,) + kO, (1 = 75,), @, ) + &5 (1) + L (8)
d2
Ty;+(a +b)%+aby2 = ky0(xy, O,) + E4(F)
where
O(V,0n) = Om(I—e ") if V > -uo
O(V,0m)=—1if VS -uo ) (2.18)

1
o=~In(+In( +—
u n(Z+In( Qm))

The above system is simulated for a network whose activity is concentrated in the
gamma band (gamma network). The input to the two excitatory populations is given by a
scaled single cycle sine, of period equal to 100 ms. The power and coherence spectrum
(Figure 2-2) are computed on the AERP-subtracted time series, i.e.,

£, (D=x,,(@)—-<x,()>,. The power spectrum and coherence are respectively

Fx,,, (= Fé,. (f) and C,_x. (= C:_ c. (f). A single AMVAR model is computed for the
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time series ensemble of the variables x,(r) and x,(r). The ensemble mean activity
(AERP) is shown in Figure 2-3. The same type of transient increase in power and
coherence observed for the gamma-network can also be obtained in networks with
oscillatory activity in other frequency bands, like alpha or beta, once the rate parameters a
and b are adequately tuned (See Appendix for network frequency dependence on these
parameters).

The main predictions of the nonlinear model are twofold. First, if in the ensemble
of trials, the mean level of activity represented by the AERP tends to fluctuate beyond the
near linear range of the sigmoid function, the ensemble variance time function
o? =<[z,,(t)- <z, (t)>,] >, will show either peaks or valleys depending on if the LFP
activity moves towards high or low slope regions of the sigmoid output function. These
modulations in ensemble variance will obviously be accompanied by the same type of
modulation in the power spectrum density time functions. A further prediction is that
peaks or valleys in the variance should be accompanied by the same modulation in the
cross-correlation time functions (see Equation (3.3). Similarly, the same relation should
be observed for modulations in power spectrum and coherence time functions. It is
difficult to predict how these modulations would relate to the waveform of the AERP,
since it is not known which regions of the AERP correspond, on average, to a region of
high slope of the sigmoid function. For example, if a positive extremum of the AERP
relates to a region of high gain, peaks in the mentioned statistical quantities should tend to
coincide in time with the AERP positive extremum. Also, if the latter is the case, negative

extremum of the AERP should relate to low region gain (on average) of the sigmoid
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Figure 2-2: Transient nonlinear gain modulation of power and coherence time functions.
The power (top plot) and coherence (bottom plot) are derived from a AMVAR model of
the residual LFP time series of the neuronal populations x; and x,, from the simulated
two column system model (AMVAR order S, sampling interval 5 ms, time window: 50
ms). The transient input consisted of a single cycle sine function (period of 100 ms), with
amplitude 0.5. Stimulus onset is at time zero. Simultaneously there is an increase both in
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power and coherence in the gamma band. Although the input generates a slow transient
(~ 10 Hz) in the system response (see Figure 2-3), it does not contribute significantly to
the power or coherence in the ~ 10 Hz range. This transient has been removed by the
subtraction of the ensemble mean from each single trial. Model parameters: &, =0.05,
K,=01, K; =04, 6,=007,a=220/s, b=720/s, Q, =15, 1|3 = 7, =—10ms. The
deterministic part of the equations were integrated using the 4™ order Runge-Kutta
method, with linear interpolation for the delays. The stochastic part was integrated via the
Euler method. Simulations were implemented in C. The power is given in arbitrary units.
Ensemble size: 100 trials.

100
80
60
N
I
40
20
-100 50 0 50 100 150 200
time (ms)

Figure 2-3: Single trial example, AERP and coherence for the same system and variables
simulated in the previous Figure 2-2. The ensemble average or AERP (top plot, thick
curve) captures the slow transient generated by the input and also some evoked activity
on the gamma band that is phase-locked to the input onset. A single trial time series is
shown by the thin curve. The spectral coherence increases in the positive phase of the
input and decreases in the negative phase, returning to its background level after the
transient is over.
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function. Thus, valleys in the mentioned measures would tend to coincide with negative
extrema of the AERP.

2.2 Trial-to-trial Nonstationarity of Event-Related Phase-Locked
Responses

The signal-plus-noise (SPN) model can be formally expressed as follows:
z, () =s(®)+n,(1). (2.19)
where z,(¢) is the recorded cortical LFP at time ¢ for the r'® trial, s(t) is the stereotyped
stimulus event-related response, and 77,(¢) is a zero-mean noise component, independent

of the stimulus response, which represents ongoing noise activity. The stimulus onset is at
t = 0. In practice, the average <z, (r)>, taken over an ensemble of trals,
{z,(£),25(2),...,2g(1)}, is considered to be a consistent estimate of s(1), ie.
s(t)=<z,(t)>,, and the ongoing noise is estimated as the residual remaining when the
average is subtracted from the LFP time series, i.e.,

&M =2,1®-<z()> =n,0. (2.20)
A more generic alternative model, the VSPN model, which takes into account the trial-to-
trial variability in amplitude and latency of the event-related phase-locked activity, can be
expressed by:

z,()=ast—-7,)+n.), .21)

where the term a, is a random variable corresponding to the amplitude of the event-

related waveform and is assumed to be time independent for a given trial, and 7, gives
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the single trial latency of the response. The terms a,, 7, and 77,(t)are assumed to be

independent of each other.

2.2.1 The VSPN Model and its Predictions for the Single Channel Quantities

The effects of trial-to-trial variability in amplitude and latency in the VSPN model
were analyzed separately. Their role in determining the relation between the ensemble
mean and ensemble variance was central to understanding the post-stimulus behavior of

power and interdependence measures.

2.2.1.1 Amplitude Variability
Considering the amplitude variability alone, the VSPN model simplifies to:
z, () = a,s(t) +1,(1). (2.22)
The ensemble average (AERP) based on this model becomes <z,(f)>, =<a, >s().
When the AERP is subtracted from a single trial, the residual time series becomes:
EM)=as@t)-<z,()>, +n,@)=(a,~<a, >)s(t)+n,()
=8, +n,@), (2.23)
which contains two components: the ongoing activity 7,(z) and a component that is
dependent on the AERP waveform:
S,(t)=(a,—<a, >)s(t). (2.24)
Thus, the VSPN model predicts that a stimulus phase-locked component will remain in

the residual time series of LFP data after the AERP is subtracted from each trial.
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The variance of z,(f) over the ensemble of trials at a given time 7 is equal to the

ensemble variance of the residual £,(t), which from Equation (2.22) becomes:
o (1) =<, OF >=<[S,OF > +<[n,®OF >
=05 +0,00), (2.25)

where the variance of the stimulus phase-locked component is given by:

oi(t)=<[a,—<a, >F >[s())* . (2.26)
Since 77,(z) is assumed to be stationary over the trial length, it follows that the variance of
the residual has a time course resembling that of [s()). In particular, the peaks of the
variance function occur at the same times as the extrema of the AERP. Moreover, the
power spectral density time function of the residual, <|&,(f,?)|* >, computed in a sliding
time window centered at time ¢, will also be modulated according to the AERP shape at
frequencies characteristic of the AERP waveform. Specifically, since s(f) is often
oscillatory with a very distinct main frequency, the quantity <|&,(f.t)>> at this
frequency will be similarly modulated and should also exhibit a significant increase
during the evoked response time period.

Since the amplitude of the phase-locked component, a,, can be either greater or
less than the average on any single trial, it follows that (a,— < a, >) can take both positive
and negative values. This effect is illustrated using simulated data in Figure 2-4.
Therefore, the Fourier component &(f) at the characteristic frequency f, exhibits a phase
distribution having two modes that represent the positive and negative amplitudes, and

thereby differ by the value of 180 degrees. By contrast, if the phase-locked component in
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the residual were zero, as predicted by the SPN model, a uniform phase distribution

would result.

2.2.1.2 Latency Variability
When only the latency variability is considered, the VSPN model simplifies to:
) =s@t—z7,)+n.(). 2.27)
To evaluate the effect of the right hand side of Equation (2.27), we use the Taylor
expansion of s(t—7,) for small z_, which up to the first order is:
s@—-7.)=s(t)-s'(t)z,, (2.28)
where s'(¢) is the first derivative with respect to 7. The approximation to (2.27) then
becomes:
z, () =s@)-s'()z, +n,.(1). (2.29)
By letting < 7, > =0, the ensemble mean is then given by:
<z (t)>, =s(), (2.30)
and the residual time series becomes:
£ @) =5()-<z,(O)>, ='Wz, +0,(t) =—s" ()T, + 7,(r)
=S5, +n.(). (2.3D)
Again the residual time series contain a component, S,(t) = —s’(¢) 7,, that is phase-locked
to stimulus onset. From Equation (2.31) we obtain the ensemble variance as
o (O =<[&OF >, =<[r,F >[s'OP +<[7,0F >,
=05+, (2:32)

where the variance of the phase-locked component is approximately:
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z(t)

&(t)

= N A

time (t)l

Figure 2-4: Simulation using a sine wave signal of variable amplitude (with independent
noise set to zero). Top: two realizations of the signal having different amplitudes are
shown by the solid curves, and the ensemble mean is shown by the dotted curve. Bottom:
the residuals that result from subtracting the ensemble mean from each realization, the
phase of the residuals being equal to either 0 or 180 degrees. This simulation illustrates
that phase-locked components remain in the residual time series after subtraction of the
ensemble mean.
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os(=<[r,F’ >[sOF. (2:33)
This equation shows that the ensemble variance is again modulated by the evoked
response since it follows the square of the first derivative of the evoked response.
Equation (2.33) allows us to predict the form of the variance function when the AERP is
a damped sinusoid. That is because the derivative of a sinusoid has the property of being
shifted by 90 degrees. Specifically, maximum values in variance should coincide in time
with inflexion points of the AERP, and minimum values in variance with extrema of the
AERP. As an example of this effect, we consider a simulated time series z,(t) =s(t—7,),
without added noise, and with the waveform given by s(¢—7,)= H(@ -7, )sin{lwt—¢,),
where H(¢) is a Hanning window, used to produce a waveform that mimics commonly
observed AERPs, and ¢, =7, @. The signal s(¢) contains 2 full cycles of a sinusoidal
oscillation with period T = SO (arbitrary time unit), and is zero elsewhere. Figure 2-5
shows two examples where the single trial parameter @, is taken from uniform
distributions over the following intervals: (1) [-n/2, w2], and (2) [-3W/4, 31/4]. The
results demonstrate that the main characteristics of the modulation of ensemble variance
are well captured by the linear approximation in Equation (2.32) even for large latency

variability.

2.2.1.3 Amplitude and Latency Variability

When both amplitude and latency vary from trial to trial, their interplay can have
complicated effects. We use a simple example to illustrate the effect of increasing latency

variability while maintaining a constant level of amplitude variability (Figure 2-6). For
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small latency variability, the amplitude variability dominates, resulting in variance peaks
that coincide with extrema of the AERP (top plot). As the latency variability increases, a
point is reached where amplitude and latency effects are balanced, leading to a single
peak in the variance function (middle plot). As latency increases even further (bottom
plot), the characteristic effect of latency variability as described by the linear
approximation in Equation (2.32). At the highest levels of latency variability (not shown),

a single peaked or flat variance is again observed.

2.2.2 Implications of the VSPN Model for Statistical Interdependence Measures
Involving Two Channels

Consider two channel recordings given by z,.(¢2)=a,s()+n,(t) and
2,,(t) = a,,5,(t) + 1,,(1). The cross-correlation function between the two channels’ time

series, at time lag 7and time 7 is then given by:

<S5, ()8, (t—7)>, + <1, (O, (¢ —-7)>,
J<[s,,(r)12> + <[, OF >, <[5, ¢~ DF >, + <[, ¢ - D >,

C..(t,0)

132

(2.34)
where S, (t) =(a;,—<a), >)5;(t) and S, (1) =(a,,—<a,, >)s,(t). Without lost of
generality we assume that the ongoing noise processes are approximately stationary,
meaning that <n,,(On,@¢~7)>,, <[7,®))F >, and <[5, (@—-7)]* >, have no time
dependence. That is, the cross-correlation function between the noise processes, 7,,(r)

and 7,,(t —7), is only a function of the time lag 7and is time independent:
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Figure 2-5: Relation between ensemble average, <z, (r)>,, and ensemble variance time
function, o”(z), for the case of trial-to-trial latency variability in simulated time series.
The ensemble variance is shown by the thicker curve. The latency parameter expressed in
terms of phase (see text) is uniformly distributed in the intervals [-/2, 7/2] (top plot) and
[-31/4, 31/4] (bottom plot). The derived relations work well for this wide range of
latency variability: peaks in variance coincide with inflexion points of the evoked
response waveform, represented here by the ensemble average, and valleys in the variance
coincide with extrema of the ensemble average. The simulated evoked signal s(f)
consisted of two full cycles of a sinusoidal waveform. Here the amplitude, variances and
time are given in arbitrary units and the number of trials used was 2000.
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Figure 2-6: Relation between ensemble average, <z,(¢)>,, and ensemble variance time
function, o2 (t), for the case of trial-to-trial amplitude and latency variability in simulated
time series. The same model as in Figure 2-5 was simulated and the ensemble variance is
again shown by the thicker curve. Amplitudes were taken from a uniform distribution
over the interval [0, 4]. The latency parameter expressed in terms of phase (see text) was
uniformly distributed over the following intervals: [-w/10, w/10] (top plot), [-/4, 4]
(middle plot) and [-7/2, 7/2] (bottom plot). When the amplitude variability dominates
(top plot), the ensemble variance peaks coincide with extrema of the AERP. As the
latency variability increases, amplitude and latency are balanced, resulting in a single
peak being observed (middle plot). As latency variability increases even further, the
variance peaks coincide with inflexion points of the AERP waveform, and variance
valleys coincide with extrema of the AERP (bottom plot). A total of 2000 trials were
employed. Amplitude, variances and time are given in arbitrary units.
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Coony (B.8) = Cpp (0) =< 1y, (O, (6 = T) >, 1< [, (OF >, <[17,,(t—DF >, .
The cross-correlation function between the two evoked signals, considering the case of
trial-to-trial amplitude variability, is given by:

<(aq,—< a,,_>)(a2,— <a,, >)>5(t)s,(t—7) —+K, (2.35)
\/< [a,—<ay, >F >y<la,,— <a,, > >|5,@®)||s, (¢ — 7)|

Cslsz (f, )=

for 5,(t)#0, s,(t—7)#0 and where K is the correlation coefficient of the two random
amplitudes. Although ICSlSl (z,2)] is a constant, C ¢ (7,¢) may flip between positive and
negative values of K, depending on the sign of the product s,(¢)s,(¢—7) which may
change in time for a given time lag. Thus, the very presence of the variable signals in the
VSPN model already makes possible temporal modulations of the cross-correlation

function between the two time series, C,, (7,?), albeit in a simple and very stereotypical

4z
way. The interplay between signals and noises can lead to more complex and significant

temporal modulations of C, , (7,?), as we consider below.

Let SNR represent the signal-to-noise ratio, defined as SNR,(¢) = o‘ﬁl (t)/ of,l (9]
and SNR,(t—-17)= a'i (t-7) / afh (t — 7). Dividing both the numerator and denominator
by 6, @)o,, (t—17), and after algebraic manipulation, Equation (2.34) can be rewritten

as:

JSNR,())SNR,(t - 7)Cs s (7,8)+C, . (7)
JSNR, (1) +1,/SNR,(t - 7) +1 ’

C,., ()= (2.36)

It is clear that complex temporal modulation can result depending on the time course of

the signal-to-noise ratios. In particular, as the product of the signal-to-noise ratios,
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SNR,(t)SNR,(t—17), increases, the cross-correlation function approaches the evoked

signals’ cross-correlation function, ie., C ., (z,t)—> Cglsz (7.,1). As seen in the previous
section, fluctuations in the signal-to-noise ratios are expected to occur since the signals’
variances have their time course modulated by the square of the AERP waveform. Two
main characteristic cases showing this effect, referred to as the time-dependent signal-to-

noise ratio effect, are discussed below.

Case 1. Transient increase’ in cross-correlation. To illustrate this effect, consider
the situation where for a given time lag zwe have that Cs ¢ (7,1)=K > C, , (7.t) and that
SNR,(t) = SNR,(t— 7). Thus the stimulus phase-locked components in the residual time
series co-vary at a level greater than that of the ongoing noise. Equation (2.36) then

becomes:

SNR,(1))K +C T
C., (1',t)= l( ) ’ll’h( ).
=2 SNR,(1)+1

2.37)

This function is a monotonically increasing function of SNR, (), and if we assume that
o> (1) is constant, C,_ (,#) will follow the profile of o3 (¢). Therefore, peaks of the
cross-correlation function will coincide with peaks in the variance of the stimulus phase-
locked component, and hence, as demonstrated above, with extrema of the AERP. This
predicted signature will be demonstrated in the analysis of LFP data that follows,

suggesting that this case represents a realistic situation. The possibility will be discussed

that cross-correlation increases that are actually due to signal-to-noise ratio variation
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might be misconstrued as reflecting modulation in the level of synchronization between
two neuronal populations.

An example of this effect is now provided, with two simulated time series
described as: z;,(f) =a,s(t)+n,,(t) and z,,.(¢) = a,s(t)+1,,(t). The time series share a
common signal that is given by s(t) = H(t)sin(@?), consisting of two cycles (period T =
50), existing from ¢ = O to ¢ = 100, and zero elsewhere (Figure 2-7). H(r) is a Hanning
window. The ongoing activities are modeled as zero-mean, unit-variance, Gaussian,
white-noise processes. The single trial amplitudes a, are the same for the two channels
and are drawn from a uniform distribution over the interval [0, 4]. The zero-time-lag,
point-by-point cross-correlation is computed according to (3.3). As expected, it peaks at
the same times as the variance of the residuals (i.e., at the signal-to-noise ratio peaks) and
oscillates at half the period of s(t).

For situations where the main characteristic frequencies of s,(t) and s,(7) are
significantly different, peaks in the cross-correlation function may no longer coincide
precisely with peaks in variance, although as before, the same time-dependent signal-to-
(z,.0)—> Csls; (7,1) as the signal-to-noise ratio

noise ratio effect will be observed, i.e. C,_,

increases (Figure 2-8).
Case 2. Transient decrease in cross-correlation. We next consider the situation

where the stimulus phase-locked components S,,(tf) and S,,(t—7) in the residual time

2 We actually refer to “increase” or “decrease” of the absolute value of the cross-correlation
function. Also, we refer to peaks in cross-correlation function in the sense of peaks in its absolute value.
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series do not co-vary, i.e., <(a,,—<gq,, >)a,,— < a,, >)> =0, but the ongoing activities
are correlated, i.e., <7, @), @¢—-7)> = Cyn, (7)>0. Assuming as before that the time
dependence of a‘fh () and a‘fh (t—17) are weak, then the value of the observed cross-
correlation C,_ (7,7) will still be modulated by the time dependence of the product of the

signal-to-noise ratios. As the signal-to-noise ratio product increases, the observed cross-
correlation time function approaches that of the stimulus phase-locked components,
which is zero. In practice, the resulting modulation could be misconstrued as a short
transient desynchronization episode between two recorded neuronal populations (see
Figure 2-9).

For frequencies f related to the main oscillatory components of the evoked signals,
the same effects described in cases 1 and 2 will also be observed in the time-varying

spectral coherence function:

|< 81, (Fu083,(F.0) >, + <1, (f. )03, (f.0) >,
J< IS, (£, t)|2 >, +< [1;1,(f,t)|2 > J< |Sz,(f,t)|2 > +< |r/2,(f,t)|2 >

C,., (f1)=

(2.38)
which is computed in a sliding time window centered at time ¢. This can be easily verified
considering the similarity between equations (2.38) and (2.34).

Even though we have only considered fluctuations in signal-to-noise ratio that
originate from trial-to-trial amplitude variability of the evoked signals, latency variability
will result in similar fluctuations, and consequently in temporal modulation of the same

interdependence measures. For latency variability that is not too large, peaks in the signal-
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to-noise ratios are expected to coincide with inflexion points of the AERP waveform,
rather than with extrema as in the case of amplitude variability just described. For the
more realistic case where both amplitude and latency variability occur, the combined
effect will depend on which one dominates the modulation of ensemble variance, as

exemplified in Figure 2-6.
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Figure 2-7: Time-dependent signal-to-noise ratio effect on the modulation of the cross-
correlation time function: transient increase I. The two channels share a common evoked
response s(¢) (top plot) whose amplitude is drawn from a uniform distribution over the
interval [0, 4]. Each channel’s ongoing activity was modeled as independent zero mean
and unit variance white Gaussian noise. In the bottom plot, the zero lag cross-correlation,
C(t), (thick curve) and the ensemble variance az(t) time functions are shown. The
variance (and the signal-to-noise ratio) of the shared evoked component oscillates at 2
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the period of the original sinusoidal component. As a consequence, the cross-correlation
time function also oscillates with the same period, with peaks coinciding in time with
peaks in the variance, or equivalently, with extrema of the evoked response. The
ensemble consisted of 2000 simulated trials. Amplitude, variances and time are given in
arbitrary units. The ensemble variance time functions of each channel are approximately
the same and only one of them is shown.
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Figure 2-8: Time-dependent signal-to-noise ratio effect: transient increase II. Top:
simulated evoked responses, s(z), from two channels. Parameters for the evoked response
waveforms, amplitudes and ongoing noise are the same as in Figure 2-7, except that the
periods of the two evoked signals are slightly different. Bottom: zero lag cross-correlation
C(®) (thick curve) computed from an ensemble of 2000 simulated trials composed of the
evoked responses linearly combined with noise. The extrema in the cross-correlation
function in general may not agree with extrema of s(t) or equivalently with peaks of the
ensemble variance from each channel. Amplitudes and time are given in arbitrary units.
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Figure 2-9: Time-dependent signal-to-noise ratio effect: transient decrease. Top:
simulated evoked responses, s(1), from two channels. Parameters for the evoked response
waveform and amplitudes are the same as in Figure 2-7, except that the trial-to-trail
amplitudes for the common evoked responses for each channel are independent, while the
ongoing noise is now correlated. Bottom: ensemble variance o(1) and zero lag cross-
correlation C(¢f) time functions, computed from an ensemble of 2000 simulated trials
composed of the evoked responses linearly combined with noise. The cross-correlation is
shown by the thick curve. Here the signal-to-noise ratio effect appears as a transient
decrease in cross-correlation that could resemble a transient desynchronization event.
Peaks in the variance time function of the time series from each channel coincide with
minima of the cross-correlation time function. The ensemble variance time functions of
each channel are approximately the same and only one of them is shown.



Chapter 3

Event-Related Transients in
Interdependence Measures:
Experimental Results

The predicted effect on interdependence measures derived in Chapter 2 for both
the nonlinear gain effect and for the trial-to-trial variability of cortical LFP responses are
now investigated in an experimental data set involving a visuo-motor pattern

discrimination task executed by monkeys.

3.1 Methods

3.1.1 Visuo-Motor Pattern Discrimination Task
Experiments were performed on four macaque monkeys (LU, GE, PE and TI) in
the Laboratory of Neuropsychology at the National Institute of Mental Health. Animal
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care was in accordance with institutional guidelines at the time. A detailed description of
the experiment has previously been presented (Bressler, Coppola, & Nakamura, 1993).
The monkeys performed a visual pattern discrimination task in which they sat facing a
visual display screen. Each trial began with self-initiated depression of a hand lever with
the preferred hand. Following a random interval from 0.5 to 1.2 s, a visual stimulus
appeared on the screen for 100 ms. The stimulus was one of two pattern types: four dots
arranged as a diamond or as a line. The monkey indicated its discrimination of line and
diamond patterns by releasing (GO) or maintaining (NO-GO) pressure on the lever. The
monkey received a water reward for correct GO performance. GO and NO-GO trials were
randomly presented with equal probability in 1000-trial sessions. The contingency
between stimulus pattern and response type was reversed across sessions. The present
study focuses on the initial stages of the visual evoked response to presentation of the line
pattern type. For each ensemble, the following numbers of trials were used: 2344, 888,
914 and 2053 for the monkeys LU, GE, PE and TI, respectively. For each monkey, the

ensemble of trials was balanced for response type (GO and NO-GO).

3.1.2 Recording and Data Preprocessing

LFPs were sampled at 200 Hz from chronically implanted surface-to-depth
transcortical bipolar electrodes at 11 to 15 cortical sites in the cerebral hemisphere
contralateral to the preferred hand. Approximate localization of the electrodes in each
monkey is shown in Figure 3-1. Each trial was recorded from approximately 115 ms pre-

stimulus onset to 500 ms post-stimulus. The LFPs in each trial were linearly detrended,
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60 Hz removed, and normalized to zero mean and unit variance (time normalization).
After these preprocessing steps, the AERPs (ensemble averages) and ensemble variance
time functions were computed, and constitute then normalized quantities. In addition,
each ensemble of trials was normalized at each time point to zero ensemble mean and
unit ensemble variance (ensemble normalization). The resulting residual time series were
employed in the computation of the phase histograms, cross-correlations and spectral

quantities described below.

3.1.3 AMVAR Spectral Estimation

Power and coherence time functions were estimated by the application of
Adaptive Multivariate AutoRegressive (AMVAR) models to the residual time series (see
Chapter 1, Section 1.2.2). Each single trial residual (600 ms long) was divided in 110
consecutive and overlapping (shifted by one data point) windows of 10 points (50 ms)
each. A MVAR model of order 5 was adaptively computed for each successive window
using the LWR algorithm (Haykin & Kesler, 1983). A spectral matrix was derived for
each time window from the model coefficients, and then used as the basis for computing
power and coherence spectra in the range of 1 to 100 Hz. The squared coherence values
were used. The moving time windows then allowed the construction of power and
coherence time functions for any frequency bin. AMVAR spectral estimation was
employed instead of the traditional nonparametric approach of directly applying the
Direct Fourier Transform (DFT) to the time series data because the DFT is an extremely

biased estimate when used in such short time windows. The choice of 50 ms as the time
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window duration came from previous experience with the application of AMVAR
analysis to this data set (Ding, Bressler, Yang, & Liang, 2000). Overall, the use of short
time windows in this paper was motivated by the need for tracking nonstationary transient
cortical processes on a sub-second time scale. Particular attention was given to power and
coherence at the 12 Hz spectral component. This had two main motivations. Following
the VSPN hypothesis, the stimulus phase-locked component in the residual should have
the same frequency content as that of the AERP. For many of the channels having a
significant evoked response, the early post-stimulus portion of the AERP was found to
have a clear characteristic oscillation with a period around 80 ms (12.5 Hz). In agreement,
previous results on this data set (Bressler, Ding, & Liang, 1999) highlighted the existence
of peaks near 12 Hz in power and coherence spectra for many cortical sites, especially
during the early stages of the evoked response (up to approximately 200 ms after stimulus
onset). The software for the AMVAR algorithm was coded by the author in MATLAB,

and a standalone C executable was then generated with the MATLAB C-Compiler.

3.1.4 Absolute Phase Histograms

In order to compare predictions of the SPN and VSPN models regarding the
distribution of phase, spectral phase estimates from Fourier transformed single trial
residual time series were computed. In AMVAR spectral estimation, absolute phase
information for single trials is lost and cannot be recovered. Alternative methods for

calculating the instantaneous phase, such as the Hilbert transform and complex
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Figure 3-1: Sites for the transcortical electrodes placement. Labels: striate (str); prestriate
(pst); posterior inferior temporal (pit); anterior inferior temporal (ait); posterior superior
temporal (pst); anterior superior temporal (ast); posterior parietal (ppr); somatosensory
(som); motor (mot); premotor (prm); frontal (frn). Recordings in LU and TI are from left
hemisphere.
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demodulation, were considered inadequate mainly because they would require narrow
band-pass filtering of the data, and consequently high order filters and very long time
segments of data. We approached the phase estimation problem in terms of optimal fitting
in the least square sense. It is known that the Fourier transform of a time series at a
specific frequency represents an optimal fit of the time series by sine and cosine functions
at that frequency (Chatfield, 1995). For this reason, the FFT was used to obtain single
trial phase estimates for constructing the phase distribution. The choice of window length
for the FFT was constrained by three factors: a) the use of short windows to track the time
evolution of the phase distributions from pre-stimulus to post-stimulus periods; b) the
FFT constraint on the window length being a power of 2 (the altemnative of zero padding
introduces artifacts in the computation of phase distributions); and c) the choice of the 12
Hz Fourier component as an indicator of the main characteristic frequency of the AERPs .
These constraints resulted in the following procedure. FFTs were performed on a time
window (80 ms long) moving one data point at a time, from 50 ms before the stimulus
onset to 350 ms after. The phase estimates of the 12 Hz (12.5 Hz being the actual
frequency since we are using a 80 ms window) components for a window starting at time
t, from the whole ensemble of single trials, were then collected to build the phase

histogram at time ¢ for a specific channel and subject. Each histogram’s bin width was set

to /50 radians.
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3.1.5 Testing for Departure from Uniform Phase Distribution

The SPN model predicts a uniform phase distribution. To assess whether a given
absolute phase distribution departed from the uniform distribution, the modified Kuiper
test (Fisher, 1995) for circular data was employed. In this procedure, for a specific time
window, the linear order statistics x;, =¢,/27%,...,x, =@, /2x were first calculated,
where @¢_ was the phase of the 12 Hz Fourier component for trial r. Second, we obtained

from the ensemble of R trials the statistics:

Di = max(—l-—xl,%—xz,...,l—-x,)

R . @.1)
D; = max(x,, x. —l X —3 X —5:-1-)
R 19-%2 R, 3 Rv---v r R
Ve = D; + Dg. (3.2)

Third, we computed the final statistic V = V,(R"? +0.155+0.24/ RY?). V was compared
to critical values (V,) given by the Kuiper modified statistics. At the significance level of
p < 0.01, V.(0.01) = 2.0. Since the phase distributions were computed as functions of time
with the sliding window approach, the Kuiper V was also calculated as a time function

for each channel from each monkey.

3.1.6 Cross-Correlation Time Function

The cross-correlation at time ¢ between the residual time series from a channel

pair z,;(¢) and z,(¢#) was computed using
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R
> [z, (- <2, >z, (t — D)~ < 2,,(t —7) >,]
C,.,(.0)=—= . 33

R R
\/Z[zl,(r)—<z.,(t) > [z, -1~ <2, t-7) >,
r=I r=1

where 7is the time lag and < z;,(¢) >, denotes the trial ensemble average at time r. The
cross-correlation was smoothed by computing it on the low-pass filtered (-3db at 22 Hz)
and pre-processed residual time series. Zero-phase forward and reverse digital filtering
was employed to prevent phase distortion (FIR2 and FILTFILT functions from

MATLAB, version 6, Natick, MA).

3.2 Single Channel Quantities: AERP, Variance and Power

Predictions derived from the nonlinear gain modulation and from the VSPN
model in Chapter 2 were tested using the macaque LFP data. Figure 3-2 shows example
time functions of AERP, variance, and power at 12 Hz (see Methods for the choice of this
specific frequency) from selected channels for each of the four monkeys. The AERP
functions often exhibited several extrema. The variance function followed the expected
temporal profile from the VSPN model with amplitude variability as the main
contributor: the peak times roughly coincided with the times of one of the first two
extrema of the AERP. The power at 12 Hz computed from the AMVAR model also
followed the same predicted time course but in most cases with less temporal resolution,
since its computation required a time window of 50 ms duration, which smeared the

temporal structure.
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We note that not every channel showed clear AERPs and peaks in the variance
functions. For those channels that exhibited clear peaks, we examined the predicted
correspondence between the time of the largest variance peak and the time of the largest
AERP extremum. The scatter plot in Figure 3-3 combines the data from 30 channels from
the four monkeys. The plot displays a general monotonic relation with points clustering
around a line having slope of 0.74 (the expected slope from the VSPN model for the case
of amplitude variability is a slope close to 1). The computed correlation coefficient was R
= 0.87 (R* = 0.76). The same analysis for each individual monkey yielded the following
results: GE, R = 0.94, including 6 channels in the striate, pre-striate, and parietal cortices;
LU: R=0.72, including 8 channels in the striate, pre-striate, inferior temporal, and
superior temporal cortices; TI: R=0.89, 9 channels in the striate, pre-striate, temporal, and
frontal cortices; and PE: R=0.97, 7 channels in the striate, pre-striate, inferior temporal
and pre-motor.

Typical examples of power modulation in different frequency bands are shown in
Figure 3-4. Commonly, during the event-relate response (as evident by the AERP, power
increases around 12 Hz are accompanied by decrease in power in higher frequency bands.
A particularly striking feature is the transient power modulation in the parietal sites. An
example is provided in Figure 3-5. The single trial time series show pre-stimulus activity
concentrated around 20 Hz, which is “turned off™ just after sensory activation, returning
after the event-related response is over. The power spectrum clearly reflects this

phenomenon.
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Figure 3-2: Example time functions of ensemble mean (AERP), variance (& (1)) and
power at 12 Hz. To facilitate the comparison between the shapes, all quantities were
normalized by their own maximal amplitude. Stimulus onset is at time 0 ms.
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Figure 3-3: Time of the largest peak in the variance function plotted against the time of
the largest AERP extremum. Results from 30 channels from the four monkeys are
shown. The dashed line is the least square linear fit (slope equal to 0.74) relating the
peak-times of the AERP and variance time function. The VSPN model predicts a slope
close to 1 for the case where the amplitude is the main source of trial-to-trial variability.
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Figure 3-4: Example of an AERP function and power functions from a pre-striate (pst2)
site from the monkey GE. The top plot shows the AERP. In the three bottom plots, the
power spectral density function is shown. Each line represents the power at a specific
frequency computed from a short (50 ms) moving window (see Methods). In the second
plot (from top to bottom): 9 to 12 Hz (peak in power at 12Hz); third plot: 20 to 24 Hz;
and fourth plot: 40 to 50 Hz. In the last two plots, power decreases with increasing
frequency.
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Figure 3-5: Event-related modulation of ongoing ~ 20 Hz oscillation. Top plot shows a
single-trial example of abrupt perturbation of ongoing ~ 20 Hz oscillation at a parietal site
(pprl monkey GE) with the advent of the stimulus-evoked response (the AERP appears in
the thicker line). The single-trial amplitude has been subtracted by its own mean and
normalized by its standard deviation. The bottom panel shows the corresponding contour
plot of the power spectral density time function. Peaks in power are represented by the
centers. Note the shift of the peak from ~ 22 Hz to ~12 Hz. The same phenomenon
appears in recordings form somatosensory and motor cortices, and it is also accompanied
by modulation in coherence. During the pre-stimulus period, there is significant
coherence among all the parietal, somatosensory and motor cortices, suggesting that they
form a preparation network. After the initial states of sensory stimulation, this beta
coherence pattern is then replaced by coherence around 12 Hz, as mentioned before,
simultaneously to the changes in power (see Figure 3-12).
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Bimodal Phase Distributions

When amplitude variability is the main factor in the trial-to-trial variability of the
evoked response, the VSPN model predicts a bimodal phase distribution for the residuals.
This was tested by computing phase distributions of the 12 Hz component over the length
of the trial. The Kuiper V statistic was computed for each phase distribution. Phase
distributions having a Kuiper V value greater than V. = 2.0 were judged to be significantly
different (p<0.01) from the uniform distribution.

Figure 3-6 shows time functions of the Kuiper V statistic for selected channels
from each monkey. As predicted by the VSPN model, the departure from uniform phase
distribution is only observed following stimulus onset, during the stimulus evoked
response. We found that all channels for all four monkeys had uniform phase
distributions in the pre-stimulus period. By contrast, most channels in each monkey
showed departure from the uniform distribution during stimulus processing. Notice that
the maximum of the Kuiper V function tends to occur near 100 ms, which is about the
time when maximal variance is observed (Figure 3-2). Table 1 lists the maximum Kuiper
V computed during the post-stimulus period (0-200 ms) for all the channels and subjects.

Since the Kuiper statistic only tells whether or not a distribution is uniform, the
phase distributions that significantly departed from uniformity were visually inspected to
further determine whether or not they were bimodal. Figure 3-7 shows a representative
phase distribution from each monkey, demonstrating clear-cut bimodality. For all the

channels where we observed departure from the uniform distribution, the phase
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distributions were ascertained to have bimodality. By comparison, an example of a

uniform distribution from a pre-stimulus time window is presented in Figure 3-8.

Table 3.1. Maximum Kuiper V during post-stimulus period: 0-200 ms. (Critical V. = 2.0,
p <0.01). See Figure 3-1 for the site label references.

Site GE LU TI PE
strl 2.7 4.2 55 24
str2 3.5 6.1 4.7 2.7
str3 4.2 6.0 4.3
pstr 3.3
pstrl 4.2 4.0

pstr2 1.9 2.6

pit 3.7 6.1 6.7 4.6
ait 4.2 4.7
aitl 2.2

ait2 3.7

pst 4.1 14 1.5
ast 2.2 24

ppr 1.8

pprl 3.7 1.8
ppr2 3.9 1.6
som 1.8

soml 18

som2 2.1

mot 2.3 2.1 33
motl 2.1

mot2 1.2

prm 3.5 3.4 1.7
prml 2.7

prm2 24

fr 2.8

fml 2.8 24

frn2 1.8 35

frm3 2.2 2.7

frn4 2.8
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Figure 3-6: Four representative Kuiper V time functions. Notice that, during the pre-
stimulus period, the absolute phase distributions of the 12 Hz Fourier components are not
significantly different from uniform. During the evoked response, the distributions depart
significantly from the uniform distribution. The horizontal line represents the critical
level V. = 2.0. Stimulus onset is at time 0 ms. The phase of the 12 Hz component was
obtained by applying FFT on data segments from a moving window centered at time ¢.
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Figure 3-7: Bimodal phase. Four representative examples of absolute phase distributions
of the Fourier component at 12 Hz (see Methods), computed from a time window
centered at the times 95 ms (GE), 80 ms (LU), 80 ms (TI) and 75 ms (PE) during the
evoked response period. The modes of the distribution are separated by approximately 1
radians, as expected from the VSPN model having amplitude variability as the main
factor in the trial-to-trial variability of the evoked responses. The dispersion around the
modes depends on the signal-to-noise ratio of the stimulus phase-locked component in
the residuals and also on the latency variability of the evoked response.
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LU (str3)

Figure 3-8: Uniform phase. Example of a uniformly distributed absolute phase
distribution of the Fourier component at 12 Hz (the time window is centered at 10 ms
after stimulus onset).
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3.3 Cross-Correlation and Spectral Coherence

Modulations in cross-correlation time functions were observed to follow similar
time courses as the signal-to-noise ratio at a variety of cortical sites, including striate,
prestriate, inferior temporal, parietal, motor and prefrontal. Examples are shown in Figure
3-9. The oscillatory nature of the cross-correlation time function predicted by the VSPN
model, and the temporal relation of its peaks with peaks in variance, are evident. The
period of the oscillations in the cross-correlation functions agrees roughly with that in the
variance functions, and is half the period of the main AERP oscillatory component, as
expected from the VSPN model.

To estimate the prevalence of this effect, we needed to examine the time relation
between the time peaks in variance and cross-correlation for the whole data set. A
problem that complicated this analysis was that the AERPs and variance functions from
different channels often did not peak at the same time. This discrepancy was perhaps due
to temporal delays in direct or indirect transmission between the channel pair, or to the
difference in the arrival times of a common input signal to both channels. To circumvent
this difficulty, we chose the time lag 7 in the cross-correlation function as the separation
time between the largest variance peaks from each channel in the concemed pair. When
the main characteristic frequency of the AERPs from two channels are similar and
amplitude variation is the main factor for the temporal modulation of variance, then the
VSPN model predicts that the time of the largest peak in the cross-correlation function,
lagged by 7, should coincide roughly with the time of the earliest large variance peak of

the two channels. This prediction was tested in a total of 144 channel pairs from the four
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monkeys, selected according to the following criteria: (1) existence of clear peaks in the
AERPs and variance functions; (2) the existence of non-uniform phase distributions
events during the evoked response period; and (3) exceeding a conservative cross-
correlation threshold (jcross-correlation extremum| 2> 0.2). Figure 3-10 shows the relation
between cross-correlation and first variance peak times. Superimposed is the line (slope ~
0.94) obtained from the least square linear fit for the relation between peak-times in
variance and cross-correlation. The VSPN model predicts a slope close to 1 for the case
where the trial-to-trial variability in amplitude is the main contributor factor to
fluctuations in signal-to-noise ratio. The correlation coefficient for the data in Figure 3-10
is R = 0.87 (R? = 0.76), supporting the role of the time-dependent signal-to-noise effect
on the temporal modulation of the cross-correlation function. The coefficients computed
individually for each monkey were: LU: 44 channel pairs, R = 0.90; GE: 41 pairs, R =
0.92; TI: 43 pairs, R = 0.86; PE: 16 pairs, R = 0.94.

Similar time-dependent signal-to-noise ratio effects were also observed for
coherence time functions. Two important characteristics were detected. First, a commonly
observed effect was the existence of peaks around 12 Hz in the coherence time function
during the post-stimulus period. Those peaks tended to coincide with 12 Hz peaks in the
power spectrum time function of at least one of the two channels contributing to the
coherence. As shown in the beginning of this section, power peak times were correlated
with changes in the ensemble variance time function and AERP. Figures 3-11, 3-12, 3-13
and 3-14 illustrates the relation between power and coherence peaks at 12 Hz. Second,

since the computation of the spectral quantities required time segments of about 50 ms or
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longer, the coherence time function resembled a smoothed version of the cross-
correlation time function (Figure 3-15). Thus, although modulation in the coherence time
functions clearly occurred, the relation between the peaks in coherence and the extrema of

the AERP or the peaks in variance, was not always as evident.

str3 - ppr2 str2 - pit ait - frn4 pstr — mot

AERP

S o8 0.8 0.8 0.8
b ?AVMG
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0 150 300 0 150 300 0 150 300 0 150 300
time (ms) time (ms) time (ms) time (ms)

Figure 3-9: Oscillatory modulation of cross-correlation time functions. Hlustrative
examples of zero-lag point-by-point cross-correlation coefficients from four channel pairs
are shown (bottom row) with the respective channels’ AERPs (top row) and ensemble
variances (center row), for four monkeys (from left to right: GE, LU, TI and PE). The
variance was computed from low-pass filtered (-3 dB at 22 Hz), AERP-subtracted, and
variance-normalized time series. Stimulus onset is at time O ms. The period of the
oscillations in both variance and cross-correlation functions corresponds approximately to
half the period of the main characteristic oscillation of the AERPs. Furthermore, peaks in
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variance of at least one of the channel in the pair and extrema in cross-correlation tend to
coincide in time.
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Figure 3-10: Peak-time of the lagged point by point cross-correlation time function versus
the peak-time of the variance function for the channel with the earliest peak in variance in
the pair (see Methods and text). Data from 144 channel pairs selected from the 4 monkeys
are shown (see text). Because of the time resolution employed (sampling interval of 5
ms), many points are superimposed. The dashed line is given from the least square linear
fit (slope equal to 0.94). The VSPN model predicts a slope close to 1 for the case where

amplitude variation is the key factor for the temporal modulation in the signal-to-noise
ratio.
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Figure 3-11: Event-related changes in power spectrum density and coherence time
functions I. In both pre-striate (prstl) and frontal (frnl) channels (monkey GE), the event-
related changes in power and coherence concentrate around the 12 Hz component. Also,
peaks in power and coherence roughly coincide in time. The spectral quantities were
derived from the AMVAR modeling of the residual time series (see Methods). Stimulus
onset is at time 0 ms. Squared coherence values are used.
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Figure 3-12: Event-related changes in power spectrum density and coherence time
functions II. In both parietal channels (monkey GE, pprl and ppr2), the event-related
changes in power and coherence concentrate around the 12 Hz component, with a
simultaneous drastic decrease in the ~ 22Hz power and coherence. The same type of
pattern appears among channel recordings from somatosensory and motor cortices. Peaks
in power and coherence roughly coincide in time. The spectral quantities were derived
from the AMVAR modeling of the residual time series (see Methods). Stimulus onset is
at time 0 ms. Squared coherence values are used.
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Figure 3-13: Event-related changes in coherence spectrum time functions. Another
examples (monkey GE) for striate (str3) and pre-striate (pstrl), top plot, and striate (str3)
and motor (mot), bottom plot, where the same transient in 12 Hz coherence is observed.
The spectral quantities were derived from the AMVAR modeling of the residual time
series (see Methods). Stimulus onset is at time 0 ms. Squared coherence values are used.
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Coherence (12 Hz)

Figure 3-14: Event related transient increase in 12Hz coherence in monkey GE: summary.
Around 120 ms there is a large widespread transient increase in the 12Hz coherence
among most of the channel pairs as evidenced by the colored lines linking channel pairs
with significant coherence (top plot). This widespread event is accompanied by transient
increases in power in the same frequency as well (not shown). A histogram for the
maximum coherence values around 120 ms is shown in the bottom plot, computed over
155 channel pairs. Significance level for the coherence values were established through
bootstrap with resampling. In general, our results indicate that coherence values higher
than 0.1 are statistically significant. Similar summaries for the other three monkeys are
shown in Figure 4-8.
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Figure 3-15: The time-dependent signal-to-noise ratio effect on the coherence time
function. The shape of the zero-lag cross-correlation C(t) is clearly related to the
ensemble variance and AERPs. The squared coherence time function of the 12 Hz
component C3(12,t) resembles a smoothed version of the cross-correlation time function,
because of its computation within a time window. The plotted quantities refer to striate
and posterior inferior temporal sites (monkey LU).
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3.4 Discussion

Overall our results point to the predominance of the effect due to trial-to-trial
variability of amplitude and latency on the statistical measures. The fact that bimodal
histograms were observed constitute a strong indication that phase locked components
exists in the residual time series as a result of amplitude variability (Figures 3-6 and 3-7).
Thus the trial-to-trial variability is in place, and the remaining question is about the
strength of its predicted effects. The modulation in power and variance and their relations
to the AERP initially suggest the possibility of the gain modulation according to the
proposed nonlinear model. However, more careful examination reveals this model’s
shortcomings. For instance, we would expect from the nonlinear model that an extrema of
the AERP could coincide in time with peaks in variance and power, but not two opposed
extrema as observed in some cases (Figure 3-2). This speaks more in favor of the
amplitude variability. Further, contrary to the prediction that the gain modulation would
be similar for a range of different frequencies (given the broadband characteristic of the
pre-stimulus ongoing activity), we observe power increases in the alpha band, and
decreases in the high frequency bands during the evoked response period (Figure 3-4).
Another remarkable example of this abrupt decrease in high frequency power from the
pre-stimulus to pos-stimulus period is the termination of the pre-stimulus narrow-band
(~20Hz) oscillation in parietal sites (Figures 3-5, 3-12). This event is also associated with
decreases in coherence in the same frequency among several sites in the parietal,
somatosensory and motor cortices. This type of modulation in the beta and gamma bands

could be the result of gain modulation. However, it seems to exhibit a more complex
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nature than the one presented by the proposed nonlinear model. For this reasons, we
discuss the experimental results more in the context of the predictions of the VSPN
model, especially those related to the trial-to-trial variability in amplitude. The topic of
event-related modulation of ongoing activity will be addressed again in more detail in

Chapter 4.

3.4.1 Variability of Cortical Recordings

In the traditional SPN model, trial-to-trial variability is entirely attributed to
independent ongoing activity, with which a repeatable (trial-to-trial stationary) evoked
response is linearly combined. The assumptions of linear combination and trial-to-trial
stationarity have often been questioned in the past: nonstationarity of the evoked response
has been considered as anothér possible source of variability in EEG and LFP recordings,
while multiplicative effects between ongoing and evoked activities have been treated as
leading to transient modulation of both of their variances. Substantial experimental
support for variability of the evoked response, including amplitude, latency and even
waveform variability, has been provided in previous studies (Coppola, Tabor, &
Buchsbaum, 1978; Horvath, 1969; Lange, Pratt, & Inbar, 1997; Mocks, Gasser, Tuan, &
Kohler, 1987; Woody, 1967). The issue of whether the neural system behaves in a linear
regime during the evoked response has been more controversial, with experimental
evidence either supporting {Ref. Arieli, Sterkin, Grinvald, & Aertsen, 1996; Azouz &

Gray, 1999} or contradicting the linearity assumption (Aertsen, Erb, & Palm, 1994;
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Chawla, Lumer, & Friston, 2000; Kisley & Gerstein, 1999; Vijn, van Dijk, & Spekreijse,
1991).

As a first refinement of the SPN model, the VSPN model assumes that the
stimulus-evoked response has a stereotyped waveform but that the amplitude and latency
of this waveform can vary from trial to trial. A number of possible factors may contribute
to this trial-to-trial variability. For example, slow changes of global brain state involving
arousal and attention could lead to fluctuations in the excitability of cortical and
subcortical neuronal populations, thereby causing variability in the magnitude and timing
of the evoked response (Brody, 1998; Mangun & Hillyard, 1991), without significantly
affecting the shape of the response. Also, in the context of visual evoked responses, eye
movements could change the location of retinal stimulation and consequently the location
of cortical excitation in retinotopically organized areas (Gur, Beylin, & Snodderly, 1997),
contributing to variability of the recorded activity from fixed electrodes. Trial-to-trial
variability could also be related to the previously observed dependence of single trial
evoked response amplitude on the level of pre-stimulus ongoing activity (Basar, Gonder,
& Ungan, 1976; Basar, Rahn, Demiralp, & Schurmann, 1998; Brandt & Jansen, 1991).
Although all these sources of variability are commonly considered to be a violation of the
stationarity assumed in ideally controlled experimental designs (Aertsen, Gerstein, Habib,
& Palm, 1989), we argue that some of them, like state dependent neural excitability,
constitute in practice an inevitable aspect of multi-trial experiments, even for situations

where the recording session might last only a few minutes.
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3.4.2 Observed Effects of the Trial-to-Trial Variability on Recorded Local Field

Potentials

Analysis of the local field potential data was intended to verify the predicted
effects of trial-to-trial variability of the evoked response in a very common type of
experimental design. Several lines of evidence for amplitude variability were: (1) the
predicted relationship between variance and AERP waveform; (2) the bimodal histograms
for phase of the 12 Hz Fourier component computed on residual time series; In all four
subjects, the majority of recorded channels showed phase distributions that, according to
the Kuiper V statistics, departed from uniformity, supporting the existence of stimulus
phase-locked signals in the residual time series. This effect was observed during the
initial period of the evoked response (50-200 ms) in all recorded cortical regions, from
the primary visual cortex to the motor and frontal cortices (Table 1 and Figure 3-5).
Visual inspection of the non-uniform distributions showed them to be clearly bimodal in
many cases (Figure 3-7). This implies that the signal-to-noise ratio was high and that the
latency variability was not severe. Large latency variability would lead to broader modes
in the phase distribution. In extreme cases, the distribution would look uniform. Low
signal-to-noise ratios would result in the distributions being dominated by the 12 Hz
component of the ongoing activity, which again would be expected to be uniform.

The VSPN model predicted that peaks in the ensemble variance should coincide
in time with extrema of the AERP for c-ases where amplitude variability is the main
contributing factor. Examination of the data revealed this to be approximately the case,

especially for AERP extrema before 150 ms (Figures 3-2 and 3-3). Deviations from this

95



prediction possibly arose because of substantial latency variability. Analysis of the power
spectrum time function revealed that the main increase in variance occurred for Fourier
components around 12 Hz, which was the main characteristic frequency of the AERPs
(Figures 3-2, 3-11 and 3-12).

Regarding interdependence measures, i.e. cross-correlation and spectral coherence
time functions, the VSPN model’s main implication was described in terms of a time-
dependent signal-to-noise ratio effect. Two main scenarios were described in Chapter 2,
Section 2.2.2. First, if the trial-to-trial amplitudes or latencies of the evoked responses
recorded from two channels co-vary, the time-dependent signal-to-noise ratio effect
implies that characteristic transient increases in the cross-correlation should be observed
during the evoked response period. In the second scenario, the trial-to-trial amplitudes or
latencies do not co-vary, but the pre-stimulus ongoing activity is correlated between the
two channels. In this case, instead of a transient increase in the cross-correlation, as
compared to the pre-stimulus period, a decrease should be observed. The results
presented in this paper related exclusively to the case of increase in cross-correlation and
coherence. As expected from the VSPN model, the event-related increase in cross-
correlation time functions was accompanied by event-related increases in 12 Hz power
and for many channel pairs, in event-related increase in coherence in the same frequency
(Figures 3-11, 3-12 and 3-13).

The relation between variance peak times and cross-correlation peak times (Figure
3-10) was nearly linear with slope close to one, supporting the hypothesis of amplitude

co-variation. Observed deviations may have originated again from latency variability or
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from two other factors. A complete coincidence between the peak times would be
observed if the AERPs of different channels were identical, which was not the case (see
Chapter 2, Section 2.2.2 and Figure 2-8). In the scatter plot (Figure 3-10), many channel
pairs were grouped together. Some of these channels may have had their statistical
interdependence arising from higher order interactions (e.g., indirect interaction through
one or more cortical areas). As in the hypothetical example of two parietal channels given
above, even though a common striate input might be the main factor contributing to the
modulation of their interdependence, it might only have a minor influence on the
characteristic shape of their ensemble variances. In the spectral domain, a much more
consistent time coincidence was observed between peaks in 12 Hz coherence and 12 Hz

power ( examples were provided in Figures 3-11, 3-12 and 3-13 ).

3.4.3 Separation of Stimulus Phase-Locked and Non-Phase-Locked Components in
Cortical Recordings

Event-related recordings commonly contain evoked and/or induced components
(Freeman, 1994; Pfurtscheller & Lopes da Silva, 1999) in addition to unrelated
background activity. The evoked component is usually considered to result from phase-
locked responses of cortical populations to thalamic afferents, while the induced
component is time-locked but not phase-locked to the stimulus, and results from transient
changes in neural parameters controlling interactions among cortical populations. The
evoked component tends to have a low frequency profile that can exhibit phase-locking

properties in the presence of latency variability. On the other hand, induced components
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tend to have higher frequencies (e.g. in beta or gamma ranges) and need more careful
analysis to discover. In the present work, induced activity and background activity are not
differentiated and are collectively called the ongoing noise component.

In summary, the observed event-related transient increases in variance, power,
correlation and coherence have a contribution from the SNR effect. What is left to
ascertain is the strength of this contribution. The observed effects could be originating
from combined nonlinear gain modulation (of a more complex nature than the one
initially proposed) and nonstationarities of the event phase-locked components. To clarify
this issue, a separation of the remnant phase-locked components in the residual time
series and the ongoing activity will be attempt in the next Chapter where a estimation

framework based on Bayesian inference is proposed.
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Chapter 4

Bayesian Analysis of
Single Trial Cortical
Event-Related Components

A common paradigm for the study of the relations between brain activity and
behavior is the recordings of event-related potentials over repeated presentations of a
sensory stimulus or task demand. The obtained recordings are commonly understood as
the linear combination of event-related signals relatively phase-locked to the event onset,
and ongoing activity. The ongoing activity includes event unrelated activity and possibly
also event-induced components that are not phase-locked but time-locked to the event
onset. Based on the classic signal-plus-noise model, the most common application of this
paradigm has been to capture the event-related potential by averaging across the ensemble
of trials, resulting in the Averaged Event-Related Potential (AERP). A weakness of this
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application is its assumption that the true event-related potential is invariant across trials
with respect to its waveform, amplitude and latency. Extensive evidence has led to more
realistic assumptions where trial-to-trial amplitude and latency variability are allowed.
The existence of this trial-to-trial variability implies that the ensemble mean is no longer
the optimal estimation of the event-related potential. Further, the separation between
these components and the ongoing activity is fundamental for the interpretation of event-
related modulation of statistical interdependence in multi-channel data as seen in the
previous Chapters. Also, the estimation of single trial amplitudes and latencies of event-
related potentials provides essential information for the understanding of information
processing stages in the cortex (Nowak & Bullier, 1997).

Several attempts to provide estimates of single trial event-related response
following maximum likelihood approaches have been presented before, e.g.: single trial
ICA (Jung, et al., 1999), and latency and amplitude of single trial evoked responses
(Jaskowski & Verleger, 1999; Lange, Pratt, & Inbar, 1997; Pham, Mocks, Kohler, &

Gasser, 1987; Woody, 1967). Here we provide a more comprehensive formulation.

4.1 Generative Model and Single Trial Parameter Estimators

We start from a multivariate linear generative model (Truccolo, Knuth, Bressler,
& Ding, in press) expressed as:

"lr(t)

<+

z,(7) 1 By Y 8,
: Do : , @.1)

Zpr (1) By, -+ Bpyy ASy(1) Nrer (1)

or in matrix form:
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Z,()=BS,(n+n,0, “4.2)
where z,,.(t) is the m™ channel recording at time ¢ and for the 7" realization or trial.
S, () represents a particular realization of the n™ event or source activity at the trial r,
B,, are the entries of a mixing matrix representing instantaneous and stationary source-
detector couplings, and #,,.(t) refers to an unpredictable component or process whose
density is specified by a set of parameters 8,. The sources or components S, (z) can be

modeled in many diverse ways, as for example, ARMA processes, continuous or discrete
time source waveforms, Taylor expansion of dynamical models, etc.
We approach the problem of solving for the components’ amplitudes, latencies

and waveforms, the parameters &, for the unpredictable components 7,,.(t) and the

matrix B, from a Bayesian perspective. According to Bayes theorem, the posterior
probability of model parameters M given the data D and prior information /, is given by:

where p(D{M,I) is usually referred as the likelihood and p(M|I) is the prior probability
of the model.
For the particular generative model in question, the posterior probability of the

model parameters given the data and prior information / is:

PUS™)}.B, (6, {Z®O}. D) =
PUZNONS®).B,{8,).1) p(IS®)},B.{8,)| D, (4.4)
PUZ®))
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where {-} represents the set of a specific parameter or data for the whole ensemble of
channels, trials, components and time points, p({Z(t)}|{S(2)},B,{6,},) is the likelihood
and p({S(®)},B, {0,,}]1) is the prior probability for the model parameters. From a rigorous

Bayesian perspective, the solution for the problem is the whole posterior probability. For
high dimensional data sets, sampling directly from the posterior probability density is not
feasible. The alternative is provided by Markov Chain Monte Carlo (MCMC) techniques
(Chen, Shao, & Ibrahim, 2000), where a Markov Chain on the parameters is designed
such that it converges to the posterior probability distribution in question. Once the
system is in equilibrium, the means, modes, covariances and other higher moments for
the parameters are computed from the sampled time series of the Markov chain.

Here, we consider a simpler approach by choosing the Maximum a Posteriori
(MAP) solution, i.e., the set of parameters that maximize the posterior. In the context of
Equation (4.3), the MAP solution for the model parameters M is

M=arg max,, [ p(D| M) p(M)] = arg max ,,[In p(M) + In p(D|M)]. (4.6)
It is interesting to notice that this solution is related to the Minimum Description Length
(MDL) principle seen in the Chapter 1, Section 1.2.2 when it was applied to the AR
model selection (order). The essence of the MDL principle is to minimize the length
(order) of a representation defined as:
|L(M, D)|= | L(M)}+| L(D using M)|, @.7)
where |:| denotes the length of the description and £ a description language. This can be

intuitively understood in the framework of a communication model, where a stochastic
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variable is being coded (Zemel, 1994). The sender takes as input a set of observations,
and sends an encoded message that the receiver decodes and uses to produce the output.
When the output of the receiver is identical to the input, then the me;ssage is called an
information-preserving description of the input. The output of the sender is a message
written in the description language £ of the receiver. This message conveys both the
model M, and the data D when encoded such that the model M can decode it; the term
| L(D using M)| is better understood as the errors or residuals, i.e., aspects of the data not
predicted by the model. Explicitly, the MDL principle advocates:
M = arg min,, | £L(M, D)|. (4.8)
The link between the MAP solution, Equation (4.6), and the MDL solution, Equation
(4.8), is provided by the Shanon Coding theorem (Cover & Thomas, 1991). Without
attempting rigor and considering only the case where the true probability distributions
(over discrete events with finite size representation) are known, the optimal code length
for a stochastic variable X is given by:
| L(x)|= —In[p(X = x)], 4.9)
where p(X = x) is the probability of the discrete event x. From this, Equation (4.8) can be
rewritten as:
M= arg min,, | .L(M, D)|= arg min,,[— In[p(M)] - In[p(D|M)], (4.10)
which is equivalent to the MAP solution M = arg max ,,[In p(M) + In p(D| M)].
It is known that the MAP solution of generative models similar to (4.2) gives

origin, depending on the choice of prior distributions for the model parameters, to a set of
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very important techniques. Examples include cluster analysis (K-means), PCA and Factor
Analysis (Dayan & Abbott, 2001; Hinton & Ghahramani, 1997) (see chapter 10 in the last
reference). Also, with certain special assumptions, as for example, noiseless recordings
with invertible matrix B, and spatially stationary and trial invariant independent sources
with non-Gaussian high kurtosis densities for their amplitudes, one can promptly derive
Bell and Sejnowski’s ICA algorithm (Knuth, 1997).

The above generative model is further specified in the context of event-related
cortical local field potential (LFP) recordings. It improves upon the classic signal-plus-
noise model (where linear superposition and trial-to-trial invariance are assumed) by
allowing variability of the single trials amplitudes and latencies of an invariant waveform
response. Consider the specific type of source activity representation:

Q.S (t - rlr)
S, ()= : : @.11)

ay syt —7Ty,)

and re-express model Equation (4.2) in component form:

N
Znr (1) = D By S, (8 = T, )+ 17, (D), 4.12)

n=1

where s,(z) is the n™ event-related response component with a trial-to-trial variable
amplitude and latency given, respectively, by a,(t) and 7, (¢r). The unpredictable
component 77, (¢), henceforth simply referred as ongoing activity, is now a zero mean

activity including both the true ongoing activity and other uncertainties originating from

measurement noise. The posterior probability can then be expressed as
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PUs, (O} (a,, 1 (7,1 BN (2, D). D =

Pz, O s, D). {a,, ). (7,1, B.{0,}. D p(s, (D} {a, }.{7,. }.B.{O,}D)
p{z. (D))

(4.13)
For this additive model, the likelihood p({z,, (t)}|{s.()}.{a,}.{7,}.B,{6,},]) turns out
to be simply the probability model of the ongoing activity: p(n()|{@,},I). This can be
shown by applying the transformation law for probabilities p(x{I)= p(y|I)|dy/dx|, or
more easily using marginalization as in the following the example. Consider the additive

model

y=x+e. (4.14)

From this, we write the conditional probability or likelihood

pGly. DPOID _ POy D) (4.15)
p(x| D) p(x| D)

pOlx, D=

Notice that p(y,x) can be derived applying the marginalization and multiplication rule of
the probability calculus as

p(y’xll) = Ip(yvx, 8’ I)d£
= [ p(y.xl&, Dp(e| Dde

= fp(ylx, &, Dp(x| &, Dp(e Dde. (4.16)

To enforce the condition on p(y|x, €, I) provided by the model y = x + &£, we assign a delta

function
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POlx.eD=8y—-x—¢). @4.17)
Thus, Equation (4.16) can be rewritten as
P, x| D) = [ 8(y - x~ &)p(x| &, Dp(el Dde. (4.18)
or
p(y.x|D) = p(x|e=y—x,D)p(e =y —x|I). 4.19)
Substituting Equation (4.19) into Equation (4.15), we obtain:

pixle=y—x,Dp(e=y—x{I) . (4.20)
p(x,I)

pO|x, D=

Finally, since x and & are assumed to be independent, i.e., p(x, £I) = p(x|p(d D),
pOlx, D)= p(e=y—x|I). 4.21)
In other words, for this type of additive model, the likelihood is simply given by the
probability model of the unpredictable terme.
In the absence of precise knowledge about the spatio-temporal correlations in the
ongoing activity and for inferential purposes only, we assign M(z) to be independent
identically distributed with a (unknown) time independent diagonal covariance matrix V

with diagonal entries given by &, i.e., V; = 67. In this way, Equation (4.13) is rewritten

as:

p({snr(t)}7 {anr}’{tnr}’B’ ar]l{zmr(t)}r I) =
pU{n..OHo,. D) pUs, (D} {a,}.{7,.}.B.o,|D). (4.22)
p({z,, (O}

When choosing the model for the likelihood, we apply the principle of maximum entropy.

When we have knowledge of the existence of some constraints on the value of a
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parameter, we assign a probability that maximizes our uncertainty while accommodating
the known constraints. That is, we take into account all the information at our disposal
without presupposing information we do not possess. We do this by maximizing the

entropy of the probability distribution subject to the known constraints. Thus, given the

constraint a,f, we assign to the likelihood the probability density that maximizes the

entropy of n(z), namely a Gaussian density. The posterior can then be rewritten as

p(la, }.{s,O). {7, },B. o |{z,, O}, D) =< p(a,}.{s,(O}.{z,}.B,0,|D

—MRT ] L&AL N -
@nol) 2 exp(— oy D3 2w ® =D B,a,s,@- r,,,)]ZJ
=1 r=1

nm =1 n=l

4.23)

For simplicity we assume that the matrix B and the component parameters a,,, 7,, and
5,(t) are independent and uniformly distributed, with appropriate cutoffs denoting a

range of physiologically reasonable values:

p(s(D)|I) = const.

p(alI)=const., for0<a<a,,,
p(tlI) = const., for 7, <T< T
p(B|I) = const.
Treating the ongoing noise variance as a nuisance parameter and assigning the Jeffreys
prior p(o,) = 6,', we marginalize the posterior over o, , i.e.,
p({anr}’ {Sn (t)}! {an}’ Bl {zmr(t) }’ I)
oo —~MRT 1 M T N
j o, Qno?) ? exp(- 352 3> >z - B,,a,s,0t-1,, )]2}10,,

R
n m=1r=1 t=1 n=1
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“4.24)

obtaining:

p({a, }{s, O} (7.}, Bl{z, ()}, D= p({a, } . {s,®)}. {7, }.B| D)

-MRT
—MRT M R T T2 .
2n) 2 I‘(ﬂ) (Z Z Z [z, (&) — Z B,.a,s,(t—7,, )]2)
m=1 r=1 t=1 n=l
4.25)

T. Given the choice of uniform

where I'( MRT

) is the gamma function evaluated at

distribution for the components’ parameters and dropping the constant term, Equation

(4.25) is simply:
~MRT
M R T ~ 2
p({a,}.{s,(O}. {7, 1Bz, (D}, T) o< (ZZZ[z - Zj - n,sn(t-r",)l) :
m=1r=1 t=1 n=1
(4.26)

Because waveforms, amplitudes and latencies are being estimated simultaneously, there is
degeneracy in the model. This problem is eliminated by constraining the norm of each
waveform component to equal 1 and the ensemble mean of the latency components to be
zero.

Intuition about the characteristics of the MAP solution can be gained by
examining the partial derivatives of the posterior with respect to the model parameters.

This examination will further lead to a practical and simple estimation algorithm. Let

M R T N
Q = Z Z Z [Z"lf(t) - Z ananrsn - Tor )]2 . (4.27)
m=1r=1 t=1 n=1
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Then the logarithm of the posterior can be written as:

InP=- MZRT In Q + const. (4.28)

For the partial derivatives we employ the specific indices i, j, p, ¢ corresponding to

generic indices m, n, r, and ¢, respectively. The first partial derivative with respect to

5;(q) is:
dinP MRT __, dQ
= . 4.29
ds j(Q) 2 os j(‘I) ¢ )
where
= 4.30
as ( 5 mz.;l[ i~ (Byt;)* s (], (4.30)
and
=2 (@ +7T;)— ZB a5, (q— T +7T,)- 4.31)
n:;
. aQ . n .
Solving =0 for the optimal parameters §,(q) results in:
ds (q)
>S5 WB,a,
5;(q) = A ——. (4.32)
ZZ(BW“”)
m=l1 r=1

The above equation does not have a closed form solution since the right hand side
depends on the other estimated parameters. However, intuition about the type of the
solution can be obtained by examining the term W. Basically, it involves: the time shifting

of the data according to the latencies of the estimated component, i.e. z,,(q+7;); the
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subtraction from the data of the other scaled and time shifted components, i.e.

B,.a,s,(q—7, +7;), n# j; and the average of the scaled residuals, where the scaling

mn=nr

is given by the terms B, a . Similarly, for the parameters a;, and B; we obtain:

my~yre

M T

22UV
ajp = ﬂnill"jrl—"’ (4.33)
IDNE

m=1 =1

N
where U = z,,,(1)~ Y B,,a,,$,(t—7,,) and V=B, s;(t—7,,); and

n=1
n#j

M-~
N

(4.34)

i

S
i
1ML
ML
!

"
|
—

N
where Z =z,(t)— ) B,a,,s,(t-7,)and Y =a,s;(t— 7).

n=l
n#j

Notice that the formulas derived for a; and Ejp are related to matching filter solutions.
For example, a,, is given by the projection of the detector-scaled component, i.e. V, and

the data after subtraction of the other scaled and time shifted components, i.e. U. Also,

the estimation of a;, does not directly depend on the trials r # p.

90

For the latency parameter, setting 3 =0 leads to the following equation®:

ir

? To deal with continuous latency values, we need a continuous time model of the component
waveform, which can be implemented using a spline model, for example.
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N
23y [2mp (1) = D Bn@p5,(t — T, 1B, .85t — 7, ) —al si(t = 7,)s;(t — 7,,) [=0,
n=1

nej
4.35)
where s7(t—7 j») 1 the time derivative of s7(¢) evaluated at (¢ — 7). The solution for T i
is more difficult since the latencies appear as an implicit parameter in the waveform
function. An alternative and more intuitive solution can be obtained by directly
examining the condition for maximization of the logarithm of the posterior, which is
equivalent to minimization of the quadratic term Q, Equation (4.27). Expansion of this

term results in:

M=

Q:

R
r=1t= n=1 n=1

[
—
—

n

N N
> (z,f,, (O)+[D By, 5,(t - 7, )F =22, ()Y B,,a,,5,(t -7, )). (4.36)

N
- - - : £/
As 7;, is varied, only the cross-terms in zmp(t)z B,.a,,s,(t—7,,) corresponding to j"

n=1

component change (as long as the evoked components s,(t) are zero outside a closed
time interval [z,,7,]). Notice that the estimation of 7;, does not directly depend on the

trials r # p. Thus the optimal parameter 7, is found by maximizing

M T N

P(0) =3 3| Byt = D)2y (1) = D Brnty, 5, (1= 7)1 |, 4.37)
m=1 t=1 n=1
n#j

which if properly normalized is just the cross-correlation between the estimated
component and the data after the contributions from the other components has been

subtracted off. This is then averaged over all the detectors. Thus:
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7, =argmax p(7). (4.38)
The multi-channel generative model for local field potentials is particularly suited for
closely positioned electrodes. An example where that is the case is the cortical intra-
laminar recordings (see Figure 4.1). Work with this type of data set is cumrently in
development (Shah, et al., 2001). For the specific data set considered in this dissertation,
the mixture of distant sources of LFP activity into the same channel recording is unlikely.
For this reason in the algorithm implementation to be presented next, we undertake the

estimation of single trial parameters on single channel data sets.

4.2 Algorithm Implementation

We have experimented with several approaches for the exploration of the posterior
probability. The MCMC is the most informative of all, but it has the major disadvantage
of being computationally intensive, together with the fact that it is not easy in practice to
establish rigorously when the system has reached equilibrium and when to stop the
simulation. When searching exclusively for the MAP solution, we also employed
conjugate gradients and quasi-Newton trust region methods, since the partial derivatives
and the Hessian matrix of the posterior probability are easily derived. The optimization
does not need to be done for all the parameters at once, but in blocs, e.g., first optimize
with respect to the latencies, then the waveforms, and so on. These are less
computationally intensive, but still require multiple searches starting at different initial
conditions or simulated annealing to avoid local maxima. In the simplest case of applying

the Newton-Raphson to the problem of finding the MAP solution of the parameter 8 for
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Multiple channel
electrode spanning
the cortical laminae

IV“/‘\\_/\% Single trial recording

W from a single electrode
'J\/\~ in layer 4

~

|

Figure 4-1: Potential application of the multi-channel multicomponent event-related LFP
estimation. Local field potentials recorded from very close sites will likely lead to mixture
of sources in the recordings of a single channel. Similar potential application would be to
recordings from horizontal intracortical electrode arrays.
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the logarithm of the posterior probability L(6), the Newton-Raphson solution after the

h - . ..
m"™ iteration is given by

o™ =@ —[VVL@O™)]''VLEE™), (4.39)

where VVL(8™) is the Hessian matrix whose entries are given by

2
vvLem, =9 (4.40)
iTYjlgm

and VL(@™") is a vector whose components are specified by

awL@)| @.41)

VLE") ==

ilgm

As a side note, -[VVL(6, N'isa quadratic approximation of the local curvature around
the mode 6, and, for roughly symmetric pdfs, can be used as an estimated of the
covariance matrix. For Gaussian pdfs, this result is exact. Also, if L(6) is the logarithm of
the likelihood and @ is the MAP estimate, —[VVL(@)]'l is called the observed Fisher
information matrix.

Better stability properties are achieved by introducing a small negative constant c:
Op.. =6, —[VVL(B,)+cI"'VL(E,). (4.42)

where I is the identity matrix. The result is better than multiplying the matrix-vector
product on the right of Equation (4.39) by a fractional constant. The ultimate effect of ¢
is, while preserving the same eigenvectors of VVL(8™), to change the eigenvalues in
such a way that it decreases the contributions of the eigendirections associated with large

uncertainty (Sivia, 1996).
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However, given the analysis in the previous section, an even simpler heuristic
algorithmic implementation can be designed when dealing with high signal-to-noise ratio
recordings. It consists also of an iterative algorithm where, after starting with an initial
guess for all the parameters, they are updated in blocs at each iteration step. The latencies

7, are implemented in terms of integer time offsets. More specifically, for a single

channel data set {z,(z)}:

(0) At the iteration m = 1, the initial guess for the amplitudes and time offsets are set to

al, =1,7._=0, Vn,r. The number of components N and an initial guess for their

nr

waveforms s.(¢) can be specified based on the inspection of the AERP (see Figure 4-2).

The iteration cycle is given by the following 4 steps:

(1) For all the trials, estimate the single trial time offsets for the first up to the N

component according to %;;’,“ =argmax p"(7). For the single channel case, this

corresponds to maximizing
T N
pr(D)=3 | apsT =Dz, ()~ apsy -]
1=1

n=1
n*j

The cross-correlation can be employed, and if the components are not highly overlapped,
it can be computed directly between a single component waveform and the raw single

trial data.
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More specifically, let k, <k <k, be a post-stimulus time segment where s, (k) is
nonzero, and & is an integer index for the sampled data point. Here k, and k; are indices
for the first and last data point of the segment. For convenience, we write the latency term

7,, as an argument for z,(z). The cross-correlation between the specified segment of the

estimated evoked response and a corresponding segment of single trial data, i.e.

< s,’,"(k)z,,(k+z‘,,”'p)>k
J< [s™(k)— < s™ (k) >, I > <[z, (k+7)-<z,(k+7,,) > >,

, is then computed for

different integer lags 7, with k;, +7,, >0 for k, corresponding to the sample index at

stimulus onset. Preferentially, the data should have been sampled or resampled at 1KHz
or higher. The lag that gives the maximum positive cross-correlation value is then chosen

.The 7 j» Obtained in this way represents the number of

to be the latency estimate 77,

data point shifts with respect to the position in time of the component waveform s, (k).
Given an approximate knowledge of where in time the component is expected to happen,
an interval for the search of the optimal latency 7 j» can be applied. In this way, the
possibility that the component matches by chance the waveform of unrelated ongoing
activity is diminished.

(2) Estimate the waverforms according to:

R
2 wrag

M@=

Y (ap)?

r=1
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N

with W™ =z (g + #)—Za,’,",s,’,"(q-r:,", +77).
n=1
nej

(3) For all the trials and components, estimate the amplitudes according to:

T

Y umve
am+l _ =1
4G =1 ’

Z [Vm ]2

=1

N
with U™ =z,(t)- ) amsa(t—7y) and V=s7(¢t—77). Notice that since the norm of

n=1
n*j

T
each component waveform is being constrained to equal 1, Z [V"P =1.
=1

(4) Repeat (1) through (3) for M iterations.
A few iterations are usually employed to avoid stability problems. In the data set
employed here, where the overlap between the components is not large and signal-to-

noise ratio is high, two iterations already give reasonable results.

4.3 Separation of Event-Related Components and Ongoing Activity:
Identification of the Origin of Event-Related Increase in Ensemble
Variance Time Function.

As verified in Chapter 3, a common phenomenon observed in the data set is the
existence of event-related increase in the ensemble variance time function, defined as:
o (1) =<[z,(")- <z, >, >,. (4.43)
For illustration, we choose a parietal channel recording time series from the monkey GE,

with GO response to one single stimulus pattern. Inspection of the AERP suggests the
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presence of two components (see Figures 4-2). The AERP-also provides the initial guess
for the components’ waveforms, as well as initial information about the range for the
single trial latency values. The resulting estimated waveforms for the two components,
and the histogram for their respective single trial amplitude and latencies after two
iterations of the estimation algorithm are shown in Figure 4-3. Figure 4-4 provides a few
examples of the single trial reconstructed event-related phase locked components
superposed onto the single trial data.

Once the single trial event-related components have been estimated, the ongoing

activity and its contribution to the ensemble variance are obtained according to:

N
n,@)=2,(0)-).a,5,(t—17,), (4.44)

n=1
o7 () =<[7,()-<7,@)>,1* >,. (4.45)
with N = 2. Figure 4-5 shows the estimated ensemble mean and variance time function for
the estimated ongoing activity.

The differential vanability in amplitude and latency of the event-related
components can be related to behavioral variables. An example in Figure 4-6 is provided
for the same parietal channel recording showing that latter components present higher
correlation with the reaction time (RT). Another example of removal or the transient

increase in ensemble variance time function for a striate site is provided in Figure 4-7.
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Figure 4-2: Estimation of single trial event-related components. The AERP from the
recordings of a parietal channel suggests the modeling of two main event-related
components initially represented by the waveforms enclosed by the rectangles. The first
and second components happen around 100 and 250 ms, respectively. The initial guesses
for the components waveforms are obtained by the AERP waveforms in the selected
regions (the waveforms are set to zero for times outside the rectangular selection in the
first iteration). The AERP also suggests a range of latency values for each of the
components. Ensemble data: 222 trials.
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Figure 4-3: Estimated single trial event-related components. The estimated component
waveforms for the same parietal channel recording as in Figure 4-2 are shown in the top
row. The waveforms have been normalized by constraining their norm to equal 1. In the
middle and bottom row, histograms for the single trial amplitudes and latencies for the
respective components are shown. Differential variability for amplitude and latency
between the two components is observed: notice that the later component has larger
amplitude and latency variability. Single trial parameters were obtained after two
iterations. Latency values are relative to the largest extrema of the corresponding
estimated component waveform.
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Figure 4-4: Single trial estimated event-related phase-locked components. Single trial
examples of the two estimated components for the same parietal channel (Figure 4-2) are
shown by the thick curve superposed on the respective single trial data.
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Figure 4-5: Estimation of ongoing activity. Top plot: the AERP or ensemble average of
the original time series for a parietal channel (monkey GE) is shown by the thick curve.
The single trial ongoing activity time series is obtained by subtracting the estimated
single trial event-related components from the corresponding original single trial time
series. The ensemble mean of the estimated ongoing time series is shown by the thin
curve. As expected for a good estimation (see the amplitude and latency distributions in
Figure 4-3), it is approximately zero. Bottom plot: the ensemble variance time function
of the original time series is given by the thick curve. During the event-related response
period, there is a clear modulation of the variance compared to variance level before 100
ms (pre-stimulus or pre-sensory activation period) which is seen as two transient peaks.
The doted line corresponds to the mean variance level in the pre-stimulus period. The
ensemble variance time function of the estimated ongoing activity is shown by the thin
curve. Two main aspects are noticed. First, the transient increases in variance have been
removed. Second, the variance of the ongoing activity is also clearly nonstationary,
decreasing shortly after the initial sensory activation ( ~ 100 ms); the variance of the
ongoing time series fluctuates around a baseline that is about the same level of the
variance of the original time series after the event-related components are almost over,
i.e., after ~ 300 ms. This second aspect and the approximately zero mean of the estimated
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ongoing activity indirectly imply a good estimation of the single trial event-related
components. Stimulus onset is at 0 ms.

30— R =032 30—R-042 .

Figure 4-6: Relations between components’ latency and reaction time. The component
latency and the reaction time RT seem to become progressively more correlated as the
component happens closer to the motor response.
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Figure 4-7: Estimation of ongoing activity. Top plot: the AERP or ensemble average of
the original time series for a striate channel recordings (monkey GE) is shown by the
thick curve. The single trial ongoing activity time series is obtained by subtracting the
estimated single trial event-related components from the corresponding original single
trial time series. The ensemble mean of the estimated ongoing time series is shown by the
thin curve. Bottom plot: the ensemble variance time function of the original time series is
given by the thick curve. The estimation of the ongoing activity was based on the
estimation of two event phase-locked components, one around 110 ms and the other
around 240 ms. Stimulus onset is at 0 ms.
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The estimation of single trial amplitudes and latencies gives the opportunity to
search for the origins of this trial-to-trial variability. One possibility is that it arises from
multiplicative effects between ongoing and evoked activities. To investigate this
alternative, the correlation between the single trial pre-stimulus power spectrum at
different frequency bands and the single trial amplitudes for the N1 components of the
same previously employed parietal and striate channels (monkey GE) were calculated.
The power spectrum for each single trial pre-stimulus time series (from —100 to 50 ms,
stimulus onset at time zero) was computed and integrated over 4 frequency bands: alpha
(7 - 14 Hz), beta 1 (14 — 20 Hz), beta 2 (20 - 30 Hz) and gamma (30 — 80 Hz). The power
spectrum was obtained after the FFT of the Hanning windowed data segments. For the
computation of the correlation coefficients, the DC component was also included. The
results are shown in Table 2, and point to a very small if any linear relationship between
the pre-stimulus power and the single trial parameters. The strongest correlations were
obtained for the parietal channel: a positive correlation between the DC component and
both the amplitude and the latency of the N1 component.

Table 4.1: Correlation between single trial parameters and single trial pre-stimulus power

DC Alpha Beta 1 Beta 2 Gamma
Striate | A -0.10 -0.13* -0.10 -0.07 -0.13
T -0.06 0.05 -0.01 -0.02 -0.04
Parietal | A 0.33* 0.07 -0.13* -0.08 -0.11
T 0.21* 0.05 0.04 0.00 -0.09

*: significant correlation coefficient, p<0.05.
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4.4 Removing the Effect of Trial-to-Trial Variability of Event Phase-
Locked Responses from the Statistical Measures of Interdependence.

Theoretical considerations and experimental results given in Chapters 1, 2 and 3
have shown that characteristic fluctuations in the variance of remnant event-related phase
locked components in the residual time series underlie temporal modulation of
interdependence measures, the referred signal-to-noise effect. Thus, once the single trial
event-related components are well estimated and removed from the time series data set,
the statistical measures should not be affected by the signal-to-noise ratio effect anymore.
Furthermore, if the previously observed event-related modulation of coherence time
functions is significantly attenuated when computed on this new residual time series, it
would imply that most of the observed modulation was indeed originated from the signal-
to-noise ratio fluctuations.

To test this possibility, we estimated the single trial event-related phase-locked
components for every channel recordings from the four monkeys in the same data used in
Chapter 3. Since the experimental results were focused on the event-related modulation
of 12 Hz coherence happening around 120 ms, the estimation was restricted to the single
trial component occurring about this time. In other words, the number of components was
set to 1. The spectral coherence time functions were computed as before on the new

residual time series defined as:

-

Gonr () = Ty (O)— < Ty (8) >,. (4.46)
The comparison between the 12Hz coherence modulation in the original residual time

series and the 12 Hz coherence computed on the new residual time series is made through
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the use of histograms. Histograms of maximum 12 Hz coherence values during the post-
stimulus period (0-200 ms) were computed for all channel pairs for each subject, both on
the original residual time series ensembles and on the new residual ensembles. The results
are shown in Figure 4-8. In summary, with the original residual time series, 88% (GE),
71% (LU), 65% (TI) and 53% (PE) of the post-stimulus (0-200 ms) coherence maxima
for each channel pair are greater than 0.1, compared to only 9% (GE), 5% (LU), 6% (TI)
and 18% (PE) for the coherence maxima computed on the new residual time series

ensembles.

4.5 Discrimination Between Simultaneous Cortical Processes

As a final application, the single trial component estimation is used to investigate
different cortical processes recorded by different channels, which from the inspection of
the respective AERP seem to happen simultaneously, but that given the information
provided by the AERPs only, it is not certain if and how the processes relate to each other
or to behavioral variables. An exemplar case is chosen from a striate and a somatosensory
channel from the monkey GE (response GO, stimulus pattern DIAMOND). The results
are given in Figure 4-9, where it is clear that although the AERPs show component
activations in the striate and somatosensory happening almost simultaneously just before
the mean reaction time, the one in the somatosensory is correlated with the single trial
reaction time, while the one in the striate is not. This indicates that the activations are

related to different and perhaps largely independent processes.
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Figure 4-8: Removal of the trial-to-trial variability effect on the coherence time functions.
Each plot shows the histogram for the maximum 12Hz coherence value during the post-
stimulus period (0-200 ms) for all the channel pair combinations from a single subject.
Histograms were computed on the original residual time series ensemble (open bars) and
on the new residuals, i.e., the single trial event-related-response subtracted time series
ensemble (solid bars). As can be seen, after the single trial responses have been
subtracted from the time series, the majority of the coherence maximum values are close
to zero. More specifically, for the original residual time series: 88% (GE), 71% (LU),
65% (TI) and 53% (PE) of the post-stimulus coherence maxima for each channel pair are
greater than 0.1; while this percentage decreases to: 9% (GE), 5% (LU), 6% (TI) and
18% (PE) when coherences are computed on the new residuals. Squared coherence values
were employed.
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Figure 4-9: Discrimination between processes related to two simultaneous events. Top
plot: the AERPs of a striate (str3) and a somatosensory (som) channel (red curve) are
shown. The two AERPs contain an event-related component happening just before the
mean reaction time (vertical line at time = 265 ms). The components are indicated by the
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rectangles. Middle plot: the normalized single trial time series from the two channels are
sorted according to the reaction time of the GO response in the corresponding trial. The
gray scale denotes the amplitude of the LFPs. The RT values in each trial are shown by
the superposed black curve. Inspection of these plots suggests a strong correlation
between the event-related phase-locked component for the somatosensory channel, but
not for the striate channel. Bottom plots: the scatter plots shows the estimated single trial
latencies versus the RT for the striate channel (left) and somatosensory channel (right), as
well as the correlation coefficients for the latencies and RT. This more detailed analysis
clearly shows that the single trial latencies for the striate component are not linearly
correlated with the RT. This finding indicates that the two components observed in the
AERPs of the striate and somatosensory channels relate to different cortical processes,
even though they happen about the same time in the behavioral task.

4.6 Generative Model in the Frequency Domain

The inferential framework presented here has treated the ongoing activity as a
white process. Introducing knowledge of the temporal correlations of the ongoing activity
in the time domain model can be very cumbersome, since the correlations of many
different time lags and order need to be carried in the derivations. An alternative
formulation of the generative model in the frequency domain can then be useful when
dealing with 2" order temporal correlations. The main advantage of the frequency
domain formulation is that the correlation functions are diagonal in the frequency space
for stationary processes. This leads to simplifications in the derivations.

Expressing the model in Equation (4.12) in the frequency domain, we obtain

N
Zm (@)= B a,s,(@)e ™ +7,,(®), 4.47)

n=1
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where @=[0,27/T, 4n/T,...], and ¢z, (®), s, (®w) and 7, (w) are the Fourier
transforms of the data, event-related phase locked signals and ongoing activity,
respectively.

For simplicity, we assume that the ongoing processes are independent across
channels. In this fashion we only need to carry the power spectrum density I, (@), instead
of the whole spectral matrix S(w), in the formulation. To begin with, consider the case
where I, (w) is known, as for example when the ongoing activity is WWS and
knowledge of its second order statistics is satisfactorily estimated, for example, from the

pre-event recordings. The posterior probability is then expressed as:

r{s, (@) }.{a,}.{z,,. },Bl{z,,, (@} {T (D}, ])=

Uz, (D) Ws, (@} .{a,}.{7,.},B AT (@)}, D) p(s, ()} a,}.{7,}.B|D
pr({zp (@)})

(4.48)
As before a Gaussian likelihood is assigned, i.e., the ongoing activity 7,,(®@) is treated as

independent (across frequency) complex, normal variable with zero mean and variance

given by I, (w) (Brillinger, 1975). The posterior probability is:

pUs, ()} {a, }. {7, ). Bl{zy (@)} {T, (@)}, D) =< p({s, (@) }.{a,, } . {7, ), B] )

z]'

1
[T22T, (@ 2 exp[ 1 T, ()™

mrow 2

N
Zmr (0)) - Z ananrsn (w)e_m””
n
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(4.49)
Notice that if T, (@) = const. for all @, the derivations should be equivalent to the one in
time domain. The MAP solution should not change by introducing knowledge of the
temporal structure of the ongoing activity, since the power spectrum (or even the whole
spectral matrix) parameterize the spread of the probability around the modes, but does not
change the localization of the modes. If as before, the prior probabilities for the model

parameters are assigned to be uniform, the logarithm of the posterior results in:

2
J +const. (4.50)

N -
Zp (@)= B,,a,, s, (@)e ™

InP= —f ZR: > [ln Fw)+(w)™

m=lr=1 @

The MAP solutions can be derived as before for the amplitudes, latencies and matrix B.

However, the derivation of the optimal solution for the component waveforms, s,(®),

presents a problem. The difficulty being that the partial derivative of the log of the

posterior involves now a non-analytic term s; (w). A potential workaround to this

$ j((l))
problem would be to decompose the AERP into one or several components, and then to
estimate s, (@) from the Fourier transform of n™ component.

Another formulation in the spectral domain, given the stationarity condition for

the ongoing activity is the Z-domain representation (Lange, Pratt, & Inbar, 1997):

N
Zmr(2) = D B A (2)5,(2) + H o (2) €, (2), @.51)

n=1

where 7,,.(z) relates now to the autoregressive process H, (2)€,,(z) obtained by

modeling the pre-stimulus activity, A, (2) is a filter correcting for amplitude and phase
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P
shift (latency) of the event related components, H,, (z)=[1-2apz" ' with a,
p=1

representing the coefficients of a P"-order auto-regressive process obtained by modeling
the pre-stimulus recordings. The auto-regressive model can be employed as a whitening
filter of the ongoing activity by pre-whitening the data, i.e. [H(2)] 'z, (2). As a result the
variance of the ongoing activity may be largely reduced, improving the performance of
the estimation of the event-related components. Once the ongoing activity is pre-
whitened, the subsequent derivation should also be similar to the one performed
previously for the time domain representation.

Unfortunately, as seen in the previous Chapters, the ongoing activity can be highly
non-stationary during the transition from pre to post-event, making questionable the use
of pre-event recordings to estimate parameters for pos-event quantities. A promising
alternative to be tested and compared in the future is then to include the power spectrum

as a parameter to be estimated:

p(s (o} {a, 1 {7, 1B T, (@)} {z, (@)} D) =

Uz (@)} {s,(@)}.{a,}. {7, }.BAC (@)}, ]) p(s,(@)}.{a,}.{z,.},BL, (@}
r{z, (@)})

(4.52)

4.7 Discussion

In this Chapter, a principled way of estimating single trial multi-component event-

related responses was presented. The approach is very promising from a methodological
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point of view. The Bayesian formulation offers a truly statistical modeling strategy in the
sense that shortcomings of the solutions can promptly point to the necessary
reformulation of the model and prior probabilities. This is different from approaching the
problem with the mindset restricted to the assumptions present in particular solutions like
ICA, PCA, and other pure maximum likelihood techniques (Bell & Sejnowski, 1995;
Jaskowski & Verleger, 1999; Jaskowski & Verleger, 2000; Jung, et al., 1999; Lange,
Pratt, & Inbar, 1997; Pham, Mocks, Kohler, & Gasser, 1987; Woody, 1967).

The derived heuristic algorithm seems to be especially well suited for the
estimation of relatively slow and large amplitude event-related components. Fast
components (e.g. evoked gamma bursts) still represent a very difficult challenge to the
formulation here because of their low signal-to-noise ratio and the larger impact of trial-
to-trial latency variability when recorded from broad local fields. Another important issue
is the choice of the number of event-related components, especially in the case of single
channel recordings. Although differential variability in latency and amplitude of different
components can add significantly to the separation of the components, especially in the
case of the multi-channel estimation (Shah, et al., 2001), we believe that the knowledge
about the underlying physiology still is a strong requirement for the choice of the number
of event-related components, and for the initial guesses of their relative position in time
and ranges for their trial-to-trial variability in latencies and amplitudes.

From the results in this Chapter and Chapter 3 there is ample evidence that the
ongoing activity can be highly non-stationary during the transition from the pre- to the

post-event period. As a consequence, it is difficult to introduce knowledge about the

134



power spectrum of the ongoing activity based on power spectrum estimates of the pre-
event period recordings, as in the frequency domain formulation of the probabilistic
model. The alternative of including the power spectrum of the ongoing activity as a
parameter to be estimate simultaneously with the phase-locked component’s parameters,
may also be problematic if the adopted MAP solutions result in maximum likelihood
procedures. Maximum Likelihood Estimates (MLE) will lead in general to the
minimization of the power of the ongoing activity and over fitting of the phase-locked
components. This is true also for MLE in time domain models as employed here. Thus,
careful consideration of the dependence of the derived algorithm on the signal-to-noise
ratio is necessary to avoid spurious results originating from “locking” of the estimated
waveforms onto the ongoing activity. It should be kept in mind also that the introduction
of knowledge of the temporal correlations in the ongoing activity does not change the
localization of the modes of the posterior probability, but only their width, i.e., the spread
of the probability. In this way the MAP solutions should be the same by assuming either
white ongoing activity or temporally correlated ongoing activity. Any possible
improvement in estimation after introduction of the knowledge of power spectrum should
result from changes in the error bars for the estimators. That is because the error bars of
the estimators are related to the width of the modes.

Comparing the derivation of this approach to the Bayesian derivation of Bell and
Sejnowski's ICA algorithm (Knuth, 1997; Knuth, Truccolo, Bressler, & Ding, submitted)
provides some insights into the relationships between these two techniques. While both

algorithms assume that the signal mixing is linear, stationary and instantaneous, the
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present approach does not require independence of the sources. This is key in
neuroelectrophysiology as the dynamical interactions between neural source generators
are a matter of great scientific interest. In addition, this algorithm accommodates noise as
well as the possibility of the number of sources being different from the number of
detectors. Finally, by defining the source model to explicitly allow for the potential
variability of the source activity in individual trials we make this additional information
available to aid in source identification. The power of this differential variability is being
currently investigated in the context of multi-channel mulit-component estimation, where
we believe it will be more effective. In this algorithm, we chose as a model of the source
waveforms a set of discrete points describing the waveform amplitude at regular intervals.
This source model is typically used in Blind Source Separation (BSS) and ICA
applications, where the prior probability of the source amplitudes have been given by
super- or sub-Gaussian probability densities. It is important to note, for this algorithm and
others, that other source models are possible and in many cases desirabie. These models
could be continuous in nature (especially in the case of continuous latency shifts) such as
linear-piecewise or cubic spline models, or could be dynamical in nature such as linear
autoregressive moving average (ARMA) models. Finally, as described in previous works
(Knuth, 1998; Knuth, 1999; Knuth & Vaughan, 1999), there are often cases where the
experimenter has knowledge about the forward problem, which describes the propagation
of the signals to the detectors. In such situations, one can incorporate information about
the forward problem into the algorithm along with information about the geometry of the

detector array by deriving appropriate prior probabilities for the coupling (or mixing)
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matrix. In situations where the source locations are of interest, abandoning the coupling
matrix in favor of a more detailed model of the source positions and orientations may be
more fruitful. By modeling the source locations in addition to the source waveforms, one
can easily design an algorithm that simultaneously performs source separation and
localization (Knuth & Vaughan, 1999).

Further developments should include a detailed analysis of the convergence of the
iterative algorithm as well as of the statistical properties of the estimators. As for the
latter, the analysis should provide an explicit formulation of the error bar of the
estimators and show how their variance approaches the Cramer-Rao lower bound. When
working with alternative probabilistic models, the problem of model selection is again in
place. Here, we have not considered alternative models to the generative model and so the
issue of model selection was not addressed. This is a direction for the further
development of estimation framework. An introduction to the problem of model selection
from a Bayesian perspective can be found in Sivia (Sivia, 1996) and MacKay (Mackay,
1992). Also, although we have outlined the foundations for the MAP solution for
multicomponents in the frequency domain, it has not been tested and compared to the
performance of the time domain algorithm.

Regarding the problem of identifying the sources of the observed event-related
modulations of interdependence measures computed on the original residual time series,
the results presented in this Chapter indicates that these modulation were indeed
originated from the trial-to-trial variability of the phase-locked components. The most

definite evidence came from the great reduction in the 12 Hz coherence maximum values
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when computed the new residuals were used for computation. Another important and
related aspect is that the variance of the ongoing activity is nonstationary. This can be
seen clearly in the case of the parietal channel example, and to a less extent in the striate
channel recordings. The decrease in the variance of the parietal ongoing activity is
probably related to the interruption of the ~ 22 Hz pre-stimulus oscillations just after the
initial sensory activation. This decrease in both striate and parietal channel may also point
out to the possibility that the sensory activation results in a strong synchronized event
phase-locked activity that captures most of the dynamics, leading to a large scale re-

organization of the ongoing activity.
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Chapter §

General Discussion

Two main possible sources of fast event-related transients in interdependence
measures, namely the nonlinear gain modulation effect and the trial-to-trial variability of
event phase-locked potentials, were analyzed. Very characteristic effects were revealed
and tested on a particular data set consisting of local field potentials recorded intra-
cortically from monkeys performing a visuo-motor pattern discrimination task. The
results shown in Chapter 3 and 4 indicate that the observed event-related transient
increases in variance, power, cross-correlation and 12 Hz coherence occurring about 100
ms after stimulus onset arose mainly from the combination of two factors: (1) around this
time, there is a widespread activation originating perhaps from the striate visual cortex,

resulting in event phase-locked signals in many different cortical sites; and (2) there is a
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significant trial-to-trial variability in the amplitude and latency of these phase-locked
signals. As a consequence, the variability of the transient phase locked signals leads to a
transient increase in the variability of the residual time series. And, because of the
widespread activation, there is also a widespread co-variation in amplitude, and possibly
in latency too, among the event-phase locked signals from different recording sites. This
co-variation, together with the signal-to-noise ratio effect, accounts for the observed
transient increases in cross-correlation and 12 Hz coherence. Thus, the observed
transients do not represent major event-related changes in functional connectivity, i.e.
effective connectivity, among the many cortical sites involved in the episode.

There is, however, a large re-organization of the ongoing activity at the local level
in many of the measured cortical sites. Our prototypical example has been the changes in
the parietal site activity where a dramatic decrease in the predominant pre-stimulus
ongoing ~ 22 Hz oscillation was observed. Similar events were also observed in the
recorded somatosensory and motor areas. For cortical sites in the ventral pathway of the
visual system, there was significant coherence around 15 Hz. This coherence pattern was
also terminated after the initial sensory activation. The transition from pre-stimulus
networks to the post-stimulus networks involves more complex mechanisms than that
accounted by the proposed nonlinear gain modulation or by the trial-to-trial nonstationary
of the evoked responses. This phenomenon also suggests that the evoked activity captures
most of the dynamics, since most of the variability can be explained by the trial-to-trial

variations of the event-phase locked components.
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The reorganization of the ongoing activity during initial sensory activation
indicates the oversimplification nature of our initial generative model where the linear
superposition was assumed. But, a more appropriate model is yet unclear. The specific
characteristics of this reorganization will probably depend highly on the properties of the
local neuronal populations and the particular time scale of their activity.

It could be that the observed variations in amplitude and latency originated
actually from multiplicative effects involving the ongoing and evoked activities. A
preliminary result in Chapter 4 tells us that if there is a multiplicative effect, it does not
express itself in terms of a linear correlation between levels of pre-stimulus power and
evoked response amplitude and latency.

The theoretical and experimental results present here led to the analysis
framework that was outlined in Chapter 1 and put in practice in Chapter 4. In summary,
the proposed framework addresses three main challenges when looking at spatio-temporal
interdependence patterns in event-related local field potential data: (a) nonstationarity of
the brain activity stemming from rapid transitions between different processing stages
occurring on the millisecond time scale; (b) latent or hidden variable problems stemming
from the existence of mixed signals, including event phase-locked components, event
non-phase-locked induced ongoing activities, event-unrelated ongoing activities and
measurement noise; and (c) the trial-to-trial variability of event phase-locked signals.

To deal with these challenges, three main aspects were fundamental: (a) the
proposed generative model; (b) the Bayesian inference approach; and (c) the parametric

modeling of the ongoing activity by applying stochastic linear models. As mentioned
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before, ideally the generation of phase-locked signals and ongoing activities should be
modeled as the result of a single dynamical system. Improvements in this direction will
be possible as more detailed experimental data are made available. That may also lead to
different decompositions of the recorded signals, or at least, lead to better characterization
of the physiological counterpart of the decomposed signals. For example, it may be that
phase-locked signals recorded in primary sensory cortices related more to thalamic
afferents, while in higher-level cortical areas they relate to different processes.
Advancements in the Bayesian inference framework, particularly important when dealing
with low signal-to-noise ratio recordings, are expected to result from the use of more
informative prior probability models, and the application of better optimization
techniques. Again, more informative priors will depend on new experimental data
providing detailed biophysical properties of the neuronal generators. The need of
parametric models of ongoing activities for the statistical analysis of interdependence was
motivated by the fact that, given the nonstationarity of the data, short time windows were
required. Further developments upon the choice of linear auto-regressive models can be
made, obviously, by allowing nonlinearities, and also, by contemplating the possibility of
higher-order statistical properties in the data, in other words, nongaussianity. Despite
these alternatives, it should be mentioned that there are some evidence already suggesting
that the inclusion of nonlinear terms in auto-regressive models may not result in better
models. In cases other than, for example, time series recorded during epileptic states,
quadratic and higher terms tend to be not significantly different from zero (N. Schiff,

personal communication to my advisor Dr. M. Ding), suggesting that linear stochastic
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models may be able to capture most of statistical properties of the relevant neural
dynamics. Regarding the identification of higher-order statistics, a recent attempt in this
direction has been done with the application of Volterra kernels (Friston, 2000). There is
a potential problem with this approach though: the same trial-to-trial nonstationarities
investigated in this dissertation may lead to nonzero higher terms in the Volterra kemels,
which may then be mistakenly identified as the expression of nongaussianity or
nonlinearity. The identification of higher-order statistics, under the constraint of the need
of parametric modeling, may be solved by the development of nongaussian autoregressive
models, i.e, models with 2™ order temporally uncorrelated noise excitations but with

nonzero higher order correlations (Nikias & Petropulu, 1993).
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Appendices

For the sake of completeness, an extensive stability and bifurcation analysis of the
neuronal model employed to study the nonlinear gain modulation effect is presented. In
appendix A, the stability analysis leads to explicit constraints on the coupling strengths
for the equilibrium point in this type of oscillatory networks. The stability analysis is in
itself of interest since it provides original and significant results on the coupling
constraints for the stability of both symmetrically and asymmetrically coupled neural
networks of arbitrary size. In appendix B, the bifurcation analysis of the network’s
dynamics clarifies the relation between the sigmoid function and the observed bifurcation

scenarios.
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6.1 Appendix A: Stability Conditions for Equilibrium Points in
Oscillatory Neural Networks

For oscillatory neural networks the stability of the equilibrium point is an
important property for many neural computational applications. Aided by results from
nonnegative matrices we demonstrate, using two simple models of coupled neural
populations of arbitrary size, a general methodology that can yield explicit bounds on the
individual coupling strengths to ensure the stability of the equilibrium point. Previous
work on stability constraints have concentrated mainly on global stability in recurrent
networks of the Hopfield type (Atiya, 1988; Chen & Amari, 2001; Cohen & Grossberg,
1983; Fang & Kincaid, 1996; Forti & Tsei, 1995; Guan, Chen, & Qin, 2000; Guez,
Protopopsecu, & Barhen, 1988; Hirsch, 1989; Kelly, 1990; Liang & Wu, 1998;
Matsuoka, 1991; Michel, Farrell, & Porod, 1989; Sugawara, Harao, & Noguchi, 1983;
Yang & Dillon, 1994) and produced bounds on complicated functions of the coupling
strengths. In this appendix we consider an approach that can lead to stability bounds on
the individual coupling strengths in recurrent networks that can also admit more complex
local dynamics. Two explicit models of coupled neural populations will be used to

illustrate the approach.

6.1.1 Models

Our model's general topology is shown in Figure 6-1. The basic unit in the model
is a neural population consisting of either excitatory x or inhibitory y cells (Freeman,
1975; Wilson & Cowan, 1972). The functional unit in the network is a cortical column

consisting of mutually coupled excitatory and inhibitory populations. (By functional unit
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we mean the simpiest unit that is capable of oscillation.) The columns are then coupled

through mutually excitatory interactions to form the network.

Figure 6-1: Model schematics

The two mathematical models considered here differ in their representation of the
individual population. In the first model, henceforth referred to as Model A, which is
similar to that considered in (Li & Hopfield, 1989; Wilson & Cowan, 1972) for modeling
the olfactory bulb, each column is described by a system of two first order differential

equations:

g-" ax = -keiQ(y’ Qm )I(t)
dr

dy .o
o +by =k, Q(x,0,,)

6.1)

146



Here x, y represent the local field potentials of the excitatory and inhibitory populations,
respectively, and I is the input. The constants a and b are the damping constants. The
parameter k,, >0 gives the coupling gain from the excitatory (x) to the inhibitory ()
population whereas k,; >0 represents the strength of the reciprocal coupling. Further,

Q(v,Q,,) is taken to be a sigmoid function (Eeckman & Freeman, 1991a; Freeman, 1979):

Q. Q,) =0, [L~exp(~e” =1/ Qp ], if v>—u, 6.2)
=-1 ifv<-u,

where u«, =—In{l+In(1+1/Q,)]. It represents pulse densities converted from x
controlled by a modulatory parameter Q,,. Note that 0(0,Q,,) =0 and Q’(0,Q,,)=1. (We

note that the specific form of the sigmoid function is not important in our analysis. The
function in Equation (6.2) is used for concreteness. The N columns are coupled together

in the following fashion:

dx, 1 &
o tax, = ‘ke.-Q(}’,.,Q,,.)*'Tv-j-l-z ko Q(x,,Q,)+ L, (1)
P! . (6.3)

Y by =k
dt + byn kleQ(x’l ’ Qm)

where the columns are indexed by n=1,2,..., N and the coupling strength k,, is the gain

from the excitatory population of column p to the excitatory population of column n with
k,, =0 Vn.

The first order differential equation representation of a neural population in Model
A has the property that its impulse response has an instantaneous rise phase. The benefit
is that the resulting network is easier to analyze and can be cast in the format of a

Hopfield network. In the second model, henceforth referred as Model B, the neural
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population is a second differential equation possessing a finite rise and decay impulse
response. Each individual column is described by a system of two second order

differential equations (Freeman, 1992):

2
d—f+(a +5)% 4 abx = —k,0(y,0,)+ I(t)
dt dt

) ©4)
d’y

dy
Z;-z—+ (a+ b)z-i-aby =k Q(x,0p)

For simplicity, we have assumed that the inhibitory and excitatory populations have
identical rate constants. All the parameters have the same meaning as in Model A. The N

column equations are given by:

2 N

d ‘Z" +(a+b) dx, +abx, = —ke,.Q(y,,,Q,,,)+—i—Zk,,pQ(xp,Q,,,)+I(t)

dr dt N-155 65
2

d’y, dy, _
—dt—2+(a+b)7+aby,, —k,-eQ(x,,,Qm)

where as before k,, =0 Vn. Model B is the same model used in Chapter 2.

6.1.2 Local Stability Analysis of Model A

First, we consider a single column given in Equation (6.1). When the input / is
zero, it is easily seen that x =0,y =0 is an equilibrium point of the above dynamical
system. In order to study its stability properties, we consider the Jacobian matrix A

obtained by linearizing the above equations around the origin:

—a _kei
A= (k- - ) ©6.6)

e

Here we have used the fact that Q’(0,0,,) =1. For stability of the origin, the real parts of

all eigenvalues of A should be less than zero. This requires

148



(a+b)>0, (ab+k,

e

k,

el

)>0. 6.7)

Since a,b,k,

.k, >0, these conditions are automatically satisfied. Hence the origin is a
stable equilibrium point.

Next, we consider the stability of a network of columns described by Equation (6.3). As
before, the origin is an equilibrium point for this network when input is absent. We study
its stability by linearizing the above equations around the origin. For this, it is convenient

to define matrices S, K and C as follows:

&l &2 e &NJ
S= , 6.8)
(‘5’1 é’l @N
K= Lo 6.9)
'(0 o)’ ©.
and
- knp
[Cl, =% (6.10)

if n#p and zero otherwise. Here d&;,dy; are deviations from the origin of x;,y;

respectively. S is a 2 x N matrix containing the linearized variables of the model, K
specifies the connectivity pattern and the N x N contains the coupling values between the

columns. Upon linearizing Equation (6.3) we obtain the following matrix equation:

§=AS+KSC. (6.11)

We now consider two cases: a) The coupling matrix C is symmetric and b) C is not

symmetric.

6.1.2.1 Symmetric Coupling Matrix
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If C is symmetric, it can be written as
C=BAB™', (6.12)
where B and A are eigenvector and eigenvalue matrices of C, respectively. Let e(n) be
one of the eigenvalues of B and A(n) its associated eigenvalue. Acting Equation (6.11) on

e(n) we obtain the following eigenmode equation:

= ASe(n) + KA(n)Se(n). 6.13)

dSe(n)
dt

Let u(n) = Se(n). Then the above equation reduces to

d‘:i(”) =[A +KA(n)Ju(n). (6.14)
Note that all the eigenvalues A(n) are real since C is assumed to be symmetric. Using the

above procedure, we have reduced the study of a N-dimensional system to the study of a
2-dimensional system.
We now return to the question of stability of the origin. It will be stable if
Re a;(n) <0, Vi,n, (6.15)
where @;(n)’s are the eigenvalues of the matrix A +KA(n). Suppressing the indices n, i

for notational simplicity, the characteristic polynomial of this matrix is given by

o +ala+b—A)+(k,k, +ab—bA). (6.16)
The range of parameter values that gives Re @ <0 can be determined by applying the
Lienard-Chipart criterion (see Appendix Section 6.1.5). Since the coefficient of a? is

greater than zero, the Lienard-Chipart criterion reduces to

(a+b—-A)>0, (kk,+ab-bi)>0. 6.17)
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This implies that

A<(a+b), ,1<1‘f;)i+a. (6.18)

Both these inequalities are simultaneously satisfied if

A< K™= =min{(a+b),1‘ﬂ:£+a}. (6.19)

where K™ is obviously positive. But this has to be satisfied for every eigenvalue 4 of C.
This is ensured if (denoting the largest eigenvalue of C by A™*(C))

AT (C)< K™, (6.20)
We now translate the upper bound on the maximum eigenvalue of C to an upper bound
on the individual coupling coefficients constituting C using the theory of nonnegative
matrices (Horn & Johnson, 1990). Note that C is a nonnegative matrix since all its entries

are nonnegative. We introduce a N x N matrix U whose matrix entries are given by

max

[U); =KT’ i,j=12,...,N. (6.21)

Since K™ >0, all entries are greater than zero and U is a positive matrix. Further,
A™*(U) = K™*. If we impose the following condition on the coupling coefficients &,,:

0<k,, <-N—1;1K“‘“, n#p, (6.22)

we see that [C]; —[U]; <O for i,j. Hence C < U. Then, from nonnegative matrix theory

(Hom & Johnson, 1990), we get

AT (C) <A™ U)= K™, (6.23)
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But this is the required condition for stability of origin. To summarize, origin is a stable
fixed point for the neural network given in Equation (6.3) with symmetric coupling if the
coupling strengths obey the constraints given in Equation (6.22), where K™ is given in

Equation (6.19) and is only a function of intra-column parameters.

6.1.2.2 Non Symmetric Coupling Matrix

Next, we consider the case when the coupling matrix C is not symmetric. In this
case, it can be written as
C=BJB’, (6.24)
where J is the Jordan canonical form of C. Corresponding to each Jordan block in J there
is only one distinct eigenvalue A(n) and its associated eigenvector e(n) (Hom & Johnson,

1990). Acting Equation (6.11) on e(n) we get

=[A + KA(n)]Ju(n). (6.25)

du(n)
dt
The origin will be stable if
Re a;(n)<0, Vi,n, (6.26)
where a;(n)’s are the eigenvalues of the Jacobian matrix A +KA(n). Suppressing the
indices n,i for notational simplicity, the characteristic polynomial of this Jacobian matrix
is given by
a’ +a(a+b—A)+(k,k, +ab—bA). 6.27)

Since C is not assumed to be symmetric, A can be a complex number. Writing it as:

A=Ag+il,, (6.28)
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the characteristic polynomial becomes
flay=a? +ala+b—A_ —iA)+(kqk, +ab—bly—ibi). (6.29)
The range of parameter values that gives Re @ <0 can be determined by applying the
generalized Routh-Hurwitz criterion (see Section 6.1.6). Following this procedure,
consider ~if (i)
—if(ia)=ia® +ala+b—Ag)—icd, —i(k,k, +ab—bAg)~bA,. (6.30)
This has to be put into the following standard form:
—if(ia) = bya® + ba+b, +ila,@® +a,ax+a,]. 6.31)

Comparing the two equations we get

a, =1,a, =-4,, a, =—(k,k, +ab—bAy), (6.32)
b, =0, b, =(a+b—Ag), by =—bA,. (6.33)

Applying the generalized Routh-Hurwitz criterion, we have Re a <0 if the following two

conditions are met:

v,=! M 5o 6.34)
2700 (a+b-Ag) '
and
I <4, kg, +ab—bAy) 0
0 (a+b—Ag) —bA, 0
- 0. (6.
V2=l 1 -4, ek, +ab—big)” 0 639
0 0 (@+b-Ag) ~bA,

Evaluating the above determinants and simplifying, we get

(@a+b-4g)>0, (6.36)
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(kk, +ab—bAg)(a+b—Ag)? —bA%(Ag—a)>0. (6.37)
If C is symmetric, 4, =0 for all eigenvalues and the above inequalities reduce to stability
condition given in Equation (6.19), as expected. It is clear that if 4, <a, both inequalities
are satisfied irrespective of the value of A,. Thus, a sufficient (but not necessary)
condition for stability of the origin is given as follows. For every eigenvalue A of the
coupling matrix C, we require
Ag<a. (6.38)
To proceed further, consider the spectral radius o(C) of C:
(C) = max{|4],Ais an eigenvalue of C}. (6.39)
Since C is a nonnegative matrix, it turns out (Hom & Johnson, 1990) that o(C) itself is
the largest eigenvalue of C. That is,
A" = p(C). (6.40)
Further, from the definition of o(C),
ReASA™ =p(C)VA. (6.41)
Therefore, the stability condition given in Equation (6.38) reduces to
oC)<a. (6.42)
This stability condition has a nice physical interpretation. Note that a is nothing but a
damping constant for the equation in x variable [cf. Equation (6.3)] whereas the coupling
coefficients which constitute C represent the strength of the intercolumnal excitation.
Therefore, if the “size” of C is less than a, the system will be damped and origin will be

stable (as | x| decreases, the function Q(x,Q, ) also decreases to zero and therefore y is
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also damped). The size of C is measured by its matrix norm and the natural norm in this
case is the spectral norm. But the spectral norm is identical to the spectral radius (Hom &
Johnson, 1990). Hence, from physical considerations we expect the origin to be stable if
the spectral radius of C is less than a. This is nothing but the stability condition derived in
Equation (6.42).

If a necessary and sufficient condition for stability is required, one can solve the
above inequalities numerically for the given set of parameters and obtain the region in

complex space where the inequalities are satisfied. But this region would have

complicated boundaries for a <Az < min{(a +b),£“'b—k—""-+a} whereas it is simple for the

case A, <a considered above. Note that the upper bound on A, arises from the fact that
/12, has to be nonnegative [cf. Equation (6.37)].

We now translate the sufficient condition for stability given in Equation (6.42) to
an upper bound on the coupling coefficients. We follow the same procedure as in the

symmetric case. We introduce a N x N matrix U whose matrix entries are given by
[U}; ==, i,j=12,...,N. (6.43)
N
Since all entries are greater than zero, U is a positive matrix. Further, the spectral radius

of U is given by p(U)=a. If we impose the following condition on the coupling

coefficients k,,:

N-1
0<k,,p<a N ,NEDP, (6.44)
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we see that [C]; —[U]; <O for all ij. Hence C < U. Then, from nonnegative matrix

theory (Hom & Johnson, 1990), we get

pC)<pU)=a. (6.45)
But this is the required condition for stability of origin [cf. Equation (6.42)]. To
summarize, origin is a stable fixed point for the neural network given in Equation (6.3)
with nonsymmetric coupling if the coupling strengths obey the constraints given in

Equation (6.44).

6.1.3 Stability Analysis of Model B

In this section, we investigate the stability of Model B in detail. First, we consider
the stability of the single column equations given in Equation (6.4). When the input [ is
zero, it is again seen that the origin x =0,y =0 is an equilibrium point of the above
dynamical system. In order to study its stability properties, we first convert the above
second order differential equations to the following system of first order differential

equations (with I =0):

4z _,
d 2
d
f =~(a+b)z, ~abz, ~ k,0(z3.0,,)
. 6.46
az; _ €40
da !
d
% = —(a+b)z, —abzy + k., 0(z,,0,,)
where
a=x2=2 2=y z,=2 (6.47)

dt dt
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Consider the Jacobian matrix A obtained by linearizing the above equations around the

origin:
0 1 0 0
—-ab —(a+b) -k, 0
= . 6.48
A 0 0 0 1 ( )
k, 0 —ab —(a+b)

Here we have used the fact that 9°(0,Q,,) =1. For stability of the origin, the real parts of
all eigenvalues of A should be less than zero. The eigenvalues are determined from the
characteristic equation:

A +2(a+b)2 +(a® +4ab+ b)) +2(a’*b+ab*)A+k ik, +a*b* =0.  (6.49)
Applying the Lienard-Chipart criterion, the real parts of all eigenvalues are negative if the

following inequalities be satisfied:

a’b® +kqk, >0
2 2
2a°b+2ab*>0 (6.50)
2a+2b>0
—4(a+b)k ik, +4(a+b)*>0

Since a,b,k

ik, >0, the first three inequalities are automatically satisfied. After
simplification, the last inequality can be written as:
kk, <ab(a+b)*. (6.51)
To summarize, the origin is stable for the single column equations if the above
condition is satisfied. Henceforth, we will assume that this is true. Next, we consider the

stability of a network of columns given in Equation (6.5). As usual, we study the stability
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of the origin (which is an equilibrium point) by linearizing the above equations around it.

For this, it is convenient to define matrices S, K and C as follows:

(&, &, - dxy )
d&l d&z e d&”
s=| a& ar dr | 6.52
5)’1 "’:Vz JYN ( )
dy, d&, = ddy
\ dt dt dr )
0 0 0O
1 0 0 O
K= . 6.53
0 0 0O ( )
0 0 0O
and
[C,, = g (6.54)
" N-1' )

if n#p and zero otherwise. Here dx;,dy; are deviations from the origin of x;,y;

respectively. Further, S is a 4 x N matrix containing the linearized variables of the model,
K specifies the connectivity pattern and the N x N matrix C contains the coupling values
between the columns.

Upon linearizing Equation (6.5) we obtain the following matrix equation:

% =AS+KSC. (6.55)

We now assume that the coupling matrix is symmetric. Then all the eigenvalues of C are
real. Following the same procedure as given in Section 6.1.2, we can reduce the above

equation to a set of decoupled eigenmode equations:

du(n)

ak [A + KA(n)]u(n). (6.56)
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As before, the origin will be stable if

Re a;(n)<0, Vi,n, 6.57)
where a;(n)’s are the eigenvalues of A +KA(n). Suppressing the indices n,i for
notational simplicity, the characteristic polynomial of this matrix is given by

at +2(a+b)a’ +[(a+b)* +2ab- A)a* +[2ab(a+b)— A(a+b)la+

. (6.58)
[a’b® —abA +k, ik, ]

The range of parameter values which give Re @ <0 can be determined by again applying

the Lienard-Chipart criterion. We get the following inequalities:

a*b® —abA +k,k, >0

2ab(a+b)—-A(a+b)>0
2(a+b)>0

(a+b)? A -2(a+b)* A +4(a+b)*(a’b+2a*b* +ab* —k,k,)>0

(6.59)

Since a, b are positive, the third inequality is automatically satisfied. After simplification,
the first two inequalities become:

< Kk +a’h?

A - (6.60)
A<2ab
The last inequality is of the form
aA -a,A+a;>0, 6.61)
where
a,(a+b)?, a, =2(a+b)*, ay = 4(a+b)*[ab(a+b)* —k,k,]. (6.62)

Note that a;,a, are obviously positive. It turns out a, is also positive because of the local

stability condition derived in Equation (6.51). The quadratic function a,A* —a,4 +a; with

159



a,,a,,a, positive has a unique global minimum at 4 = a, /24, . Thus the minimum occurs

at a positive value of A. It is also seen that

al —4a,a, = 4(a+ b)‘[(a +b)* —4[ab(a+b)* —k,k, ]]. (6.63)
This can be simplified as
a} —4aia, = da +b)*[(a® - b)Y +4kk, |, (6.64)

which is positive since k,.k,, is positive. Thus both the zeros of the quadratic function (we
will denote them 7, and 7, with 7,<7,) are real. Further, since a; >0 and the global
minimum occurs at a positive value, 77, > 77, > 0. Consequently, the last inequality is

satisfied when A <7, and A > 17, where

M) = (@+b)’ —(+)(a+b)* —4labla+b)* —kk,]. (6.65)
Note that 7, is explicitly seen to be positive by applying Equation (6.51). Further,
7, > (a+b)* >2ab. Thus the inequality A > 77, >2ab is not possible given the stability
condition A <2ab derived earlier. Therefore the last inequality in Equation (6.59) reduces
to A< 7.

Summarizing, we get the following set of stability conditions:

2,2
1< k.k, +a°b
ab

A<2ab . (6.66)
A<m

All these inequalities will be simultaneously satisfied if

252
A<K™ K™% = min{fe-"-’ﬁ"%b—,zab, m1>0. (6.67)
a
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Note that K™ is positive since all constituents we are minimizing over are positive. The
above condition has to be satisfied for all eigenvalues of C. This is ensured if
A" (C) < K™, (6.68)
where 4™ (C) is the largest eigenvalue of C.
We now translate the above condition which guarantees the stability of the origin
into bounds on the coupling coefficients. Note that C is a nonnegative matrix since all its

entries are nonnegative. We introduce a N x N matrix U whose matrix entries are given by

max

[U]ij =‘%-’ i’j = 1’27---, N- (6-69)

Since K™ is greater than zero, all entries are greater than zero and U is a positive
matrix. Further, A™*(U) = K™*. If we impose the following condition on the coupling

coefficients k,,:

0<k, <-A-’§—1KM, n#p, (6.70)

we see that [C]; —[U]; <O for all i, j. Hence C < U. Then, from nonnegative matrix

theory (Horn & Johnson, 1990), we get

AT(C) <A™ (U) = K™ . 6.71)
But this is the required condition for stability of origin. To summarize, origin is a stable
equilibrium point for the neural network given in Equation (6.5) with symmetric coupling
if the coupling strengths obey the constraints in Equation (6.70), where K™ is given in

Equation (6.67) and is only a function of the parameters in a single column.
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6.1.4 Relations to the Hopfield Neural Network Model and Global Stability

Guan et. al. (Guan, Chen, & Qin, 2000) study the following Hopfield neural

network model:

-er- ~+I, i=12,...,L, (6.72)

yJ
j=1

v; = &(;),C;,R; >0, I; gives the input and 7;; denote the coupling strengths (which need
not be symmetric). For this system, they show that the equilibrium state is unique and

globally asymptotically stable if the following conditions are met:

- __+Z| 1<0,i=12,...,L, (6.73)

i J*i
where 0 < g/ < M.
The above model reduces to Model A given in Equation (6.3) if we make the

following identifications:

L=2N, u=(xl,xz,...,xN,yl,yz,...,yN)
C =1Vi gu)=0u.0,) . (6.74)
R=Va,i=12,..N, R=Ub,i=N+LN+2,...2N

The coupling coefficients T;; are identified as follows:

T, =k;/(N-1),i,j=12,....N
T; =k, i=12,..,N, j=N+LN+2,...2N, (6.75)
T; =k, i=N+LN+2,...2N, j=12,..,N

and T; =0 otherwise. Evaluating the maximum value of g/ =Q’(%;,Q,,) which occurs at

u;=InQ,,, we get M; =Q, exp(—(Q,,-1)/Q,,) Vi.
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Using the above correspondence between the two models, we find that our

equilibrium solution is unique and globally stable if the following conditions are met:

-&l_IZk,,p +k, <aexpl(Q,-1)/Q,1/Q,,n=12,...,N. (6.76)
psn

k, <bexpl(Q,-D/0Q,1 Q,. 6.77)
Here we use the fact that exp((Q,, -1)/ 0,1/ Q, <1.
Note that this condition imposes constraints on k,; and k, which were not

required for local stability. This is reasonable since having a unique global stable
equilibrium point is more stringent than having a linearly stable equilibrium point
required in the present work. Model B in Equation (6.5) can no longer be cast in a

Hopfield framework but our approach is applicable to both models.

6.1.5 The Lienard-Chipart Criterion

In this and in the following section, we state the Lienard-Chipart and the
generalized Routh-Hurwitz criteria. The statements are taken directly from Gantmacher
(Gantmacher, 1964) and are given here for the sake of completeness.

Consider a real polynomial

f@=ay" + alz"'l +...+a,, (6.78)

with a, >0. Necessary and sufficient conditions for all the zeros of the polynomial to
have negative real parts can be given in any one of the following forms (Gantmacher,

1964):
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@ a,>0,a,,>0,...;A,>0,A,>0,...,
) a,>0,a, ,>0,...;A,>0,A,>0,...,
A3) a,>0,a, ,>0,a, ;>0,...;A,>0,A,>0,...,
4) a,>0,a, >0,a, ;>0,...;A,>0,A,>0,....

Here A, is the Hurwitz determinant of order p given by the formula

a, a,as...
aya, ay...
Oa,a,...

= = 7
T PYRD § 2 RS (6.79)

.a

(4

where g, =0 for k>n. In the literature, the equivalent Routh-Hurwitz criterion is usually

used. But the Lienard-Chipart is better since the number of determinants that have to be
evaluated is half the number that have to be evaluated for the Routh-Hurwitz criterion.
This leads to a simpler set of inequalities that need to be evaluated. In the main text, we

use the third form of the Lienard-Chipart criterion given above.

6.1.6 The Generalized Routh-Hurwitz Criterion
Consider a polynomial f(z) with complex coefficients. Suppose that
f2) = byz" +b,2" " +...4b, +i(ay2" +a ;2" ' +...+a,), (6.80)
where g,dy,...,@,.b;,...,b, are real numbers. If the degree of f(z) is n, then by +ia, #0.
Without loss of generality, we may assume that a, # 0. Otherwise, we consider the
polynomial g(z) = —if(z) and repeat the analysis for this éolynomial. Both f(z) and g(2)
have the same set of zeros and so no information is lost. This is the case considered in the

main text.
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If V,, #0, then all the zeros of f(z) have negative real parts if

v,>0,V,>0,..,V,, >0, (6.81)
where
G @ - Ggpy
bo bl pr—l
Voo =|0 ay - ay,,, p=12,..,n, (6.82)
0 b - by,

where a, =b, =0 for k > n. Note that the condition V,, #0 would be satisfied for a
generic set of parameter values. This is especially true in our case where a,, b, are

functions of system parameters.

6.2 Appendix B: Bifurcation Scenarios

In this section, we investigate how the dynamics evolve as a function of input
variation. Our main goal is to discover and characterize qualitatively different bifurcation
scenarios. Only the model B from the Appendix A will be analyzed here. The important

role played by the nonlinear sigmoid function in this case will be elucidated.

6.2.1 Single Column

6.2.1.1 Bifurcations Under Input
From (6.4) and for a given level of input /, the fixed point (x,,y,) can be found

by solving the following equations:
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1 3
xO = _b(l - kel'Q(%Q(xo' Qm ), Qm )
a a ) (6.83)

k.
yo =iQ(x0'Qm)
ab
Recalling that the sigmoid function Q(v,Q,,) is a monotonically increasing function of v,
one can see, from Equation (6.83), that (1) x, and y, increase monotonically as [

increases and (2) for a given level of input there is only one fixed point. By linearizing

around (x,,y,) we obtain

d*x dx ’
—‘-I-tz—+(a +b);+abx =—k,;0'(¥y,On)

d’y dy

—-+(a+b)—
dr® (a )dt

(6.84)
+aby =k, Q'(x0,C)

The characteristic equation and the eigenvalues are found to be
(A+a)’(A+b) +k 0 (9,0, )k.; Q' Vo, Cr) =0, (6.85)

and

imz—(a+b)rJ(a+b)2—4[abr;' k0’ (0. 0 k00,0 oo

The oscillatory nature of the fixed point is apparent since the eigenvalues are always
complex for nonzero mutual coupling. Since the sigmoid function has variable siope
providing a nonlinear gain, depending on the position of (x,,y,), the terms Q’(x,,0,,)
and Q’(y,,Q,,) in the eigenvalue expression can vary their values such that the stability of

(xy,y,) might change, i. e., (xy,y,) becomes unstable. Specifically, one can show that if
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2
Q’(xo,Qm)Q’(yo,Qm)zﬂtIc;m-, 6.87)

then the fixed point will become unstable as input increases. The resulting bifurcation is a
supercritical Hopf bifurcation by which a stable limit cycle is created. We note that the

value of Q,, plays an important role for the condition in Equation (6.87) to be satisfied.
Figure 6-2 illustrates the system's response as I increases for three different values of Q,, .
For all different values of Q,, as I further increases, the nonlinear gain passes

through its maximum value and begins to decrease, leading to the fixed point regaining
its stability at a larger value of 1. Another notable feature of the bifurcation diagram is
that for large enough 1, the fixed point position depends on [ in a linear fashion. This can

be understood through the following analysis. As I goes to infinity
kie kie
Q(x()r Qm ) g Qm and Q(;b‘Q(xO’ Qm )1 Qm ) - Q(Eva Qm )- (6'88)
From Equation (6.83) the fixed point position x, and y, in the upper saturation of the

sigmoid as a function of I is solved to be:

xo === (1-k,0(£.0,,0,))
a a . (6.89)
- &e.Q
yO ab m

These relations are in excellent agreement with the linearly increasing portion of

the bifurcation diagram in Figure 6-2.
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x Input (1)

Figure 6-2: Single column bifurcation diagrams as function of the parameter Q,,. The
bifurcation parameter is the input level I. The left plot is the sigmoid function, Q(x), and

on the right the respective bifurcation diagram for the excitatory population (x). For
Q,.=2, the slope or gain provided by the sigmoid output function is not high enough to

destabilize the fixed point. The Hopf bifurcation does not happen and the equilibrium
point is moved to higher levels as input increases (top panel). In the middle panel, we
choose Q,,=5 and the single column exhibits a Hopf bifurcation. The limit cycle is

represented by its maximum and minimum amplitude (up and low branches of the
"bubble"). Higher levels of Q, make the Hopf bifurcation to occur earlier and the limit

cycle is present for a larger interval of input levels. This is seen in the bottom panel,
where Q, =10. The other parameters are: a =220/s,b =720/ s,k,, =0.1and k,; = 0.4.

6.2.1.2 Frequency and Phase

Depending on the input level the dynamics of a single column is either a damped
oscillation or a sustained oscillation. The relative phase between the excitatory and
inhibitory populations is about a quarter of a cycle (90°), with the inhibitory population

lagging the excitatory one for the sustained oscillations. Below we give an estimate of the
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frequency of these oscillations by a linear approximation. Assume that the input level is
such that the fixed point is stable. Any nonzero initial condition will be attracted to the
fixed point via a damped oscillation. From the eigenvalue equation (6.86), the frequency
F of the damped oscillation is approximately:

- Im(A)

> 10°Hz, (6.90)
¥4

F

if the rate constants are given in milliseconds. Although Equation (6.90) is based on a
linear approximation around the fixed point, we found that it even provides a good
estimate of the frequency of the sustained oscillation after the Hopf bifurcation.

We note that the parameters a, b have a large influence on the frequency. Figure
6-3 shows the frequency as a function of a and b. Here the parameters k,, and k,; are
chosen such that the system is at the Hopf bifurcation point. This result means that by
choosing different combinations of rate constants one can achieve a large range of

frequency variation.

6.2.2 Two Coupled Columns

To investigate the dynamics of coupled columns we use the same parameters a, b,
Q.. k. and k,;, for each column. The heterogeneity is introduced in the coupling gains
between the excitatory populations of different columns. We start with the system given
in Equation (6.5), with N = 2. The bifurcation scenarios seen in this case will be then

generalized to the N-coupled case.
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frequency (H

Figure 6-3: Frequency dependence on the rate constants a and b, obtained from the linear
estimation for the frequency of the excitatory and inhibitory populations in the single
column. The frequency estimation is computed from Equation (6.90), with the term
k,;k;, = ab(a+b)*. Rate constants given in milliseconds.

6.2.2.1 Properties of the Origin in the Absence of Input

Here we consider the dynamical properties of the fixed point in preparation for
understanding its bifurcation in the presence of increasing input. We consider the case of
I, =1, =0. For simplicity we let k,, =k;;, =k. The stability of the fixed point at the

origin was investigated in previous section. Here, using a different approach by taking the
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sum and difference of two column variables, we obtain the following characteristic
equations for the linearized equations:

(A+a) (A +b)* —k[A* +(a+b)A +abl+k k,; = o. 650

(A+a)*(A+b)* +k[A? +(a+b)A+ab)+k. Kk, =0
Within the stability constraint given in the previous section, the presence of complex
roots will indicate the oscillatory nature of the fixed point. This can then be viewed as a
precursor to the Hopf bifurcation as input increases. Without attempting to derive

formally the conditions for imaginary eigenvalues, to facilitate the analysis of the roots,

we rewrite the above equations as

f(1)-g(A)=0
f(A) +g(A) =0’ oo
where
f(A)=(A+a)’(A+b)" + k.-eke.-_ (6.93)

g(A) = k[A* +(a+b)A +ab)
Plotted on the same graph the intersections of the function f with the functions g and -g
give the real roots of the characteristic equations. The number of real roots is significantly
affected by the levels of interactions within the column and between columns. We
mention that a particularly interesting scenario occur as follows. For a given set of values
a, b, k k,;, when k = 0, the origin is oscillatory based on discussions on the singe column
case. As k increases one may arrive at the situation depicted in Figure 6-4 where one finds

8 real roots, meaning that the oscillation around the fixed point is abolished by excitatory

coupling between columns. As k further increases, the number of real roots becomes
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smaller than 8 again, restoring the oscillatory properties at (0,0). For the purpose of this
paper it suffices to say that high enough levels of interactions among constituent

populations in a coupled column lead to oscillations around the fixed point at the origin.

0.05

0.04

0.03

0.02

0.01

-0.01

T

-0.02

T

Figure 6-4: Functions f and g used for determining the nature of the equilibrium point at
(x,y)=(0,0) for the 2-symmetrically coupled columns. The intersections between the
functions f(A4), g(4) and -g(A4) represent the real roots of the eigenvalue equation for the
2-coupled columns system. This figure is designed to demonstrate that for two coupled
columns, unlike a single column system, the origin may not always be oscillatory.
Specifically, for the situation depicted in the figure, all the 8 possible eigenvalues are real,
meaning that the origin is non-oscillatory. But we comment that this is an extreme case
where the interaction between the excitatory and inhibitory populations is set to a very
low level. Increasing the coupling strengths k;, and k,;, or k will easily lead to complex
roots, giving the fixed point an oscillatory response to perturbations. The existence of
complex eigenvalues is a condition for the Hopf bifurcation. The parameters were set
such that the fixed point is stable, with a =220/s,b =720/ s,k k,; =0.00land k =0.1.
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6.2.2.2 Bifurcations Under Input

The homogeneous case: k,, =k, and I, = I,.

Consider the synchronized solution. The system can be reduced to a 4™ order

system:

2y dx
i +(a+b)—+abx -k,.0(y.0,, ) +kQ(x.Q,,)+1
dt . (6.94)

2
@+ by + aby = k,0(,0,)

Let the fixed point be denoted by x; =x, =x, and y; =y; =y,. The equation for the

fixed point can be written as

Yo = - (kQx, 0 ki@ 2252:E0) g 1 1)
ab
. (6.95)
= ieQ(xO ’ Qm )
ab
It can be seen that x, is the root of the following function
f(x) = abx + k,,Q(-—————"= "Q(x On) .0,)—kQ(x,0,,)—1I. (6.96)

We plot f(x) as a function of x in Figure 6-5 for three sets of values of a, b, Q,, k., k;
and I = 0. We note that, differently from the single column case, f(x) can be a non-
monotonic function. This allows for multi-stability, saddle node bifurcations and
hysteresis.

Based on the behavior of f(x) as a function of input 7 one can imagine the
following scenarios regarding the fixed points in the system. (It should be noted that,

concurrent to the changes in fixed point structures, one observes the bifurcations creating
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or annihilating limit cycles.) Specifically, in Figure 6-5, curve (a), only one fixed point
exists. As input increases the function f(x) is moved downward in a rigid fashion and this
fixed point is moved to a higher value. Curve (b) implies that, as / increases, one
observes the creation and destruction of fixed points, through saddle node bifurcations. At
first, a saddle node bifurcation generates two additional fixed points, one stable and one
unstable. As input increases further a reverse saddle node bifurcation happens,
annihilating the original stable fixed point and the newly created unstable one. When this
happens the system jumps to the only remaining fixed point at a higher excited state. This
scenario allows for hysteresis. In curve (c), three fixed points coexist in the absence of
input: a stable fixed point at the origin (low equilibrium point), an unstable one at an
intermediate level and another stable one at a higher value (high equilibrium point).
When input increases, a reverse saddle node bifurcation occurs through the annihilation
of a stable and unstable fixed point.

The above scenarios concerning the fixed point structures provide only one factor
to the understanding of the system's dynamics under input. Another factor is that Hopf
bifurcations can take the dynamics away from the fixed point and this oscillatory
dynamics can undergo its own set of bifurcations under input. In common bifurcation
scenario, related to the curve (a) in Figure 6-5, as the input reaches higher and higher
values, the fixed point of the system enters low gain (slope) regions of the sigmoid output
function, and becomes stable again. A reverse Hopf bifurcation takes place. The
amplitude of the oscillations shrinks until it terminates. Another more interesting cenario,

shown in Figure 6-6, where the oscillatory behavior is terminated by a homoclinic
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Figure 6-5: The fixed point equation for the 2-symmetrically coupled columns with input
I = 0; The ploted variable is the local field potential of the excitatory population (x).
Three main situations are plotted: in curve (a) the system has only one fixed point
(represented by the intersection with the zero line). As the input level increases above
zero, the curve moves downward (not shown) and the fixed point moves to a higher value
of x (parameters: Q, =5, k,, =0.1, k,; =04, k,; =k, =0.1); In curve (b), besides the
fixed point at the origin, the system has two new possible fixed points. As input
increases, a saddle node bifurcation gives origin to one unstable and one stable fixed
points (parameters: Q, =10, k, =0.4,k,; =0.1, k;, =k, =0.15); In curve (c), three new
fixed points are already in place for I = 0; The system has two stable equilibrium points,
one at the origin and one at a higher level. In an intermediate level there an unstable fixed
point (parameters:Q,, =10, k, =04, k,; =0.1, k,, =k;; =0.2); See text for the relations
between this possible attractor layouts and the Hopf bifurcation. In all the three previous
cases a=220/s,b=T20/s.

bifurcation (Strogatz, 1994). At the bifurcation point one should observe infinite long
period oscillations. In our numerical simulations, the oscillations indeed become slower

and slower. However, they terminate abruptly with the system jumping to a stable fixed
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point. Our hypothesis is that the stable limit cycle approaches the invariant manifolds of
the saddle. If the stable manifold is also the border of the basin of attraction separating the
stable limit cycle and a stable fixed point, any small perturbation (numerical or physical)
can make the system to enter the basin of attraction of the stable fixed point. This
hypothesis requires then multistability, which is possible for N =2. In Figure 6-6, the
initial conditions for the system are at the origin. For I = 0, the 2-coupled columns system
has already three fixed points. A stable one at the origin (low equilibrium state), another
stable near x; =5 (high equilibrium state) and an unstable one at an intermediary level
(represented by the dotted line). The low equilibrium state becomes unstable at a certain
level of input and a limit cycle is created. Here the bifurcation into two branches
represents the maximum and minimum amplitude of the cycle. The oscillations are
abruptly terminated in the form described. Note that when the input level is decreased
from a higher level, the network dynamics follows a different route without the presence
of oscillations. The multistability scenario can lead also to histeresis, a phenomenon
typical of nonlinear systems having multiple coexisting attractors (multistability). One
interesting implication of this scenario shown is that, although the system can start at the
low equilibrium state, as the input follows its rise-and-fall temporal pattern the system
might relax back to a higher equilibrium or excited state, and remain there in the absence
of external input. The same type of scenario was also common for higher dimensional

systems, e.g., a 64-coupled columns system.

176



Io Ll Ly

-5 e 1l 1
[\] 0.05 0.1 0.15 02

input (1)

Figure 6-6: Bifurcation diagram for the 2 symmetrically coupled columns. The
bifurcation parameter is the input level 7 and only the activity of the excitatory population
x, is shown. Initial conditions for he system are at the origin. For / = 0 the 2 coupled
column system already have three fixed point. A stable one at the origin (low equilibrium
state), another stable near to x, =6 (high equilibrium state) and an unstable one at
intermediary level (represented by the dashed line). The low equilibrium state becomes
unstable for a certain level of input a limit cycle cycle is created (bifurcation into upper
and lower branches). The limit cycle is terminated not by a reverse Hopf, but by a
homoclinic bifucation. At that point the 2-coupled column system jumps to the higher
equilibrium state. By varying the input in the reverse direction (from high to zero) no
oscillations are possible. The system stays all the way in the higher equilibrium state. This
scenario relates to the curve (b) shown in Figure 6-5. The same parameters used there are
applied here.

The heterogeneous case: k,, # k,, and/or I, # I,.

For the asymmetrically coupled model the same scenarios shown above are still
present. Additionally, we observe quasiperiodicity and weak chaos over a narrow range of
input that is not seen in the symmetric case (but we could not rule out their possible

occurrence in the homogeneous case). The bifurcation diagram (Figure 6-7 and the
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enlargement in Figure 6-8) shows three main regions: stable fixed point, periodic
oscillations and a small intermediate interval where quasiperiodicity and chaos appear.
The new dynamics are characterized by fast oscillations around 50 Hz with a slow
amplitude modulation around 4Hz. Figure 6-9 presents an example of this oscillatory
behavior in the chaotic regime. The computed correlation dimension for the time series in
this regime is about 2.25 suggesting an attractor structure more complex than a torus
(Strogatz, 1994). Careful examination of the bifurcation diagram also reveals periodic

windows in which periodic solutions with more complex waveforms occur.

Input (1)

Figure 6-7: Bifurcation diagram for the 2 asymmetrically coupled columns. The
bifurcation parameter is the input level I and only the activity of one the excitatory
populations x, is shown. Besides the bifurcation into the limit cycle, a small region of
periodic, quasiperiodic and chaotic behavior exists represented by the darkened region
(see Figure 6-8 for the enlarged plot of this region).
(Parameters:a =220/s, b=720/s, Q,, =20, k,, =01, k,; =04, k,; =0.02, k, =0.2);
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Figure 6-8: Bifurcation diagram for the 2 asymmetrically coupled columns. The
bifurcation parameter is the input level 7 and only the activity of the excitatory population
x, is shown. This plot shows an enlarged part of the previous Figure 6-7. In the region of
input level from ~ 0.2 to ~ 4.5, a limit cycle exists. From 7 near to 4.5 to ~ 6.4, subregions
of periodic, quasiperiodic and chaotic behavior coexist.

6.2.3 N-Coupled Columns
The system of N-coupled columns with homogeneous coupling ko =k, n,p

exhibits the same range of qualitative behavior as that for the 2-coupled columns with
equal interconnections. Below we study a heterogeneous case where a coupling matrix

consists of a random set of Gaussian variants.

6.2.3.1 Bifurcations Under Input

We consider a 64 coupled column model. The activity of only one of the

excitatory populations is shown. The couplings k are randomly chosen according to a
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Figure 6-9: Chaotic behavior of the 2 asymmetrically coupled system. The activity of one
of the excitatory populations x, is shown. Correlation dimension computed from a larger
segment than the one shown presented here allowed values about 2.25 suggesting an
attractor structure more complex than a torus or quasiperiodic behavior, pointing to a
chaotic type of behavior. (Parameters:
a=220/s,b=720/s, Q, =20, k,=01,k,; =04, k,, =002, k;, =02, I, =1, =0.6);

?* Me

Gaussian distribution (#=0.15, 0=0.025). For small Q,, the bifurcation diagram

presents a stable fixed point and Hopf bifurcations. The 3 plots in Figure 6-10 are for the
same set of couplings but Q, is set at a higher value. Note the 3 distinct oscillatory
behaviors: periodic (~40Hz), aperiodic (~ S0 Hz with a ~3Hz, input level I = 2.25), and
periodic (~30Hz). The computation of the correlation dimension of the aperiodic time
series gave values higher then 2, suggesting as in the previously shown case of 2
asymmetrically coupled columns, a structure more complex than a quasiperiodic attractor.
The amplitude of the population’s activity in each column is dependent on the total

driving, i.e., external input and the input from the other columns. Because of the
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heterogeneous coupling, the network presents a pattern of modulated local field potential

amplitudes and phases over its columns (not shown).

Figure 6-10: Types of behavior for the 64 asymmetrically coupled columns system. The
coupling strength for the mutual excitation between the columns were taken from a
Gaussian distribution (x4 =015, 0=0.025) and were randomly assigned to each
connection. The plots show the activity of one of the excitatory populations x;.
Differently from the previous Figure 6-10, here Q,, is set to 10. The top plot shows a time
series for input level I = 0.5 where the behavior is periodic (~ 40 Hz). The middle plot
shows the activity for I = 2.25. Correlation dimension computed from larger segments
than the one shown here allowed values higher than 2, suggesting an attractor structure
more complex than a torus, i.e., chaotic behavior. The oscillations around S0 Hz with a
slower modulation around 3 Hz resembles a beating phenomenon. This region of
nonperiodic behavior exists for a larger interval of input levels than the one for the 2
asymmetrically coupled system. This region of aperiodic behavior has coexistent
subregions of quasiperiodic and chaotic activity. The system becomes periodic (~ 30 Hz)
again for a higher level of input (bottom plot, I = 3.1); Further increase of the input level
leads to the destruction of the limit cycle through a homoclinic bifurcation. The
oscillations suddenly stop, instead of gradually decreasing to zero as in a reverse Hopf
bifurcation.
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