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Abstract

Much of our knowledge of coordination comes from studies of simple, dyadic systems or

systems containing large numbers of components. The huge gap ‘in between’ is seldom

addressed, empirically or theoretically. We introduce a new paradigm to study the coordina-

tion dynamics of such intermediate-sized ensembles with the goal of identifying key mecha-

nisms of interaction. Rhythmic coordination was studied in ensembles of eight people, with

differences in movement frequency (‘diversity’) manipulated within the ensemble. Quantita-

tive change in diversity led to qualitative changes in coordination, a critical value separating

régimes of integration and segregation between groups. Metastable and multifrequency

coordination between participants enabled communication across segregated groups within

the ensemble, without destroying overall order. These novel findings reveal key factors

underlying coordination in ensemble sizes previously considered too complicated or ’messy’

for systematic study and supply future theoretical/computational models with new empirical

checkpoints.

Introduction

The function of living systems (e.g. brain, human society, ecosystem) depends on the coordi-

nation of multiple components and processes. Such coordination depends on intrinsic charac-

teristics of the interacting entities as well as the form of interaction between them [1–4]. Living

systems exhibit a myriad of rhythmic behaviors [5], e.g. humans with their daily, weekly,

monthly routines [6] and physiological rhythms [7]; brains with their waves [8]; and species

with their life-cycles [9]. By virtue of its temporal symmetry (i.e. translational symmetry in

time), rhythmic coordination serves as a fine soil for experimental and theoretical study of

laws of interaction between components of dynamical systems. The study of two interacting

entities has laid experimental and theoretical foundations for addressing how coordinative

structures form, adapt and change. Whether it is humans coordinating with sensory stimuli

[10,11], coordinated movements within the same person [12–15], between two persons [16–

22], two neuronal populations [23,24], humans and machines [25–27], or humans and other

species [28,29], similar tendencies to form or learn certain relative phase and frequency pat-

terns have been observed. Essential phase patterns, their stabilities and transitions have been
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well described mathematically in terms of informationally coupled dynamical systems [30–

33]. A little beyond dyads, triadic and tetradic coordination have been studied mainly in ani-

mal gaits or multilimb movements with a richer repertoire of patterns–combinations of dyadic

patterns satisfying certain symmetry constraints [34–38]. Beyond systems with a relatively

small number of interacting components, the focus of interest leaps toward systems of much

larger scales–e.g. flashing fireflies [39], neuronal populations [40], or the clapping of an ardent

audience [41]–whose sheer size eludes detailed investigational techniques but favors low-

dimensional measures at coarser scales (e.g. collective synchronization). Such synchronization

has been reproduced in various coupled oscillator models, e.g. [42–45].

Despite this gap between systems of very few and very many components (with rare excep-

tions, [46]), daily social interaction often unfolds in the middle, for example, coordinating

with a group of colleagues at work, or afterwards engaging in a variety of gatherings with

friends and families, or various forms of folk dancing and Ceilidhs. The choice of the number

of independently manipulatable components goes hand in hand with available paradigms for

approaching coordination phenomena. With very few components, the repertoire of collective

patterns and phase transitions can be fully explored with the help of experimental manipula-

tion and theoretical models, but the limited size may curtail the complexity of spatial organiza-

tions. With very many components, possible coordination patterns (described at a microlevel)

become too numerous to be studied exhaustively (due to high dimensionality of the phase

space); the large number of components also makes it difficult to utilize systematic manipula-

tions to carry the system through its repertoire of possible patterns. Instead, low-dimensional

(macro) measures such as the overall level of synchronization can serve as an order parameter

to capture collective states of the system [1,43]. As important as such descriptions of coordina-

tion are, macro measures meet their limit when one attempts to characterize the system’s orga-

nizational complexity. Under the broad umbrella of “incoherent” states, what are the possible

organizations? How can we explore such organizations systematically in the laboratory? To

answer these kinds of questions, a way is needed to experimentally manipulate the system’s

coordination dynamics on multiple spatial and temporal scales of description. We chose an

ensemble of intermediate size (N = 8 people) operating under the assumption that this is big

enough to reveal the system’s organizational complexity, yet small enough to yield to experi-

mental manipulation. Our strategy was to bridge this two-fold gap of system size and experi-

mental control.

We studied rhythmic movement coordination in ensembles of eight people who were pre-

disposed to move at the same or different frequencies. Existing empirical findings and theories

suggest that the form and stability of coordination varies with the strength of coupling and the

difference in natural frequency (frequency predisposition) between components [11,32,47].

On this basis, we hypothesized that manipulating the distribution of frequency predispositions

and coupling strength should produce different propensities for coordination, and induce dif-

ferent forms of collective behavior. Because it is possible to control systematically and measure

quantitatively, frequency difference was chosen as a parameter to manipulate diversity within

and between group members. We wanted to know how different diversity conditions favor the

formation, persistence and change of multiple groups that are potentially integrated within

themselves but segregated between each other.

Results

Fifteen independent ensembles of eight people (N = 120) participated in the study (for details

see Materials and Methods). All were instructed to tap rhythmically on a touchpad. At the

beginning of each trial, members of an ensemble were each paced with a metronome; after the
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pacing period, they were able to see each other’s taps as flashes (dubbed “human fireflies”) on

an array of LEDs situated at eye height in front of them. The task was to keep tapping at one’s

own metronome frequency (tempo) throughout the entire trial. No instructions were given to

coordinate with others.

To study how patterns of coordination among participants may form or dissolve, we intro-

duced different levels of diversity by manipulating the assignment of metronomes to each par-

ticipant. The metronomes divided the participants into two groups of four with frequency

difference (δ f, also referred to as level of diversity below) of either 0 Hz (1.5 vs. 1.5 Hz), 0.3 Hz

(1.35 vs. 1.65 Hz), or 0.6 Hz (1.2 vs. 1.8 Hz). Within each group the four participants were

paced at the same frequency. Overall, participants followed the metronome frequency during

both pacing and interaction phases, in accord with instructions (see Section E in S1 File). In

the following sections, we demonstrate the main findings, which may be best read along with

the extended quantitative and theoretical analyses provided in the Supporting Information (S1

File).

Spontaneous phase coordination and spatiotemporal metastability

The dynamics of relative phase between participants revealed that the participants spontane-

ously coordinated in various phase patterns and switched between them, despite not being

given any instruction to do so. Such dynamic patterns are exemplified in Fig 1A1–1A3 which

shows a trial of interaction among three persons (labeled with numbers 1, 3 and 4, reflecting

spatial location on LED arrays, see legends under A2). The evolution of their relations is

shown in (A1) as trajectories of dyadic relative phase (ϕ, reported in radians throughout this

paper) for pairs 3–4 (orange) and 1–3 (red). When a trajectory is horizontal, the pair is

strongly coordinated by holding an (almost) constant phase relation (termed phase locking or

dwell); when the trajectory is tilted, the pair is uncoordinated (phase wrapping). Dyad 3–4

(orange) engaged in a long dwell at inphase (ϕ� 0, 10-35s in A1, largest peak in A2), then

switched to a near antiphase pattern (ϕ� π, 40s onward in A1, small peak in A2). Such near

inphase/antiphase patterns are signs of bistability widely observed in biological coordination

[48]. Dyad 1–3 (red) also coordinated near inphase but in much briefer and recurrent dwells

(around 10, 20, 30s in A1, largest red peak in A2), interleaved with escapes from it. This type of

intermittent or relative coordination [49] characterized by consecutive epochs of dwells and

escapes corresponds to the metastable regime in models of coordination dynamics [3,50]. Evi-

dence for metastabilty was often seen in single trial dynamics (see Section J in S1 File for a sta-

tistical approach). Besides bistable and metastable coordination observed within specific pairs

of participants, a higher order interaction becomes apparent when we examine the two pairs

together: during the long dwell of Dyad 3–4, three epochs of phase shift (bumps in orange

curve at 15, 25, 35s in A1) followed precisely after each dwell of Dyad 1–3 (red). Moreover, as

each dwell of Dyad 1–3 became longer than the previous one, the phase shift in Dyad 3–4

became bigger, to the point where the shift was so big (38s) that Dyad 3–4 broke up their pre-

dominant inphase pattern and switched to antiphase. This finding indicates that the joining of

a new member (e.g. person 1) induced changes in preexisting coordinative relations (e.g. Dyad

3–4), strongly suggesting that multiagent coordination is more than the sum of isolated dyads

(see Section H in S1 File for a statistical analysis). As an aid to visualization, the spatial arrange-

ment corresponding to the foregoing temporal changes are illustrated in A3.

In the experiment, epochs of phase coordination were mostly transient or intermittent (i.e.

metastable dwells), covering a wide range of time scales, with a mean duration of 4.64s (±
4.04s) and a long tail of more persistent phase patterns up to the entire duration of interaction,

about 50s (See Fig B in S1 File for distribution). The confluence of metastability and multiple
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coupled agents allows the coexistence of multiple time scales of coordination in a group, as Fig

1A1–1A3 already hinted (orange–long dwell, red–short dwells with more frequent recur-

rence). Multiple coordinative time scales allow different members of a group to come together

at different times, thus allowing the group to visit a variety of spatial patterns at different times.

An example of four-person interaction is given in Fig 1B1–1B4 illustrated as three dyadic rela-

tive phases (dynamics in B1, distributions in B2). The duration of phase dwells is marked in

(B3): red dyad with a long dwell, green dyad a bit shorter, and blue dyad even shorter. Such

multiplicity in the time scale of metastable coordination led the four-person group through a

variety of spatial patterns from moment to moment (B4) rather than to persist as a static struc-

ture (which would be the case if, e.g., phase coordination were absolutely stable). Thus, in the

present case of intermediate sized group arrangements, spatiotemporal metastability—coexist-

ing tendencies for integration and segregation—is rather more characteristic of coordination

than collective synchronization [50,51].

Fig 1. Coordination dynamics of phase relations among multiple agents. (A1) Exemplary relative phase trajectories show the metastable phase coordination of three

persons (2 moduli plotted to help perceiving trajectories’ temporal continuity). Shortly into the interaction stage (10s), dyad 3–4 coordinated near inphase for 25s (relative

phase ϕ� 0 orange, flattening of ϕ trajectories indicates phase coordination, or dwells), then switched into a pattern near antiphase (ϕ� ±π orange, 40-47s). Dyad 1–3

also dwelled around inphase but for shorter durations (A1, red curve flattening around 12, 22, 32s). The interaction shows tendencies for bistability (inphase and

antiphase), as also seen in the histograms of the relative phase (A2), with the orange distribution more pronounced at antiphase than the red. (A3) shows the spatial

organizations of phase coordination among agents 1, 3, and 4 at moments corresponding to the time-axis in (A1; for interpretation see B4 below). (B1-4) shows an

example of four-person interaction in similar format to the above. Dynamics of ϕ (B1) reveals phase coordination on various time scales, visualized in (B3) where the

length of a bar annotates the duration of phase dwell between a pair of participants. Dyad 1–2 (red) showed the longest dwell, Dyad 1–4 (green) a bit shorter, and Dyad

4–3 (blue) the shortest. The coexistence of multiple timescales of coordination gives rise to a constantly evolving spatial organization of the group, shown as a sequence of

graphs in (B4) where each node presents a participant and an edge indicates phase dwell (color coding corresponds to B1-3, black edges are dyadic dwells whose dynamics

are not shown in B1-2; coordination within the other group, i.e. agents 5, 6, 7, 8, is not shown for reasons of clarity).

https://doi.org/10.1371/journal.pone.0193843.g001
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Dominant patterns of coordination and their relation to diversity

When all phase relations were considered in aggregate, we found that inphase coordination

was clearly a dominant phase pattern (central peaks in distributions of relative phase ϕ in Fig

2). Yet this dominance of inphase depended on both local and global diversity. Inphase was

more dominant locally within a group (participants paced at the same frequency) than

between groups (where diversity was introduced by δ f; Fig 2, A1, probability density for

within-group ϕ significantly above chance from 0 to 0.24π, A2, for between-group ϕ signifi-

cantly above chance from 0.05π to 0.08π, at p̂ <0.05, where ‘hat’ denotes Bonferroni correction

for multiple comparison throughout the text; see Section G in S1 File for confidence intervals

for chance level distribution). Globally, the dominance of inphase in the entire ensemble

decreased as diversity increased (B1-3 for δ f = 0, 0.3, 0.6 Hz respectively: B1 significantly

above chance from 0 to 0.14π, B2 from 0 to 0.09π, p̂ <0.05; B3 n.s.). This suggests that inphase

coordination is an important characteristic for the formation and maintenance of coordinative

structures regardless of group size, especially when diversity is low. Considering only epochs

of strong coordination (dwells), we found a wide range of phase relations, where antiphase,

along with inphase, was also a preferable phase relation (for details see Section F in S1 File).

Beyond patterns of phase relations, other types of coordination were observed. One of them

is a form of multifrequency coordination that binds behavior at different frequency ratios

[14,15,52,53]. We studied which frequency ratios constitute preferred coordination patterns

by comparing their probability density to chance levels (computed from randomly permuted

Fig 2. Aggregate distributions of phase relations. Blue solid lines are distributions of relative phases in the experiment (histograms were computed and statistically tested

in the interval [0, π] then repeated in the interval [-2π, 2π] for visualization). Red dashed lines correspond to chance level (uniform) distribution. (A1) shows relative phase

between members within the same frequency group, (A2) between different groups, (B1-3) for ensembles with diversity level δ f = 0, 0.3, 0.6Hz respectively. Inphase

(central peak) is clearly a dominant pattern throughout, but its dominance diminishes with the diversity parameter displayed in (B1-3). Inphase preference was more

pronounced within-group (A1), where participants shared the same initial frequency, than between-group, where frequency diversity was introduced (A2).

https://doi.org/10.1371/journal.pone.0193843.g002
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taps, see Section D in S1 File for details). Chance level distributions reflect expected occurrence

of different frequency ratios as a result of participants’ maintaining metronome frequencies

without interacting with each other. Hence, we expected chance level distributions to peak

around ratios corresponding to the three diversity conditions, i.e. 1:1 (δ f = 0 Hz), 9:11 (δ f =

0.3 Hz), and 2:3 (δ f = 0.6 Hz). Fig 3 shows the distribution of instantaneous frequency ratios

in terms of within-group (Fig 3A) vs. between-group (Fig 3B) coordination for different levels

of diversity (blue δ f = 0 Hz, red δ f = 0.3 Hz, yellow δ f = 0.6 Hz). A frequency ratio is a pre-

ferred coordination pattern if its probability density (solid lines) is above chance level (light-

color bands). Within-group participants coordinated primarily at 1:1 ratio (Fig 3A, all p̂s<
0.05), which is consistent with the high level of phase-locking reported above. For between-

group coordination (Fig 3B),1:1 was still the preferred ratio when there was no diversity (δ f =

0 Hz, p̂ <0.05); a higher order ratio near 2:3 was preferred when the diversity was large (δ f =

0.6 Hz; p̂ <0.05). For intermediate diversity (δ f = 0.3 Hz), the between-group frequency coor-

dination was barely above chance at metronome ratio 9:11 (for metronomes at 1.35 Hz and

1.65 Hz), but significantly more concentrated than chance near 1:1 (p̂ <0.05). In short, under

appropriate diversity conditions, lower order (1:1) and higher order (e.g. ~2:3) frequency coor-

dination can coexist–a basis for complex spatiotemporal coordination. Furthermore, this type

of coordination with frequency ratios (one which is less straightforward to detect and less stud-

ied) is specific to between-group interactions.

Segregation and integration of groups: Critical diversity

Having studied coordination at the micro level (person to person), we turn now to the macro

level of integration and segregation between groups. In order to do so, we first quantified coor-

dination as the level of phase locking between individuals from the same and different initial

groups (i.e. within- and between-group coordination respectively). Fig 4A shows the average

results. We found that as initial frequency difference between groups (δ f) increased, phase-

locking between groups weakened dramatically (Fig 4A, right cluster). Interestingly, phase-

locking within groups (no diversity within-group by design) was also weakened by virtue of

the difference with the other group (Fig 4A, left cluster, notice orange and yellow bars

Fig 3. Multifrequency coordination. Ensembles with low diversity were dominated by 1:1 coordination, while ensembles with high diversity also steered towards

higher-order ratios. Solid lines show the probability density of frequency relations within- (A) and between-group (B) for the 3 diversity conditions (color coded). Thin

shaded areas (with corresponding colors) are confidence intervals for null distributions (p<0.0005 for each of 100 bins, corresponding to p̂ <0.05 for an entire

distribution using Bonferroni Correction; generated from randomly permutated taps, which represent the expected distribution from non-interacting agents tapping at

required frequencies). For within-group relations (A), the peaks at 1:1 are far above chance, indicative of stabilizing phase relations at the same frequency. For between-

group relations (B), low to moderate diversity (blue, red, δ f = 0, 0.3 Hz) led to above-chance coordination at 1:1; in contrast, for high diversity (yellow, δ f = 0.6,

corresponding to metronome ratio 2:3), coordination was below chance at 1:1 but far above chance at a higher order ratio near 2:3.

https://doi.org/10.1371/journal.pone.0193843.g003
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significantly shorter than blue; MANOVA, interaction effect, F(2,7246) = 198.2, p<0.001; see

Section L in S1 File for MANOVA main effects analysis). That is, local coordination (e.g.

within group) was influenced by the larger context (difference with other groups), as exempli-

fied also in Fig 1A.

Next, we quantified group-level segregation~integration by studying the relation between

within-group and between-group coordination. If more within-group coordination leads to

more between-group coordination, the groups may be said to become integrated. If more

within-group coordination leads to less between-group coordination, the groups may be said

to become segregated. In Fig 4B, for the zero intergroup difference (δ f = 0 Hz, blue dots), a

large value of within-group phase-locking is paired with a large value of between-group phase-

locking, indicating that the initial groups have merged. The same is true, though to a lesser

extent, for δ f = 0.3 Hz. For δ f = 0.6 Hz, however, a larger value of within-group phase-locking

is associated with a smaller value of between-group phase-locking, suggesting that stronger

coordination within the group prevents coordination with members of the other group, or

conversely, switching to another group reduces the coordination with one’s original group.

Quantitatively, for small diversity (δ f = 0, 0.3 Hz), initial groups integrated into one super-

group, as seen from the positive slope of regression lines (Fig 4B, blue, red; β1
0 Hz = 0.88,

t(84) = 20.0, p<0.001; β1
0.3 Hz = 0.31, t(84) = 3.94, p<0.005). For larger diversity (δ f = 0.6 Hz),

the groups became more segregated (negative slope; Fig 4B, yellow; β1
0.6 Hz = -0.14, t(85) =

-2.83, p<0.01).

To estimate the critical diversity that marks the boundary between integration and segrega-

tion, we regressed the degree of integration β1
δ f against the intergroup difference δ f. We

found a significant negative linear relation between those variables (linear regression, α0 =

Fig 4. Diversity parametrically controls integration~segregation of groups within ensembles–the emergence of spatial scales. (A) Phase locking between groups

decreased monotonically when between-group δ f increased (A, right). Within groups however (A, left), where agents’ initial frequencies were uniform, phase locking was

still affected by the presence of another group of a different frequency (red, yellow bars significantly lower than blue bar), demonstrating that interactions are sensitive to

the multiagent context in which they are embedded. (�� p<0.01; ��� p<0.001; error bars represent standard errors) (B) A scatterplot reveals linear associations between

phase locking within- and between-group (each point represents a trial), whose slopes were modulated by the diversity parameter δf (denoted by color, see legend).

Linear regressions had positive slope for lower diversity (blue and red colored lines) indicating integration of initial groups into larger coordinative structures, while a

negative slope was found for the largest diversity (yellow line), indicating intergroup segregation. A critical parameter of diversity (δ f�) was identified that borders the

regimes of integration and segregation (black line).

https://doi.org/10.1371/journal.pone.0193843.g004
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0.86, t(1) = 20.5, p<0.05; α1 = -1.70, t(1) = -15.7, p<0.05). By finding when integration van-

ishes (β1
δ f = 0), we identified a critical frequency difference (δ f

�

) of 0.5 Hz as a boundary

between the two different macro-organizations, i.e. a critical value that distinguishes segrega-

tion and integration.

Segregation and transitions of spatial order

We now return to real time dynamics to unpack the meaning of macro-level “segregation” in

the foregoing statistical conclusion. In an example shown in Fig 5, the ensemble was initially

divided into two frequency groups (early on in Fig 5A; faster group of agents 1 to 4, slower

group of agents 5 to 8), thanks to the large difference between their metronome frequency

(δ f = 0.6 Hz). Soon the ensemble developed into multiple local structures which were coordi-

nated within and segregated between each other (three pairs 3–2, 5–7, 6–8, and two individuals

1, 4; this spatial order can be easily seen in D, first two graphs, 10-25s). The large initial

Fig 5. Frequency diversity contributes to spatial organization and reorganization. (A) Instantaneous frequencies of an ensemble of eight interacting agents

(smoothed by averaging four consecutive taps). Agents 1 to 4 (warm colors) were paced with the same metronome frequency 1.8 Hz, and similarly agents 5 to 8 (cold

colors) were paced at 1.2 Hz, (i.e. δ f = 0.6 Hz), which helped create two initial frequency groups. Soon after the beginning of the interaction (~12s, corresponding to

the first graph in D), initial groups divided into five local structures: three pairs (3–2, 5–7, 6–8) and two individuals (agent 1 largely independent, agent 4 oscillating

between agent 1 and pair 3–2). The frequency pairing held up to the time of (A1), then a sudden reorganization occurred from (A1) to (A2)–an exchange of partners

(3–2 broke up and recoupled into 4–3, 2–5; 7 left alone; corresponding to the 3rd graph in D). The new pairing lasted a few seconds then returned to a similar

organization to (A1) at the time of (A3). Phase relations of the pairs involved in the reorganization (A1-3) are illustrated in (B) as time series and in (C) as distributions

of four dyadic relative phases. The new organization at A2 lasted exactly the time for pair 3–2 (blue) to break up an antiphase relation (27s) then return to it (33s) after

phase wrapping for one cycle. This transition in phase relations corresponds closely to the transitions of frequency grouping. To visualize the spatial consequences of

such phase/frequency regrouping, graphs in (D) were used as representations of the coordinative structure. Each node represents a participant at the actual location of

the LED representing that participant (up to rotation). Each edge represents the existence of strong phase coordination between two participants at the time (aligned

with x-axis in B). The spatial reorganization is apparent from the 2nd and 3rd graph aligned to (A1) and (A2) respectively. Interestingly, the 3rd graph, albeit distinct

from the rest, is in fact isomorphic to the other graphs.

https://doi.org/10.1371/journal.pone.0193843.g005
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diversity allowed the coexistence of multiple segregated groups and enabled the ensemble to

form a sustained spatial order by providing sufficient frequency isolation between local struc-

tures (in contrast to the low diversity scenario where spatial patterns go through constant reor-

ganization, e.g. Fig 1, Fig H in S1 File). However, a segregated spatial order does not have to be

static. To the contrary, there was a sudden transition from one segregated spatial order (A1

and 2nd graph in D) to another, also segregated, spatial order (A2 and 3rd graph in D, a period

marked with multiple partner exchanges), then back to the original (A3, and 4th graph in D).

This kind of micro-level exchange of members across frequency groups has been observed in

77% of the trials in the segregated condition (δ f = 0.6 Hz). It suggests that segregation is a

macro property of ensembles, sustainable despite the coexistence of dynamical exchanges at

micro level.

Discussion

Integration and segregation in a diverse group

Rhythmic coordination is ubiquitous in natural systems from the cells of the heart to the neu-

rons of the brain, from fireflies to people [3,39,41,46,54–58]. The convergence of multiple

interacting elements to global synchronization has been the focus of experimental and theo-

retical studies [41–45,59,60]. Behavioral synchronization is known to facilitate social commu-

nication and the development of social affection or bonding [61–65], and is important to

understanding social coordination dynamics [66,67]. Nevertheless, within a community, peo-

ple coordinate in multiple social groups at various spatiotemporal scales–a complex organiza-

tion that is far from uniform synchronization [68–70]. In fact, the components of living

systems often compartmentalize into distinct communities or modules, highlighted by dense

interactions within communities and loose interactions between communities [71,72]. This

form of organization, embracing both integration and segregation among its elements, can

lead to greater persistence and robustness of the system [73–76], and influence structural and

functional complexity depending on the scale of integration [77–79]. Investigation of the con-

ditions leading to the formation, change, and dissolution of segregated structures is a necessary

step to understanding and controlling complex systems.

We demonstrated experimentally how coexisting groups integrated and segregated in an

ensemble of eight interacting people. Each half of the ensemble was predisposed to move at a

distinct frequency prior to social interaction, thereby creating two initial frequency groups

with a controllable parameter of diversity between them (δ f). People engaged in more phase

coordination with those who were predisposed to move at the same frequency than with those

who performed at a different frequency (Fig 4A; Fig K in S1 File left). This is a form of “homo-

phily”–people prefer interacting with those who are similar to themselves than with those who

are different [80]–known to contribute to segregation in diverse communities [81–84]. Indeed,

the integrating force of sameness is complemented by the segregating force of difference [85].

To what extent do quantitative changes in intergroup diversity induce a qualitative change

in intergroup relationships? We have shown that low-to-moderate diversity led to integration

of the groups (δ f = 0, 0.3 Hz; Fig 1B): more coordination within-group was associated with

more coordination between-group. High intergroup diversity led to segregation (δ f = 0.6 Hz;

Fig 1B): more coordination within-group was associated with less coordination between-

group. Parametrically varying diversity made it possible to estimate the critical value of diver-

sity (δ f
�

): exceeding this critical value led to segregation; remaining below the critical value

led to integration. Identifying the critical values of a dynamical system empirically proves to be

a valuable step in many situations, not only to provide essential information on the organizing
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principles and potential behaviors of the system, but also to serve as key phenomena to be

reproduced in theoretical models [86,87].

A complex system consists of interactions at multiple spatial scales, where activities at one

scale are connected with those of another scale [88,89]. How the macro environment con-

strains micro activities was illuminated by comparing dyadic interactions embedded in a

group with expected behavior of dyads in isolation. If dyads (micro) were not influenced by

the larger environmental context (macro), the same amount of coordination would be

observed within groups at all three levels of intergroup diversity. The data say otherwise: phase

locking within a group was in fact weakened by intergroup diversity (Fig 4A, left). This shows

that when a system has multiple components, dyadic interactions may not be fully understood

without taking into account the larger environment or context they are embedded in [4,90,91].

The patterns of coordination

To further understand the micro dynamics of social interaction, we identified the specific

phase patterns people adopted. Overall, we found that inphase was visited significantly more

often than other phase relation, yet its prominence diminished with increasing diversity (Fig

2). That is, diversity induced a dispersion of phase patterns. Absolute synchronization between

components’ behavior is not always desirable: excessive synchrony may induce pathological

collective dynamics [92] or impede complex functions [79,93]. Diversity may come to the res-

cue. Besides inphase, a preference of antiphase over various other phase relations also stood

out in episodes of strong interactions (Fig C in S1 File). The present results resonate with exist-

ing studies of human rhythmic coordination [3,30]. When coupling was sufficiently strong,

the tendency for two oscillatory components to coordinate inphase or antiphase was found

across scales, particularly when the components have similar frequency predispositions [94].

When coupling was sufficiently weak, however, the antiphase pattern was more vulnerable to

natural frequency differences [32,47]. Both diversity in frequency predispositions [11] and

multiagent environment [35,37,95–97] help engender a variety of phase relations that are nei-

ther inphase nor antiphase. The agreement between the statistical properties of the interactive

behaviors in an ensemble of eight persons and the dynamic properties of dyadic coordination

suggests that dyads remain the most stable unit of spontaneous coordination. Yet how can

group coordination be achieved with primarily dyadic interactions? This led us to explore the

dynamics of phase relations.

Phase relations do not have to be static, as social coordination often evolves on multiple

time scales [68,69,98]. Over the course of interaction, we found that most phase relations only

lasted a short period of time (4-5s, Fig B in S1 File). Two partners dwell in a phase relation for

a few seconds before a “breakup” or “escape” from that relation, and then re-engage the next

time they come across a favorable phase relation (e.g. Fig 1). The recurrent relation embodied

by a series of dwells and escapes is characteristic of metastable coordination dynamics

[50,94,99]. Theoretically and empirically, metastability occurs in weakly coupled dynamical

systems when there is sufficient difference in the components’ frequency predispositions. The

combination of symmetry breaking and weak coupling eliminates perfectly stable phase rela-

tions which are replaced by intermittent or recurrent phasing. In the present study, quantita-

tive analysis confirms that metastability prevails in all conditions of interaction (Fig J in S1

File). Notice that the sequence of dwells and escapes of phase relations also manifests as oscilla-

tions in movement frequency (e.g. Fig G in S1 File). In contrast with stable coordination in

which components eventually converge to the same frequency, metastability allows compo-

nents to visit a range of frequencies while still maintaining “social bonds” via intermittent

dwells. When multiple metastable relations coexist in the same group, it becomes possible for a
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person’s transient escape from an existing relation to be at the same time a dwell in a new rela-

tion. This chimeric feature (c.f. [51]) allows members of a community to participate in multi-

ple segregated substructures (e.g. a reading club, and a hiking team) while maintaining both

the separability of those substructures and communication between them. Such continuous

change of membership helps large communities to persist [100] and increase global level of

cooperation [101]. Spatiotemporal metastability in multiple-component systems suits both the

intuition of daily social interaction, as well as the dynamic patterns observed in large scale

social networks [68].

Phase-locking constitutes a rather strong form of coordination. Such coordination comes

at a cost in both time and energy if the partners possess different frequency predispositions:

the chasm of frequency difference, jointly or unilaterally, must somehow be crossed. In the

present experiment, not all forms of coordination required such costly crossovers. As diversity

increased, people from different groups were found to adopt particular frequency relations (or

ratios) of higher order (e.g. near 2:3, Fig 3B, yellow) as opposed to converging to a single fre-

quency (1:1). Frequency relations appear in the more familiar context of music as poly-

rhythms. Theoretical and experimental studies have shown the viability of different frequency

ratios: higher order ratios (e.g. 2:5, 3:5) are more difficult to maintain (less stable) than lower

order ratios (e.g. 1:3, 2:3) in accordance with so-called Arnold tongue and Farey tree principles

[15,53,102,103]. Such frequency relations enable segregated groups to maintain communica-

tion between each other, without sacrificing within-group cohesion, thus allowing complex

coordinative structures to form. Such cross-frequency communication may serve to integrate

local activities over long distance and time scales in complex systems, including the brain

[89,104,105].

Conclusions

Our goal was to elucidate the coordination dynamics of ensembles of eight people, where the

ensemble is small enough for systematic manipulation in the laboratory, but not too small as

to prevent the unfolding of complex social dynamics (i.e., simple, but no simpler). At the

macro level, we studied the integration and segregation of groups and how it affects, at the

micro level, dyadic interactions embedded within. A novel finding was that the domains of

integration and segregation between groups are demarcated by a critical level of intergroup

diversity. Diversity across groups also affected the strength and forms of dyadic coordination

within groups. In particular, a metastable form of phase coordination was revealed in which

phase relations were intermittent rather than stable, thereby allowing people to switch flexibly

between partners as a means of maintaining both diversity and unity. When groups were seg-

regated and phase coordination became difficult, social coordination also took the form of

cross-frequency coupling. The present work provides a multiscale portrait of the coordination

dynamics among multiple agents, and thereby offers quantitative details and reality checks for

modelling social dynamics. The analytical methods used here can be extended to study segre-

gation and integration in larger systems, where an abundance of scales of interaction is likely

to further unveil the complexity and stability of large scale networks or coordinative

structures.

Materials and methods

Participants

120 participants (76 female, age 24±8 yrs.) participated in the experiment, making up 15 inde-

pendent ensembles of eight. All participants were right-handed except 4, who were all able to

complete the tasks without difficulty. The protocol was approved by Florida Atlantic
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University Institutional Review Board and in agreement with the Declaration of Helsinki.

Written informed consent was obtained from all participants prior to the experiment.

Experimental setup

For each ensemble of eight, participants were randomly seated in booths around an octagonal

table. They did not have direct visual contact with each other. Each participant was equipped

with a touchpad (green rectangle in Fig 6) and an array of eight light-emitting photodiodes

(LEDs; yellow in Fig 6). Each tap of a participant was broadcast to all participants (including

self) in real time as a single flash of an assigned LED (hand contacts touchpad, light on; hand

leaves touchpad, light off). The tap~flash signals were converted and transmitted through a sig-

nal processing pipeline consisting of a PC flanked by two microcontrollers (MCs; one for

input, one for output; communicates with the PC through serial port at 57600 bps). The input

MC samples movement data from the touchpads at 250 Hz (1 = touch, 0 = leave) and sends

data to the PC. Dedicated software (written in C++) runs on the PC, which receives tapping

Fig 6. Experimental setup. Eight participants are seated around an octagonal table; they do not have direct vision of each other. Rather, they are exposed to each other’s

tapping behavior through touchpads (record tapping; green) and arrays of LEDs (display self and others’ taps as flashes; yellow). On each LED array, there is a one-to-one

correspondence between LEDs and participants. (black panel) The mapping was rotated for each array so that a participant always saw self-behavior at the lowest LED

(white box). All LEDs labeled red represent people who were paced by metronomes of the same frequency as for self. LEDs labelled blue represent people paced to

metronomes at another frequency (actual LEDs were all in the same color). By such metronome assignment, participants of the same ensemble were split into two initial

frequency groups. By manipulating the metronome difference between the two groups, we created different levels of diversity, thereby inducing integration~segregation at

different spatial scales.

https://doi.org/10.1371/journal.pone.0193843.g006
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data from the input MC, and controls the spatial configuration of LEDs and the network con-

nectivity among participants. The spatial configuration map assigns each LED on each array to

represent a particular participant. The spatial configuration map was randomized across dif-

ferent ensembles of eight, but fixed for each ensemble throughout an experimental session. In

this particular experiment, the network connectivity map determines whether a particular par-

ticipant can see (1) only self-produced flashes; (2) self-produced flashes and a metronome

(computer generated flashes, see Procedures); or (3) self- and other-produced flashes. After

the spatial and network mapping are completed, the PC sends 64 bit data to 8 LED arrays via

the output MC, synchronized to each sample from the input MC (tap-to-flash latency 2.5–

4.5ms, less than 1% of the shortest period of metronomes).

Procedures

Each trial of the experiment lasted 68s and consisted of three stages. In Stage 1 (5s), partici-

pants tapped rhythmically at their own comfortable frequency, only seeing self-produced

flashes (Fig 6, black inset “self”). In Stage 2 (10s), all the non-self LEDs started to flash in syn-

chrony at a preassigned frequency, basically a metronome (initial phase randomized). Partici-

pants were instructed to match their own tapping frequency to the metronome frequency, and

remain tapping at that frequency throughout the rest of the trial even after the metronome dis-

appeared. Following a 3s transient, subjects were exposed to each other’s rhythmic behavior

(Stage 3, 50s), each LED flashed corresponding to a particular participant’s taps.

We manipulated intergroup behavior by assigning metronomes of different frequencies to

different participants. In order to emphasize frequency diversity, spatial symmetry was

imposed as follows: from each participant’s perspective, persons presented at the north, west,

and east of the center of the LED array were always paced with the same metronome as self

(south to center), whilst the others were paced with another metronome. Thus, metronome

assignment was designed to split eight people into two initial frequency groups (red group and

blue group in Fig 6, black inset). Diversity thus appears across groups not within groups. Spe-

cifically, for each trial, group metronomes were assigned following one of the three conditions:

(1) 1.5 Hz vs. 1.5 Hz, (2) 1.65 Hz vs. 1.35 Hz, and (3) 1.8 Hz vs. 1.2 Hz. With the same mean

frequency (1.5Hz), the three conditions correspond to three levels of between-group metro-

nome difference (δ f) which we term a diversity parameter: δ f = 0 Hz, δ f = 0.3 Hz, δ f = 0.6 Hz.

Each ensemble of eight participants completed 24 trials in random order, including 6 trials

in which participants were only connected to people within their own group (results not

reported in this paper) and 18 trials in which every participant was connected to every other

participant. In the present paper, we consider the effect of different levels of between-group

difference on fully connected ensembles of eight people.

Statistical analyses

Distributions of relative phase (ϕ) and frequency ratio (FR) were compared to chance level

using permutation tests. Ten thousand randomly permuted time series were used for con-

structing the confidence intervals of chance level distributions. The significance level was cho-

sen to be p̂ = 0.05 (with Bonferroni correction). Computational details are shown in Section A

and Section D in S1 File.

To compare the level of phase-locking in different conditions, two-way ANOVA was used

(2×3 for relation × δ f) with Type III Sums of Squares; Tukey Honest Significant Difference

tests were used for post hoc comparisons (see Section B in S1 File for details).

To measure the level of integration between groups, we regressed the level of within-group

phase locking against between group phase-locking separately for 3 diversity levels. The slopes
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of the regression lines (β1
δ f) reflect the level of integration (positive slope = integration, nega-

tive slope = segregation). The critical level of diversity (δ f
�

), corresponding to zero-slope (β1 =

0), was found through linear interpolation (see Section C in S1 File for details).

Supporting information

S1 File. Supporting information. Re: “Critical diversity: divided or united states of social
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58. Buzsáki G. Theta rhythm of navigation: link between path integration and landmark navigation, epi-

sodic and semantic memory. Hippocampus. 2005; 15: 827–840. https://doi.org/10.1002/hipo.20113

PMID: 16149082

59. Alderisio F, Bardy BG, di Bernardo M. Entrainment and synchronization in networks of Rayleigh–van

der Pol oscillators with diffusive and Haken–Kelso–Bunz couplings. Biol Cybern. Springer Berlin Hei-

delberg; 2016; 110: 151–169. https://doi.org/10.1007/s00422-016-0685-7 PMID: 27108135

60. Nishikawa T, Motter AE. Symmetric states requiring system asymmetry. Phys Rev Lett. 2016; 117: 1–

5. https://doi.org/10.1103/PhysRevLett.117.114101

61. Valdesolo P, DeSteno D. Synchrony and the social tuning of compassion. Emotion. 2011; 11: 262–

266. https://doi.org/10.1037/a0021302 PMID: 21500895

62. Hove MJ, Risen JL. It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cogn. 2009;

27: 949–960. https://doi.org/10.1521/soco.2009.27.6.949

63. Zhang M, Dumas G, Kelso JAS, Tognoli E. Enhanced emotional responses during social coordination

with a virtual partner. Int J Psychophysiol. 2016; 104: 33–43. https://doi.org/10.1016/j.ijpsycho.2016.

04.001 PMID: 27094374

64. Fogel A, Nwokah E, Dedo JY, Messinger D. Social process theory of emotion: A dynamic systems

approach. Soc Dev. 1992; 1: 122–142. https://doi.org/10.1111/j.1467-9507.1992.tb00116.x

65. Wheatley T, Kang O, Parkinson C, Looser CE. From mind perception to mental connection: synchrony

as a mechanism for social understanding. Soc Personal Psychol Compass. 2012; 6: 589–606. https://

doi.org/10.1111/j.1751-9004.2012.00450.x

66. Oullier O, Kelso JAS. Social coordination, from the perspective of Coordination Dynamics. In: Meyers

RA, editor. Encyclopedia of Complexity and Systems Science. New York, NY: Springer New York;

2009. pp. 8198–8213. https://doi.org/10.1007/978-0-387-30440-3_486

67. Schmidt RC, Fitzpatrick P, Caron R, Mergeche J. Understanding social motor coordination. Hum Mov

Sci. Elsevier B.V.; 2011; 30: 834–845. https://doi.org/10.1016/j.humov.2010.05.014 PMID: 20817320

68. Sekara V, Stopczynski A, Lehmann S. Fundamental structures of dynamic social networks. Proc Natl

Acad Sci. 2016; 113: 9977–9982. https://doi.org/10.1073/pnas.1602803113 PMID: 27555584

69. Boiger M, Mesquita B. The construction of emotion in interactions, relationships, and cultures. Emot

Rev. 2012; 4: 221–229. https://doi.org/10.1177/1754073912439765

70. Carneiro RR. On the relationship between size of population and complexity of social organization.

Southwest J Anthropol. 1967; 23: 234–243. Available: http://www.jstor.org/stable/3629251

71. Changizi MA, He D. Four correlates of complex behavioral networks: differentiation, behavior, connec-

tivity, and compartmentalization: Carving networks at their joints. Complexity. 2005; 10: 13–40. https://

doi.org/10.1002/cplx.20085

72. Weng G, Bhalla US, Iyengar R. Complexity in biological signaling systems. Science. 1999; 284: 92–

96. https://doi.org/10.1126/science.284.5411.92 PMID: 10102825

73. Stouffer DB, Bascompte J. Compartmentalization increases food-web persistence. Proc Natl Acad

Sci. 2011; 108: 3648–3652. https://doi.org/10.1073/pnas.1014353108 PMID: 21307311

74. Kirschner M, Gerhart J. Evolvability. Proc Natl Acad Sci. 1998; 95: 8420–8427. doi:VL—95 PMID:

9671692

75. Ash J, Newth D. Optimizing complex networks for resilience against cascading failure. Phys A Stat

Mech its Appl. 2007; 380: 673–683. https://doi.org/10.1016/j.physa.2006.12.058

76. Edelman GM, Gally J. Degeneracy and complexity in biological systems. Proc Natl Acad Sci. 2001;

98: 13763–13768. https://doi.org/10.1073/pnas.231499798 PMID: 11698650

Critical diversity: Divided or united states of social coordination

PLOS ONE | https://doi.org/10.1371/journal.pone.0193843 April 4, 2018 17 / 19

https://doi.org/10.1007/BF00202613
http://www.ncbi.nlm.nih.gov/pubmed/1863660
https://doi.org/10.1007/978-3-642-74119-7_13
https://doi.org/10.1063/1.1784276
https://doi.org/10.1086/415929
https://doi.org/10.1086/415929
http://www.ncbi.nlm.nih.gov/pubmed/3059390
https://doi.org/10.1038/scientificamerican1293-102
http://www.ncbi.nlm.nih.gov/pubmed/8266056
https://doi.org/10.1007/978-1-4757-3484-3
https://doi.org/10.1002/hipo.20113
http://www.ncbi.nlm.nih.gov/pubmed/16149082
https://doi.org/10.1007/s00422-016-0685-7
http://www.ncbi.nlm.nih.gov/pubmed/27108135
https://doi.org/10.1103/PhysRevLett.117.114101
https://doi.org/10.1037/a0021302
http://www.ncbi.nlm.nih.gov/pubmed/21500895
https://doi.org/10.1521/soco.2009.27.6.949
https://doi.org/10.1016/j.ijpsycho.2016.04.001
https://doi.org/10.1016/j.ijpsycho.2016.04.001
http://www.ncbi.nlm.nih.gov/pubmed/27094374
https://doi.org/10.1111/j.1467-9507.1992.tb00116.x
https://doi.org/10.1111/j.1751-9004.2012.00450.x
https://doi.org/10.1111/j.1751-9004.2012.00450.x
https://doi.org/10.1007/978-0-387-30440-3_486
https://doi.org/10.1016/j.humov.2010.05.014
http://www.ncbi.nlm.nih.gov/pubmed/20817320
https://doi.org/10.1073/pnas.1602803113
http://www.ncbi.nlm.nih.gov/pubmed/27555584
https://doi.org/10.1177/1754073912439765
http://www.jstor.org/stable/3629251
https://doi.org/10.1002/cplx.20085
https://doi.org/10.1002/cplx.20085
https://doi.org/10.1126/science.284.5411.92
http://www.ncbi.nlm.nih.gov/pubmed/10102825
https://doi.org/10.1073/pnas.1014353108
http://www.ncbi.nlm.nih.gov/pubmed/21307311
http://www.ncbi.nlm.nih.gov/pubmed/9671692
https://doi.org/10.1016/j.physa.2006.12.058
https://doi.org/10.1073/pnas.231499798
http://www.ncbi.nlm.nih.gov/pubmed/11698650
https://doi.org/10.1371/journal.pone.0193843


77. Bar-Yam Y. Multiscale variety in complex systems. Complexity. 2004; 9: 37–45. https://doi.org/10.

1002/cplx.20014

78. Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol.

Elsevier Ltd; 2013; 23: 162–171. https://doi.org/10.1016/j.conb.2012.11.015 PMID: 23294553

79. Tononi GS, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation

and integration in the nervous system. Proc Natl Acad Sci. 1994; 91: 5033–5037. https://doi.org/10.

1073/pnas.91.11.5033 PMID: 8197179

80. McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: homophily in social networks. Annu Rev

Sociol. 2001; 27: 415–444. https://doi.org/10.1146/annurev.soc.27.1.415

81. Moody J. Race, school integration, and friendship segregation in America. Am J Sociol. 2001; 107:

679–716. https://doi.org/10.1086/338954

82. Schelling TC. Dynamic models of segregation. J Math Sociol. 1971; 1: 143–186. https://doi.org/10.

1080/0022250X.1971.9989794

83. Stark TH, Flache A. The double edge of common interest. Sociol Educ. 2012; 85: 179–199. https://doi.

org/10.1177/0038040711427314

84. Blau PM. Inequality and Heterogeneity: a Primitive Theory of Social Structure. New York, NY: Free

Press; 1977.

85. Kelso JAS, Engstrom DA. The Complementary Nature. MIT press; 2006.

86. Kelso JAS. Instabilities and phase transitions in human brain and behavior. Front Hum Neurosci.

2010; 4: 23. https://doi.org/10.3389/fnhum.2010.00023 PMID: 20461234

87. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al. Early-warning signals

for critical transitions. Nature. 2009; 461: 53–59. https://doi.org/10.1038/nature08227 PMID:

19727193

88. Wilson KG. Problems in physics with many scales of length. Sci Am. 1979; 241: 158–179. https://doi.

org/10.1038/scientificamerican0879-158

89. Simon HA. The organization of complex systems. Hierarchy theory: The challenge of complex sys-

tems. 1977. pp. 245–261. https://doi.org/10.1007/978-94-010-9521-1_14

90. Schelling TC. Micromotives and Macrobehavior. 1st ed. New York: Norton; 1978.

91. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommu-

nity concept: a framework for multi-scale community ecology. Ecol Lett. 2004; 7: 601–613. https://doi.

org/10.1111/j.1461-0248.2004.00608.x

92. Parra J, Kalitzin SN, Iriarte J, Blanes W, Velis DN, Lopes da Silva FH. Gamma-band phase clustering

and photosensitivity: Is there an underlying mechanism common to photosensitive epilepsy and visual

perception? Brain. 2003; 126: 1164–1172. https://doi.org/10.1093/brain/awg109 PMID: 12690055

93. Tognoli E, Kelso JAS. Enlarging the scope: grasping brain complexity. Front Syst Neurosci. 2014; 8:

122. https://doi.org/10.3389/fnsys.2014.00122 PMID: 25009476

94. Kelso JAS, Dumas G, Tognoli E. Outline of a general theory of behavior and brain coordination. Neural

Networks. Elsevier Ltd; 2013; 37: 120–131. https://doi.org/10.1016/j.neunet.2012.09.003 PMID:

23084845

95. Takamatsu A, Tanaka R, Fujii T. Hidden symmetry in chains of biological coupled oscillators. Phys

Rev Lett. 2004; 92: 228102–1. https://doi.org/10.1103/PhysRevLett.92.228102 PMID: 15245261

96. Yokoyama K, Yamamoto Y. Three people can synchronize as coupled oscillators during sports activi-

ties. Diedrichsen J, editor. PLoS Comput Biol. 2011; 7: e1002181. https://doi.org/10.1371/journal.pcbi.

1002181 PMID: 21998570

97. Kuramoto Y, Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase

oscillators. Nonlinear Phenom Complex Syst. 2002; 5: 380–385. Available: http://www.j-npcs.org/

abstracts/vol2002/v5no4/v5no4p380.html

98. Holling CS. Understanding the complexity of economic, ecological, and social systems. Ecosystems.

2001; 4: 390–405. https://doi.org/10.1007/s10021-00-0101-5

99. Kelso JAS. An essay on understanding the mind. Ecol Psychol. 2008; 20: 180–208. https://doi.org/10.

1080/10407410801949297 PMID: 19865611

100. Palla G, Barabási A-L, Vicsek T. Quantifying social group evolution. Nature. 2007; 446: 664–667.

https://doi.org/10.1038/nature05670 PMID: 17410175

101. Wang J, Suri S, Watts DJ. Cooperation and assortativity with dynamic partner updating. Proc Natl

Acad Sci. 2012; 109: 14363–14368. https://doi.org/10.1073/pnas.1120867109 PMID: 22904193

Critical diversity: Divided or united states of social coordination

PLOS ONE | https://doi.org/10.1371/journal.pone.0193843 April 4, 2018 18 / 19

https://doi.org/10.1002/cplx.20014
https://doi.org/10.1002/cplx.20014
https://doi.org/10.1016/j.conb.2012.11.015
http://www.ncbi.nlm.nih.gov/pubmed/23294553
https://doi.org/10.1073/pnas.91.11.5033
https://doi.org/10.1073/pnas.91.11.5033
http://www.ncbi.nlm.nih.gov/pubmed/8197179
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1086/338954
https://doi.org/10.1080/0022250X.1971.9989794
https://doi.org/10.1080/0022250X.1971.9989794
https://doi.org/10.1177/0038040711427314
https://doi.org/10.1177/0038040711427314
https://doi.org/10.3389/fnhum.2010.00023
http://www.ncbi.nlm.nih.gov/pubmed/20461234
https://doi.org/10.1038/nature08227
http://www.ncbi.nlm.nih.gov/pubmed/19727193
https://doi.org/10.1038/scientificamerican0879-158
https://doi.org/10.1038/scientificamerican0879-158
https://doi.org/10.1007/978-94-010-9521-1_14
https://doi.org/10.1111/j.1461-0248.2004.00608.x
https://doi.org/10.1111/j.1461-0248.2004.00608.x
https://doi.org/10.1093/brain/awg109
http://www.ncbi.nlm.nih.gov/pubmed/12690055
https://doi.org/10.3389/fnsys.2014.00122
http://www.ncbi.nlm.nih.gov/pubmed/25009476
https://doi.org/10.1016/j.neunet.2012.09.003
http://www.ncbi.nlm.nih.gov/pubmed/23084845
https://doi.org/10.1103/PhysRevLett.92.228102
http://www.ncbi.nlm.nih.gov/pubmed/15245261
https://doi.org/10.1371/journal.pcbi.1002181
https://doi.org/10.1371/journal.pcbi.1002181
http://www.ncbi.nlm.nih.gov/pubmed/21998570
http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
https://doi.org/10.1007/s10021-00-0101-5
https://doi.org/10.1080/10407410801949297
https://doi.org/10.1080/10407410801949297
http://www.ncbi.nlm.nih.gov/pubmed/19865611
https://doi.org/10.1038/nature05670
http://www.ncbi.nlm.nih.gov/pubmed/17410175
https://doi.org/10.1073/pnas.1120867109
http://www.ncbi.nlm.nih.gov/pubmed/22904193
https://doi.org/10.1371/journal.pone.0193843


102. Haken H, Peper CE, Beek PJ, Daffertshofer A. A model for phase transitions in human hand move-

ments during multifrequency tapping. Phys D Nonlinear Phenom. 1996; 90: 179–196. https://doi.org/

10.1016/0167-2789(95)00235-9

103. Arnold VI. Small denominators. I. Mapping of the circumference onto itself. Collected Works. Berlin,

Heidelberg: Springer Berlin Heidelberg; 2009. pp. 152–223. https://doi.org/10.1007/978-3-642-

01742-1_10

104. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci.

2007; 11: 267–269. https://doi.org/10.1016/j.tics.2007.05.003 PMID: 17548233

105. Lemke JL. Across the scales of time: artifacts, activities, and meanings in ecosocial systems. Mind,

Cult Act. 2000; 7: 273–290. https://doi.org/10.1207/S15327884MCA0704_03

Critical diversity: Divided or united states of social coordination

PLOS ONE | https://doi.org/10.1371/journal.pone.0193843 April 4, 2018 19 / 19

https://doi.org/10.1016/0167-2789(95)00235-9
https://doi.org/10.1016/0167-2789(95)00235-9
https://doi.org/10.1007/978-3-642-01742-1_10
https://doi.org/10.1007/978-3-642-01742-1_10
https://doi.org/10.1016/j.tics.2007.05.003
http://www.ncbi.nlm.nih.gov/pubmed/17548233
https://doi.org/10.1207/S15327884MCA0704_03
https://doi.org/10.1371/journal.pone.0193843


S1. Supporting information 

Re: “Critical diversity: divided or united states of social coordination” by Zhang et al.  

 

Section A-Section D detail the main data processing techniques and statistical methods involved in the 

main text. Section A describes the computation of phase, relative phase (ϕ), phase-locking value (PLV), 

instantaneous frequency and frequency ratio (FR). Section B shows the statistical method for comparing 

the level of phase-locking (Fig 4A). Section C explains how linear regression was used to assess the level 

of integration and how to compute critical diversity (Fig 4B). Section D describes how to construct the 

confidence interval for null distributions in Fig E (corresponding to Fig 2) and Fig 3.  

Section E-Section L show supplementary results to those reported in the main text. Section E shows that 

participants were able to tap at the required frequency according to instructions. Section F shows how 

episodes of strong interaction were extracted from relative phase time series, and shows distributions of 

the duration and phase patterns in those episodes. Section G shows statistical comparisons of the relative 

phase distributions in Fig 2 to chance level distributions. Section H shows statistically how dyadic phase 

relations can be influenced by chances in its surrounding network structure. Section I provides additional 

discussion on metastable dynamics in multiagent coordination complementing Fig 1 and Fig 5. Section J 

presents a method to quantify metastability (metastable index), the validation of the method with 

simulated data, and results obtained from the present experimental data. Section K shows how simulated 

data used in Section J  were obtained. Section L shows the main effects corresponding to the interaction 

effects shown in Fig 4A. 

Section A. Preprocessing of recorded signals 

In the current study, we characterize social coordination in terms of frequency and phase relations. Here 

we detail how frequency and phase related variables were transformed from raw signals (square waves 

consisting of zeros and ones, see Experimental Setup). We define the inter-tap interval (ITI) as the time 



difference between the onsets of two consecutive taps. Instantaneous Frequency (𝐹) is the reciprocal of 

ITI, interpolated linearly between taps in accord with the original sampling rate (250Hz). We obtained 

Phase (𝜃𝑖) by first assigning the value 2𝜋(𝑛 − 1) to the onset of the 𝑛th tap of the 𝑖th individual, and then 

interpolating samples in between with a cubic spline method. Further, we define relational variables 

Frequency Ratio (𝐹𝑅𝑖𝑗) and Relative Phase (𝜙𝑖𝑗) between individual 𝑖 and 𝑗 as  

𝐹𝑅𝑖𝑗 =
min(𝐹𝑖 , 𝐹𝑗)

max(𝐹𝑖, 𝐹𝑗)
 

and 

𝜙𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 

respectively.  

To quantify the degree of phase coordination, we segment each time series into consecutive 3s windows, 

and calculate the Phase-Locking Value (PLV) within such windows.  

𝑃𝐿𝑉 = 1 − 𝐶𝑉 =
1

𝑁
|∑ 𝑒𝑖𝜙[𝑛]

𝑁

𝑛=1

| 

where CV is circular variance, and N is the total number of samples in a window (750 pts). PLV ranges 

from zero to one. A value of one indicates the maximal degree of coordination, and a value of zero 

indicates no coordination.  

Section B. Multivariate analysis of variance (MANOVA) 

To study how dyadic coordination within and between initial groups (denoted as variable “relation” with 

two categories: “within-group” and “between-group”) changes as diversity varies (i.e. between-group 

difference in frequency predispositions, δf=0, 0.3, 0.6 Hz), we performed a 2 × 3 (relation × δf) 

MANOVA to compare the mean PLV in different conditions, using Type III Sums of Squares. Multiple 

comparisons were performed using Tukey HSD (honest significant difference) tests.  



 

Section C. Linear regressions and critical frequency identification 

To study the macro organization of groups, we examined the relation between within-group and between-

group phase coordination, and how it changes as diversity (δf) increases. Least Square method was used 

to obtain the regression line for each δf, 

𝑃𝐿𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝
𝛿𝑓

= 𝛽0
𝛿𝑓

+ 𝛽1
𝛿𝑓

 𝑃𝐿𝑉𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝
𝛿𝑓

+ 𝜖𝛿𝑓 

The slope 𝛽1 = 𝛽1
𝛿𝑓

 is the relation between within- and between-group coordination, an index of the 

degree of integration between two initial groups. If 𝛽1 = 1, there is only one undifferentiated supergroup. 

0 < 𝛽1 < 1 indicates that initial groups integrated into a supergroup but there is remnant of the diversity 

(coordination with one group increases the coordination with the other group but not as much as when 

there is no diversity). 𝛽1 < 0 indicates that initial groups remain segregated (coordination with one group 

decreases coordination with another group).  

If there exists a diversity δf such that within-group coordination does not vary with between-group 

coordination (degree of integration 𝛽1
𝛿𝑓

= 0), we call it a critical diversity (𝛿𝑓∗) - a separatrix between 

regimes of integration and segregation of two initial groups. To obtain 𝛿𝑓∗, we regressed the degree of 

integration 𝛽1 against diversity δf, 

𝛽1 = 𝛼0 + 𝛼1𝛿𝑓 + 𝜀 

and estimated where the regression line crosses 𝛽1 = 0,  

𝛿𝑓∗: = −
𝛼0

𝛼1
 

. 



Section D. Distributional comparison  

To verify how much the distribution of relational variables (𝐹𝑅, 𝜙) in each condition reflects genuine 

coordination, we constructed chance level distributions by random permutations of all taps within each 

condition (i.e. taps produced following the same metronome). A total of 10,000 random permutations 

were performed. For each permutation, relational variables were computed following the same procedures 

as that of the original data (see Section A) and a probability density function (PDF) was computed for 

each variable using a 100-bin histogram. Given a significance level of p=0.0005 for each bin (based on 

Bonferroni correction for p̂ =0.05 for the entire distribution), we computed the confidence interval around 

chance level distribution (two-tailed) as between (100 − 50𝑝) percentile and 50𝑝 percentile of the 

10,000 random distributions for each bin. The real distribution is significantly different from chance at a 

specific value of FR or ϕ, if the probability density of this value is outside the confidence interval (seen as 

light-colored bands in main text Figs).  

 

Section E.  Participants tapped at (near) metronome frequencies as per 

instruction 

Overall, participants followed instructions to tap at the metronome frequencies both during pacing (Fig A, 

top) and interaction (Fig A, bottom). On average, participants tapped a little faster than the metronome: 

by 0.074 ± 0.41Hz during pacing (t (2070)=8.26, p<0.001) and 0.14 ±0.45 Hz during interaction (t 

(2071)=14.35, p<0.001).  



 

Fig A. Distributions of tapping frequency during pacing (top panel) and during interaction (bottom panel). 

Five Probability density functions of participants’ tapping frequency are shown for five different metronome 

frequencies (1.5 Hz for δ f=0 Hz, 1.35 and 1.65Hz for δ f=0.3 Hz, 1.2 and 1.8Hz for δ f=0.6 Hz). 

Section F. Episodes of strong phase coordination 

To identify strongly attractive phase patterns and their persistence, an expert trained in coordination 

dynamics manually extracted the onsets and offsets of strong phase coordination (i.e. periods of constant 

phase relations with small fluctuation) in time series of dyadic relative phase. One relative phase time 

series was presented at a time and in random order. The inspector was blind from phase relations other 

than the one under inspection and the condition (i.e. δ f) from which a time series was extracted.  



The distribution of the duration of manually extracted episodes of strong coordination (Fig ) shows that 

phase coordination primarily occurred for short periods (<10s); long lasting ones (stable phase locking) 

also appeared, but the occurrence was very rare.  

 

Fig B. Distribution of the durations of strong phase coordination.   

Fig C shows the distributions of relative phase within those episodes of strong interaction. Within groups 

(Fig C(A)), both inphase (peak near ϕ =0) and antiphase (smaller peak near ϕ=±π) are dominant phase 

patterns with inphase stronger than antiphase, regardless of diversity conditions (color). Between groups 

(Fig C(B)), the dominance of inphase pattern was retained across different levels of diversity, but 

antiphase gradually lost its attraction with increasing diversity (gradually flattened peaks near ϕ=±π from 

blue to red to yellow).  



 

Fig C. Relative phase distribution during strong coordination for within-group dyads (A) and between-group 

dyads (B). 

To see whether the relative phase relation was affected by the number of partners one simultaneously 

coordinated to, we computed for each agent the number of people he/she simultaneously engaged in 

strong interaction with (i.e. number of connections, the horizontal axis in Fig D) and the corresponding 

relative phase patterns adopted. We were particularly interested in the dominance of near inphase (i.e. |ϕ| 

< π/3) and near antiphase (|ϕ|>2π/3) patterns (Fig D, blue, red respectively), for which we computed the 

probability density for each fixed number of connections (1 to 6; the maximal number connections one 

can make is 7, but its very rare occurrence made for an unreliable estimate, thus not shown). We found 

that the dominance of near inphase patterns gradually increased as one connected to more individuals; in 

contrast, the dominance of near antiphase patterns was steady across a small number of connections (N≤

4) then gradually declined for a higher number of connections. This finding suggests that inphase, as the 

most symmetric form of phase pattern, may serve as a scaffold for individuals to simultaneously 

coordinate with multiple people (as in a rowing eight, for instance).  



 

Fig D. Dominance of near-inphase vs. near-antiphase patterns as a function of the number of connections. 

Blue line indicates the probability density of near inphase patterns (|ϕ|< π/3) when participants 

simultaneously coordinated with different numbers of people (i.e. number of connections); red line indicates 

near-antiphase patterns (|ϕ|>2π/3). The trend of lines show how the dominance of near-inphase and near-

antiphase patterns change with increasing number of connections: inphase was increasingly preferred 

whereas antiphase diminished for connection number exceeding 4.  

 

Section G. Relative phase distributions compared to chance level 

To identify which patterns of phase coordination were significantly above chance level, confidence 

intervals (two-sided, for p̂ <0.05, where ‘hat’ denotes Bonferroni correction for multiple comparison in 

100 bins of an entire distribution) were computed from randomly permuted data (as detailed in Section 

D), and are shown as light-color bands in Fig E. A black bar marks wherever the real distribution is 

outside the confidence interval for three consecutive bins out of the hundred bins that make up the 

histogram. Within-group phase coordination shows significantly more near inphase patterns (ϕ≈ 0) than 

chance levels (p̂ <0.05, for 0 to 0.24π, Fig E(A1)), while between-group coordination, though with a hint 



of inphase preference, was barely above chance (p̂ <0.05, for 0.05π to 0.08π, Fig E(A2)). For low 

diversity (𝛿𝑓=0, 0.3 Hz, Fig E(B1-2)), the probability density near inphase was significantly above 

chance (highest peaks in blue and red curves). As diversity increased, the attractiveness of inphase 

patterns diminished, and beyond the critical diversity level (𝛿𝑓∗=0.5Hz) its statistical significance 

eventually vanished (δ f=0.6 Hz, Fig E(B3)). 

 

Fig E. Distributions of relative phase with respect to chance level. Within-group phase coordination (A1) 

shows more patterns near inphase are significantly above chance than between-group coordination (A2). At 

the aggregate level of ensembles, a tendency for inphase coordination is observed (B1-B3, solid lines), 

which is significantly different from chance (shaded areas) for lower diversity levels (B1, B2; black bar above 

indicates where more than 3 consecutive bins reached significance level p̂ <0.05).  



 

Section H. Phase relations are subject to internal and external changes in network 

structure 

Using the onset and offset of each episode of strong coordination (as in Section F), we constructed a 

series of networks (i.e. graphs) representing the evolution of an ensemble’s coordinative behavior during 

each trial of interaction (graphic examples see Fig 1A3, B4 and Fig 5D). Each node of a network 

represents a participant and an edge exists between two nodes if and only if the two participants are 

strongly coordinated at the time. Thus, we were able to detect changes in the coordinative structure or 

network (i.e. any two persons in the ensemble who were coordinated become uncoordinated or vice-

versa) and to determine how dyadic relative phase was influenced by such changes. Fig F(A) shows 

distributions of the shift in dyadic relative phase between consecutive 2s windows: the blue curve depicts 

phase shifts in strongly coordinated dyads when there was no change in network (baseline; blue); the red 

curve depicts how much relative phase shifted in strongly coordinated dyads when other relations (edges) 

were forming or breaking up in the network (i.e. changes external to the dyad of interest; orange); and the 

yellow curve depicts how much phase shift occurred in dyads who were entering or leaving a strong 

coordination themselves (i.e. changes internal to the dyad of interest; yellow). Based on ANOVA, 

significant differences were found between the three conditions (Fig F(B); F(2,663)=1165.33, p<0.001). 

Relative phase shifted the most when the dyads themselves were changing from being coordinated (dwell) 

to uncoordinated (escape) or vice-versa (yellow; greater than blue and red, p<0.001, based on Tukey 

HSD). For strongly coordinated dyads (red), the phase relation was also shifted by changes elsewhere in 

the network to an extent significantly greater than baseline (i.e. no change in the network, blue; p<0.001, 

Tukey HSD). This result demonstrates quantitatively that dyadic coordination dynamics was influenced 

by the multiagent environment in which it is embedded.  



 

Fig F. Phase shift induced by internal and external changes of network structure. (A) Distribution of phase 

shift between consecutive 2s windows in dyads with strong relations: when (blue) there is no change in the 

network (all dyads un/coordinated remained un/coordinated), (red) the strongly coordinated dyad remained 

coordinated but changes occurred elsewhere in the network, and (yellow) the strongly coordinated dyad 

changed from being coordinated to uncoordinated or vice-versa. (B) compares the mean of distributions 

shown in (A) where error bars indicate the standard error of the mean. When there is a change in the network 

structure, both the dyads that remained coordinated and those that became (un)coordinated underwent a 

shift in relative phase significantly greater than baseline (i.e. when there was no change in the network 

structure, blue; all p<0.001), but the former experienced a smaller shift than the latter (red, yellow 

respectively; p<0.001). 

Section I. Metastability in the multiagent environment 

As exemplified in Fig 1 of the main text, participants engaged in metastable phase coordination. 

Metastably coordinated agents intermittently dwell at and escape from certain preferred phase patterns 

(i.e. coexistence of integration and segregation at dyadic level), which can lead to constant spatial 

reorganization (e.g. Fig 1, A3 and B4, Fig 5) as a flexible form of within-group integration. Here we want 

to emphasize that such spatial organization and reorganization is inseparable from the group’s frequency 

organization. The time scale of a metastable relation between two agents depends on the difference 

between their natural frequencies (or frequency predispositions) – the greater the difference, the shorter 

and more recurrent the dwells (Tognoli and Kelso 2014). For example, in the trial illustrated in Fig 1B, 



we showed that the shortest and most recurrent dwells in a group of four occurred between agents 4 and 3 

(B1, blue). In Fig G, we show the corresponding frequency trajectories of these four agents. Notice that 

agent 3 (Fig. G, orange) tapped at a much higher frequency, on average, than the rest of the group; in 

contrast, agents 1, 2, 4 were much closer with each other in frequency, and their phase dwells lived on a 

longer time scale (Fig 1, B3, red and green).  Furthermore, metastable phase coordination is accompanied 

by corresponding oscillations in instantaneous frequency: for a pair of agents to escape from a phase 

pattern, at least one of them must accelerate/decelerate to leave the common frequency, and for a pair to 

dwell in a particular phase pattern, two agents each at a distinct frequency must temporally 

accelerate/decelerate to converge to the same frequency (this property is used for a statistical analysis of 

metastability in Section J). This can be clearly seen in Fig G: agent 3 (orange) exhibited the most 

pronounced and rapid frequency oscillation, less so for agent 4 (yellow), and even less for agents 1 and 2 

(red and pink). This is in stark contrast with the idealized picture of conventional synchronization where 

agents converge to and stick with the same frequency to maintain constant phase relations. Thus, 

metastability not only afford an overall integrated group flexible spatial organization but also preserve its 

frequency diversity – two sides of the same coin. 

 

Fig G. Frequency variation in a group of metastably coordinated agents. This Fig shows instantaneous 

frequencies of agents whose phase coordination was illustrated in Fig 1B. The time series were smoothed 

with a 4-point moving average to capture the dynamics that best reveals spatial reorganization. Agent 3 had 

the highest tapping frequency, which oscillated up and down to join other agents at different times (e.g. 

around 17s, 25s and 33s), corresponding to the dwells illustrated in Fig 1B for relative phase between 3 and 

4. Agent 4 oscillated between coordinating with 3 or 1-2, reflected in Fig 1B as short dwells in trajectories 1-4 



and 4-3. Agents 1 and 2 were at the same frequency most of the time, reflected as the long dwell of 1-2 in Fig 

1B. 

The above case (Fig G) shows how a small group maintains long-term integration through constant 

transformation, but this may not be as easy for a larger group. Fig H(A,B) shows an example of eight-

agent interaction where all agents were predisposed to the same frequency: A shows agents’ frequency 

trajectories, and B shows the dynamics of their spatial organization as grouping dynamics (each column 

depicts which agents were phase coordinated as a group at a particular time, where agents in the same 

group were labeled with the same color; here “group” is equivalent to connected component in network 

structure). Early on in the trial, the ensemble of eight dwelled at very similar frequencies, although with 

constantly changing spatial configuration. This, however, did not last long as around 10-15s the big group 

began to diverge in frequency (Fig H(A)) and broke up into smaller, but more sustainable groups (e.g. 

pink and blue groups in Fig H(B)). This example demonstrates that when diversity is low, each agent has 

many potential partners to coordinate with: such potential relations may compete with each other, 

resulting in rapid switching between different partners and a lack of persistent spatiotemporal 

organization. To achieve more persistent grouping patterns, agents may diverge in their frequencies hence 

providing some separation protecting local structures. This example complements the high diversity case 

reported in the main text (Fig 5) in which spatial organization was much more persistent but not without 

sudden transitions – ensembles with high initial diversity had sufficient divergence to begin with. The 

grouping dynamics corresponding to Fig 5 is shown in Fig H(C) for visual comparison, in which the 

spatial organization is much more ordered and better sustained. 



 

Fig H. Evolution of coordination dynamics among eight agents with low diversity (A-B) vs. high diversity (C). 

(A) Instantaneous frequencies of eight agents who were all paced with the same metronome. The frequency 

dispersion among agents gradually increased over the course of interaction. By the end of the trials, agents 

diverged into smaller groups. (B) Grouping dynamics among the eight agents with low initial diversity 

corresponding to (A). Each color represents a particular group, in which all members of the group were 

directly or indirectly connected through strong phase coordination as identified in Section F. Each row 

represents one agent whose group affiliation was denoted by the color of the circle (no circle means the 

agent was by him/her self), arranged, from top to bottom, from highest to lowest average frequency. The 

grouping (spatial configuration) changes rapidly early on in the trial but gradually forms a more stable 

structure later in the trial (agents are attracted to a three-group organization: 1-7-5, 6-8, and 4-2; see text). (C) 

For comparison, grouping dynamics among the eight agents with high initial diversity, corresponding to the 

example in Fig 5. The grouping (three groups/dyads: 3-2, 5-7, and 8-6) remained prevalent throughout the 



interaction, but not without occasional reorganization, e.g. around 30s (see main text for details). That is, 

initial separation in frequency seem to favor the sustenance of lasting coordinative structures as in C, 

whereas initial similarity might create incidental opportunities for interaction that constantly perturb ongoing 

coordinative structures (A-B). 

 

Section J. Quantification of metastability for statistical analysis 

As discussed in Section I, metastable coordination entails fluctuations in agents’ instantaneous frequency 

(e.g. Fig G, agent 3). If a phase relation between two agents is metastable, then as the relative phase (ϕ) 

goes through 2π (wrapping back to the same phase relation), there should be correspondingly oscillations 

in the relative frequency between the two agents (or equivalently oscillations in the derivative of ϕ). The 

degree of metastability was assessed based on this relation between the number of times ϕ wrapped 

through 2π (called the winding number), and the number of oscillations in relative frequency. We define a 

metastable index (MI) as  

 
𝑀𝐼 = 𝑃[Δ𝐹𝑖𝑗] (

𝑤𝑖𝑛𝑑(𝜙𝑖𝑗)

𝑇
) 

 

Eq.2  

where Δ𝐹𝑖𝑗 = 𝐹𝑖 − 𝐹𝑗 is the relative frequency between participant i and j (normalized to Euclidean norm 

1, mean removed, with an added small value ϵ = 10-4 Hz, explained later), 𝑃[Δ𝐹𝑖𝑗] is the power spectrum 

of Δ𝐹𝑖𝑗 (in Decibels, dB), 𝑤𝑖𝑛𝑑(𝜙𝑖𝑗): =
|𝜙(𝑇)−𝜙(0)|

2𝜋
 is the winding number, ϕ is the unwrapped relative 

phase and T is the length of the trial. This metric thus reflects the interplay between frequency fluctuation 

and phase wrapping in metastable relations. MI is high when metastable coordination is strong with a 

pronounced alternation of dwells and escape times (for each cycle of phase wrapping there is a 

corresponding oscillation of frequency difference), but low when the coordination is very weak (faint 

dwell/escape approaching uncoupled oscillators) or completely stable (thus not metastable). Completely 

stable phase-coordination corresponds to 𝑃[Δ𝐹𝑖𝑗](0) (i.e. no phase wrapping) which also corresponds to 



the mean of Δ𝐹𝑖𝑗, thus we set mean of Δ𝐹𝑖𝑗 to be ϵ so that in the power spectrum we have 𝑃[Δ𝐹𝑖𝑗](0) ≈

−40𝑑𝐵 (here ϵ must be non-zero, otherwise 𝑃[Δ𝐹𝑖𝑗](0) → −∞).  

To test whether MI truly reflects metastable coordination, we first validate MI with simulated data of 

dyadic coordination based on a well-tested theoretical model (extended HKB; see Section K for details). 

Based on existing empirical and theoretical studies of metastable coordination dynamics (Kelso, 1995; 

Tognoli and Kelso, 2014), we expect metastability to be high for weak/moderate coupling between agents 

with sufficiently large diversity in their frequency predispositions, and to be minimal when two agents do 

not couple to each other or are completely phase-locked to each other. Complete phase-locking results 

from a combination of strong coupling and low diversity. Were MI a valid metric, we should see a 

decrease of metastability with increasing coupling strength. First, 600 trials were simulated for dyads with 

zero coupling (a=0, b=0, thus no coordination), three levels of intrinsic frequency difference (i.e. 

diversity, δf=0, 0.3, 0.6 Hz, 200 trials for each level) and random initial conditions. Without coupling, the 

resulting MIs were -40.97±2.10 dB for all three levels of diversity – the minimal level of metastability as 

expected. Further, 1800 trials (200×3×3) were simulated for dyads with three levels of coupling (b=0.1, 

0.4, or 0.8, with fixed a=1), three levels of diversity (mean δf=0, 0.3, 0.6 Hz, with 0.1 Hz variance), and 

random initial conditions. The parameters (black circles in Fig I) were so chosen to span the boundary 

between stable and metastable regimes of the model used to simulate coordination (yellow vs. blue areas 

in Fig I; see Section K for details). 



 

Fig I. Parameter space of the theoretical model used for simulation (extended Haken-Kelso-Bunz equations, 

Kelso et al, 1990, also see Section K). Vertical axis represents the coupling strength b and horizontal axis the 

frequency difference between two oscillatory components. Yellow area is the stable regime where there is at 

least one attractor of the system; blue area is the metastable regime where there is no attractor but attracting 

tendencies near certain phase patterns remain, giving rise to intermittent coordination (dwells and escapes). 

Black circles are parameter values chosen for the validation of MI. The number next to the circle indicates 

the average MI of simulated data based on that set of parameter values. MI successfully reflects the stable 

vs. metastable nature of the simulated coordination: near -40 dB in stable regime (yellow area) and between -

30 to -20 dB (far from -40 dB) in metastable regime (blue). 

From the simulated data, we found that, overall, MI decreased monotonically with increasing coupling 

strength (for b=0.1, 0.4, and 0.8, the MIs are -28.43±0.23 dB, -29.92±0.23 dB, and -35.07±0.23 dB 

respectively, not shown in Fig; MANOVA main effect, F(2,1971)=229.79, p<0.0001; post hoc test with 

Tukey HSD, all p<0.0001); and MI is the lowest for δf=0Hz (-38.19±0.23 dB, not shown, main effect, 

F(2,1791)=707.63, p<0.0001; post hoc test, greater than for δf=0.3, 0.6Hz, both p<0.0001), while MI for 

δf=0.3 and 0.6Hz were not significantly different from each other (-27.78±0.23 dB and -27.44±0.23 dB 

respectively, not shown, post hoc test, p>0.05). A breakdown of all conditions is shown in Fig J(B) 

(MANOVA, interaction effect, F(4,1791)=108.43, p<0.001). For weak coupling (b=0.1, 0.4), 

metastability was greatest when diversity was moderate (δf=0.3Hz, orange); slightly lowered when 



diversity became too high (δf=0.6Hz, yellow), but dropped close to minimum for low diversity (δf=0Hz, 

blue). When the coupling is strong (b=0.8), dyads with moderate diversity also lost metastability, 

indicating complete phase-locking. As expected from existing studies of metastability weak coupling and 

moderate diversity led to greater MI while strong coupling diminished MI, thereby showing MI is a valid 

metric of metastability.  

 

Fig J. Metastable coordination within and between groups. (A) Metastability in real data collected in the 

present experiment. (B) Metastability in simulated data of dyadic coordination. (* p<0.05; ** p<0.01; 

***p<0.001) 

Applying MI to the actual data of the present experiment, we found main effects (not shown in Fig) for 

both grouping relation (whether metastable coordination occurs within- or between-group, 

F(1,7246)=77.67, p<0.0001) and diversity δf (F(2,7246)=89.21, p<0.0001): within-group coordination 

(MI=-22.09±0.13 dB) exhibits greater metastability than between group (-23.63±0.11 dB; post hoc test, 

Tukey HSD, p<0.0001), and the metastable index monotonically decreases with increasing diversity (for 

δf=0Hz, -21.58±0.15 dB, for δf=0.3Hz, -22.58±0.15 dB, and for δf=0.6Hz, -24.40±0.15 dB; post hoc test, 

all p<0.0001). MI was far from the minimal value (≈ -40dB) in every condition. This indicates that the 

phase coordination present in this experiment is overwhelmingly metastable. A significant interaction 



effect between grouping relation and diversity was also found (F(2,7246)=62.39, p<0.0001) as shown in 

Fig J(A). There was no significant change in the level of metastability for within-group coordination with 

increasing intergroup difference (host hoc test, p>0.05; Fig J(A), left), nor was any within-group 

metastability significantly different from between-group metastability when diversity was minimal (δf=0 

Hz, Fig J(A), right, blue bar; p>0.05). With increasing diversity (δf=0.3, 0.6Hz, Fig J(A), right, orange 

and yellow bars), metastability in between-group coordination decreases (though still far from minimum -

40 dB). Overall, these results suggest that in this experiment metastable relations, rather than stable ones, 

are the building blocks of spontaneous multiagent coordination, even in the case of lowest diversity (δf=0 

Hz).  

Section K. Simulations of dyadic interaction 

Dyadic rhythmic coordination has been extensively studied in existing research (see main text). The 

extended Haken-Kelso-Bunz equation (Fuchs et al 1996; Kelso, et al., 1990) is a well-tested model that 

captures the essential dynamics of dyadic coordination: 

 𝜙̇ = Δ𝜔 − 𝑎 sin 𝜙 − 2𝑏 sin 2𝜙 Eq. 1 

where 𝜙 is the relative phase between two oscillators, 𝜙̇ is the rate of change of relative phase, Δ𝜔 is the 

difference between the two oscillators’ natural frequency, and the ratio b/a reflects the coupling strength. 

Numeric solutions (2400 simulated 50s trials) were obtained using MATLAB (ode45), which were used 

to validate Metastable Index (MI, for details see Section J) and to produce results shown in Fig J(B).  

Section L.  Main effects of experimental conditions on phase-locking 

Overall, within-group dyads exhibited greater phase-locking than between-group dyads (main effect, 

F(1,7246)=604.7, p<0.001); diversity (𝛿𝑓) weakened phase-locking (main effect, F(1,7246)=338.6; post 

hoc test, all p<0.001). 



 

Fig K. Main effects of grouping relation (left cluster) and intergroup difference (right cluster) on phase 

coordination in MANOVA. 
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