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Networks with nonidentical nodes and global coupling may display a large variety of dynamic
behaviors, such as phase clustered solutions, synchrony, and oscillator death. The network dynamics is
a function of the parameter dispersion and may be captured by conventional mean field approaches if it is
close to the completely synchronous state. In this Letter we introduce a novel method based on a mode
decomposition in the parameter space, which provides a low-dimensional network description for more
complex dynamic behaviors and captures the mean field approach as a special case. The example of
globally coupled Fitzhugh-Nagumo neurons is discussed.
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Low-dimensional dynamics in high-dimensional net-
works is a ubiquitous phenomenon observed in various
physical, chemical, and biological problems [1-5]. In par-
ticular, networks with dispersed parameters may show such
dynamics as a function of the parameter dispersion, in-
cluding phase clustering and spatiotemporal quasiperiodic
and chaotic dynamics [6]. Heterogeneous networks (that is,
networks with parameter dispersion) with global coupling
have been successfully described using a mean field ap-
proach [7] which relies on a local expansion around the
synchronized solution. Here two sets of reduced equations
are derived, in which the first describes the dynamics on
the synchronization manifold and the second describes the
deviations from synchrony. However, because the ap-
proach is valid only in the neighborhood of the synchro-
nous solution, global network behaviors such as phase
clustering cannot be described low dimensionally [8,9].
For instance, in the field of neuroscience, local populations
of neurons are strongly connected within a small volume of
cortical tissue and have been interpreted as the functional
units of cortical processing [10]. These volume elements
are described by a low-dimensional “‘effective” neuron
[11], identical to the mean field, which will be legitimate
only if the local network dynamics is synchronized.
Otherwise, conditions are needed which, first, identify
when the mean field dynamics fails and, second, provide
alternative approaches to describe the low-dimensional
network activity. The aim of our work is to obtain such a
general formalism that may be used to approximate the
effective dynamics of a high-dimensional heterogeneous
network of globally coupled elements, which is not limited
to synchronous behavior. We demonstrate that the collec-
tive behavior of globally coupled dynamical systems with
parameter heterogeneity may be captured using a mode
decomposition. These modes are defined in the space in
which the parameter dispersion occurs and represent dis-
tinct patterns of collective behavior. Our approach success-
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fully defines a low-dimensional approximation of the
collective dynamics of the system, including various types
of asynchronous behavior.

This Letter is organized into two parts. First, we con-
sider a heterogeneous network of globally coupled excit-
able systems which are often used as toy models for neural
behavior. We derive a set of mode equations that approxi-
mate its dynamics and, in the process, illustrate the core
ideas of our approach. Second, we generalize our formal-
ism to be applicable to networks with arbitrary dynamics at
its nodes. One of the simplest examples of an excitable
system is the Fitzhugh-Nagumo model [12]. Its variables, x
and y, operate on slow and fast time scales, respectively. A
globally coupled network of N Fitzhugh-Nagumo neurons
is represented by the following equations:

+ yl) + K(X - xi) + cZ;, (1)

) 1
v = z(xi — by, + a), (2)

where i = 1,..., N and K is the coupling strength. For an
uncoupled network, K = 0. The intrinsic dynamics of the
ith node is determined by the magnitude of the parameter,
Z;, which may be interpreted as an external current or the
degree of excitability of the neuronal membrane. For low
values of z;, the ith node has a stable fixed point. If a
transient increase in z; exceeds a threshold, the ith neuron
performs a large excursion in the phase space before
returning to a fixed point representing an action potential.
Increasing z; raises the cubic x nullcline, destabilizing the
fixed point leading to a stable limit cycle (see Fig. 1). We
introduce heterogeneity in the elements of the network by
choosing the parameters z; from a distribution g(z) with
mean u, and standard deviation o. The average activity of
the network, X = % Zf\’zl X;, is used to drive each element,
implying that every node is connected to every other node
and the coupling strength between any two nodesis X . Asa
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FIG. 1. The intrinsic dynamics of a node is illustrated. The
nullclines are in gray. For low values of z; (solid cubic nullcline),
the trajectory (solid line) settles to a fixed point. Higher values of
z; (dashed cubic nullcline) lead to limit cycle oscillations
(dashed trajectory).

function of K and the parameter dispersion, o, we obtain
different types of behavior, including a quiescent state
[Fig. 2(a)], synchronous in-phase oscillations [Fig. 2(b)],
and antiphase clustering [Fig. 2(d)]. In Fig. 2(c), some
neurons perform subthreshold oscillations around a fixed
point, while others perform suprathreshold oscillations. A
characterization of the different types of collective behav-
ior in the parameter space, K-o, is shown in Fig. 3. Only
positive values of K, for which antiphase clustering is not
seen, are shown in the figure. Our numerical simulations
show that, at each point in the (K-0) space, the mean
activity of the population, X(z), is either quiescent or
oscillatory. We define the amplitude of the mean field as
the difference between the maximum and minimum values
of X(¢) after the initial transients have settled. Figure 3
shows the contour lines of constant mean field amplitude.
Three different regions of mean field dynamics are identi-
fied: (I) K <0.5. Here, some of the neurons with low
values of z perform subthreshold oscillations around a
fixed point, while neurons with higher z values show phase

FIG. 2. Shown is a schematic of different scenarios for a
population of coupled neurons in the phase space spanned by
the variables x and y. Each dot represents the state of a neuron.
(a) All the neurons settle to a fixed point. (b) The neurons
oscillate in phase. (c) Some neurons perform subthreshold
oscillations around a fixed point. Others oscillate along a limit
cycle. (d) Antiphase clustering for K < 0.
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FIG. 3. This figure shows a contour map of the amplitude of
the mean field calculated using 100 neurons for different values
of the coupling strength K and the parameter dispersion . Only
positive values of K are shown. See text for details.

locked suprathreshold oscillations. The dynamics in
region I is shown in Figs. 2(c) and 4(c). (II) All the neurons
settle to a fixed point. [Figs. 2(a) and 4(a) ]. (IIl) The
neurons perform suprathreshold synchronous oscillations
[Figs. 2(b) and 4(b)]. A transition from region III to
region II, mediated by an increase in the coupling strength,
K, drives synchronously firing neurons to quiescence. For
limit cycle oscillators with dispersed frequencies, this tran-
sition has been termed oscillator death [13]. An abrupt
transition from region II to region 111, fixed point behavior
to synchronous in-phase oscillations, is mediated by an
increase in the parameter dispersion, o. Antiphase clus-
tered solutions are obtained for K << 0. Stable phase clus-
tered solutions have been demonstrated in systems of
globally coupled inhibitory neurons [8,14] and Josephson
junctions [9], and may be particularly relevant for neuro-
biological systems [3,4].

The core idea of our approach is the following: The
dispersion of the parameter z; creates an ordering of the
nodes with regard to the magnitude of z;; that is, z;,; >
z; Vi. We indicate this parametric dependence in the nota-
tion of the state vector ¢(¢) of the ith node by writing
q'(1) = (x;(1), y;(1)) = (q1(z;, 1), g2(z;, 1))’ with the new
vector components g.(z, 1), k=12, i=1,...,N, pa-
rametrized by z;. The prime denotes the transposed vector.
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FIG. 4. The time series of a population of 100 neurons for
various (K-o) values.

018106-2



PRL 94, 018106 (2005)

PHYSICAL REVIEW LETTERS

week ending
14 JANUARY 2005

In particular, if the number of neurons is sufficiently large,
then it is justified to treat the set {z;}, i=1,..., N, as a
continuous variable z € Re and the dispersed network
state vector g(t) = (- qi(z;, 1)+ +)— q(z, 1) as a con-
tinuous vector field ¢(z, #): Re?> — Re in the limit for large
N. Then the mean field amplitude of the first component
which couples the nodes is defined as

x0 = [ 4@ 0z ©)
where the parameter, z, is distributed according to the

function, g(z). Equations (1) and (2) can now be rewritten
as

w[=s,

i1(o 1) = c(ql . q2> KX —ql+en @

1
q1(z, f)=z(‘11 — bg, + a). (5)

Rewriting the network with heterogeneously distributed
parameters as a vector field, g(z, t), allows us to interpret
the phenomena due to parameter dispersion as a spatio-
temporal pattern formation process in z space. As a con-
sequence, techniques become available which allow us to
decompose the field ¢(z, ) into its m = N dominating
patterns or modes v;(z) via

q(z, 1) = i( f’; ((?) )vi(z) +R(z 1), (6)

with their 2m time-dependent coefficients &;(¢), 5,(f). The
remainder, R(z, t), represents the spatiotemporal dynamics
not captured by the m modes v;(z). Spatial mode decom-
positions are not unique and are biased towards certain
criteria, such as the minimization of the square error
(principal component analysis) or the statistical indepen-
dence (independent component analysis). Other techniques
utilize a priori knowledge about the system’s dynamics to
determine interpretable modes [15]. If the dispersion has
multiple peaks in its distribution g(z), then a separation of
the peaks via a mode decomposition in z space is sugges-
tive. The traditional mean field approach [7] is captured
by the spatially uniform mode as a special case. In general,
the modes will not be orthogonal, but an adjoint basis
system {v;r (2)} can always be defined to guarantee biortho-
gonality:

ﬁ" vl @ (2)dz = 8, )

where §;; is the Kronecker symbol. If the normalized mean
square error

_ Jr JZ%R(z 1)*dzdr
[1 [%w a(z 0)*dzdt
is sufficiently small, then Eq. (6) may be truncated after the

mth mode to obtain a low-dimensional description in terms
of modes, m << N.

E

®)

In our specific examples in Fig. 2, we choose the first
two principal components, which are approximately non-
overlapping rectangular modes, as the spatial modes
v,(z), v,(z) motivated by the two different collective be-
haviors (subthreshold and suprathreshold oscillations). The
temporal evolution of the coefficients of the ith mode,
(&;(r), m;(r)), is obtained by projecting Eqgs. (4) and (5)
onto the mode v,(z).

&

£ = C(fi B 7]:‘) + K(A¢; — BE) + g, (9)

1
;= ;(ff — by, + aey), (10)

where i, j = 1,2, €, = f°_°oov1(z)4dz, € = [*,v(2)dz,
and §; = [%, zv,(z)dz. The cross terms resulting from the
nonlinearities in Eq. (9) disappear because the modes v(z)
and v,(z) do not overlap. The constants A and B modulate
the coupling between the modes and are given by

A = ff" g ()2 - ﬁ" v@de—1, (1D

B; = f‘” 2w, ()dz' - [“’ viddz  (12)

Equations (9) and (10) define the reduced set of mode
equations and represent a low-dimensional description of
the dispersed network dynamics. These equations are simi-
lar to those of two coupled Fitzhugh-Nagumo neurons,
justifying the approximation of the population mean activ-
ity by effective neurons as postulated by [10]. To test the
reduced equations computationally, we choose the distri-
bution function, g(z), to be a Gaussian with standard
deviation o and solve the system numerically. Figure 5
describes the resulting different regimes of behavior in
analogy to Fig. 3: (I) One mode, corresponding to lower
values of z, shows subthreshold oscillations while the other
mode shows suprathreshold oscillations. (II) Both modes
settle to a fixed point. (IIT) The modes show synchronous
in-phase oscillations. A comparison between Figs. 3 and 5
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FIG. 5. This figure shows the contour lines of equal mean field
amplitude in (K-0) space. The mean field is calculated from the
low-dimensional mode description.
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FIG. 6. The evolution of the time-dependent coefficients, &, (¢)
(dashed line) and &,() (solid line), is plotted for various (K-o)
values as a function of time.

shows that our low-dimensional mode approximation pro-
vides a good description of the population behavior. A
goodness of fit, G = 1 — E, [using Eq. (8)] is computed
to be 86% for regime I, 99% for regime II, and 98% for
regime III. The time series of the modes corresponding to
each region in K-o space are shown in Figs. 6(a)—6(d).

We can now generalize this framework to a globally
coupled network with arbitrary dynamical systems at its
nodes. Consider a network of N elements given by the
following equation:

N
;= flx;,z) + K[fv DX~ Xa} (13)
j=1

where  x; =[x\"---x"]ERe"  describes  the
n-dimensional dynamics of the ith node and K € Re” X
Re” is a diagonal matrix with nonzero elements of the same
value, K. The parameters, z;, are dispersed according to the
distribution function g(z). In the new space defined by z,
we introduce the vector field q(z, 1) = [q,(z, 1) - - - g,,(z, 1)],
where ¢;(z;, 1) = xﬁ-’)(t), j=1,...,n. Then, the corre-
sponding dynamics can be written in terms of the new
variable ¢;(z, 1) as follows:

§ @0 =r, @+ K[ f " e 08z~ )tz r)} (14)

Assume that the system can be described by a low-
dimensional biorthogonal set of m modes in z space,
{ve(z),€=1,...,m}, and its corresponding time-
dependent coefficients, [fi,l) cee ffg”)] € Re". Projecting
Eq. (14) on each mode v;r(z), we obtain the following
equations for the corresponding time-dependent ampli-
tudes:

€)= mU&d) + Kley (Elgy, + -+ €hgn,) — €])
(15)

where h{;({f W)= /. v}f . fé(q)dz depends on the set {&;},
8w, = /. vg - g(z)dz, and ¢, = [*, v}(z)dz.

In summary, we have provided a low-dimensional de-
scription of a heterogeneous network of globally coupled
dynamical systems. We demonstrated the existence of a
phase transition from quiescent to synchronous oscillatory
behavior mediated by parameter dispersion in a network of
Fitzhugh-Nagumo neurons. The effects of parameter dis-
persion on neuronal systems may be particularly signifi-
cant. An example can be found in CAl stratum oriens
interneurones in the hippocampus. Evidence from electro-
physiological recordings show that hypothermia induced
seizures in developing rats causes an increase in the vari-
ance of the resting membrane potential without causing a
change in the mean resting potential [16]. One of the
contributions of this Letter is to provide a method to
describe phase clustering in networks of dynamical ele-
ments. The individual clusters are represented by distinct
modes, and the interactions among these clusters may be
described by the coupling between the mode equations.
Further, our method does not assume a particular form of
the parameter distribution function and is suitable to study
networks with multimodal parameter distributions.

This work was supported by National Institute of Mental
Health Grants No. MH 42900 and No. MH 01386.

[11 Y. Kuramoto, Chemical Oscillations, Waves and
Turbulence (Springer, Berlin, 1984).

[2] S. Nichols and K. Wiesenfeld, Phys. Rev. A 45, 8430
(1992).

[3] A.K.Engel, P. Fries, and W. Singer, Nat. Rev. Neurosci. 2,
704 (2001).

[4] J.A.S. Kelso, Dynamic Patterns: The Self-Organization of
Brain and Behavior (MIT Press, Cambridge, MA, 1995).

[5] H. Haken, Principles of Brain Functioning: A Synergetic
Approach to Brain Activity, Behavior and Cognition,
Springer Series in Synergetics Vol. 67 (Springer, Berlin,
1996).

[6] P.C. Matthews and S.H. Strogatz, Phys. Rev. Lett. 65,
1701 (1990).

[71 S. De Monte, F. d’Ovidio, and E. Mosekilde, Phys. Rev.
Lett. 90, 054102 (2003).

[8] J. Rubin and D. Terman, J. Math. Biol. 41, 513 (2000).

[9] S.H. Strogatz and R.E. Mirollo, Phys. Rev. E 47, 220
(1993).

[10] O. Sporns, J. A. Gally, G.N. Reeke, and G. M. Edelman,
Proc. Natl. Acad. Sci. U.S.A. 86, 7265 (1989).

[11] J. Buhmann, Phys. Rev. A 40, 4145 (1989).

[12] R. Fitzhugh, Biophys. J. 1, 445 (1961); J. Nagumo,
S. Arimoto, and S. Yoshizawa, Proc. IRE 50, 2061
(1962).

[13] Y. Yamaguchi and H. Shimizu, Physica (Amsterdam) 11D,
212 (1984).

[14] D. Golomb, D. Hansel, B. Shraiman, and H. Sompolinsky,
Phys. Rev. A 45, 3516 (1992).

[15] C.D. Tesche, M.A. Uusitalo, R.J. Ilmoniemi, M.
Huotilainen, M. Kajola, and O. Salonen, Electro-
encephalogr. Clini. Neurophysiol. 95, 189 (1995).

[16] I. Aradi and I Soltesz, J. Physiol. 538, 227 (2002).

018106-4



