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Human rhythmic activities are variable. Cycle-to-cycle fluctuations form the behavioral
observable. Traditional analysis focuses on statistical measures such as mean and variance.
In this article we show that, by treating the fluctuations as a time series, one can apply tech-
niques such as power spectra and rescaled range analysis to gain insight into the mechanisms
underlying the remarkable abilities of humans to perform a variety of rhythmic movements,
from maintaining memorized temporal patterns to anticipating and timing their movements
to predictable sensory stimuli.  2001 Elsevier Science

INTRODUCTION

The human motor system is often required to act in a specific timing relationship
with certain external rhythmic events. Despite a venerable history of investigation,
it is not well understood how this feat is achieved. A basic experiment to study this
behavior asks the subject to tap in synchrony (on the beat) or in syncopation (off the
beat) with a periodic stimulus. Although the subject can perform the task well for a
range of frequencies, inevitable timing errors occur on each tap, the analysis of which
is an important step toward unraveling the underlying control mechanism.

Dunlap (1910) was the first to carry out a systematic study of the synchronization
experiment. One of his main observations was that the mean synchronization error
(asynchrony) is negative, indicating that the subject is not simply reacting to the
stimulus but tends to tap in advance of the stimulus onset, in contrast to the title of
his article, ‘‘Reaction to Rhythmic Stimuli, with Attempts to Synchronize.’’ This
result and its subsequent confirmation led to the Paillard–Fraisse hypothesis, which
established the essential role of sensory feedback in the maintenance and execution
of the synchronization task (Aschersleben & Prinz, 1995).

Woodrow (1932) examined the effect of stimulus frequency on the accuracy of
performance. He found that the relative performance, measured by the ratio between
the standard deviation of the synchronization errors and the stimulus period, is an
inverse bell-shaped function of the stimulus frequency, with the minimum at 1.25
Hz. This result quantifies the empirical fact that the task becomes more difficult to
perform at both the high and the low frequencies.

Mean and variance (standard deviation) are static measures that do not reflect the
temporal structure in the data. Michon and van der Valk (1967) were the first to
explicitly point out that ‘‘studies of tapping behavior have failed to incorporate the
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sequential aspects of the performance of subjects,’’ and proceeded to introduce linear
systems theory to model the synchronization experiment. Hary and Moore (1985,
1987) gave sequential correlation a more meaningful role by relating it to the subject’s
‘‘synchronization strategy.’’ Their model hypothesizes that the time-keeping mecha-
nism switches randomly between the metronome reference frame and the subject’s
own tap reference frame. Recent work by Vorberg and Wing (1996) and by Pressing
and Jolley-Rogers (1997) postulates that the subject makes short-term self-correcting
adjustments in response to perceived timing errors. By adapting the Wing–Kristoffer-
son (1973a, 1973b) two-component model originally developed for unpaced rhythmic
tapping, these authors proposed a first-order autoregressive type of model to describe
the temporal dynamics of the timing errors, which gives an exponentially decaying
autocorrelation function.

We carried out finger-tapping experiments that produced long stationary fluctuat-
ing time series while the subjects performed the tasks of synchronization and synco-
pation to a regular sequence of sounds. Our examination of the overall correlation
structure of the timing errors uncovered a pattern that is very different from that
predicted by the self-correcting model. In particular, using an array of diagnostic
tools including spectral maximum likelihood estimator and rescaled range analysis,
we showed that the timing errors exhibit 1/f α-type power spectra. By virtue of the
Fourier transform, the autocorrelation function C(k) scales with the time lag k as a
power law C(k) , k2β, where β 5 1 2 α. This slow decrease of the correlation
between errors separated by the interval k is in contrast with the rapid exponential
decay predicted by the self-correction model. In fact, for α between 0 and 1, as is
the case in the present experiment, the C(k) function decays so slowly with k that
the underlying statistical process is said to have long memory (Beran, 1994). (It is
worth noting that the term memory here is used in a statistical sense and does not
have any bearing on human memory.) Remarkably, the value of the scaling exponent
α allowed us to distinguish clearly the two basic modes of coordination in that differ-
ent values of α are obtained for synchronization and for syncopation. We further
present some evidence that α may be influenced by cognitive strategies employed
by the subject in producing syncopation, indicating that the long-term statistics has
a higher cortical origin. These results, in conjunction with our understanding of the
generating mechanism for 1/f α-type long memory processes, suggest the hypothesis
that the brain has distributed timing control structures acting on multiple time scales.

METHODS

Task. Subjects were seated in front of a computer inside a sound-attenuated recording chamber and
instructed to rhythmically press their right index finger on a computer key in a specific phase relationship
with periodic auditory beeps (duration 5 50 ms). A computer program was used to register the time of
the key depression with 1-ms resolution. The timing errors, defined as the time between the computer
recorded response time and the metronome onset time, are recorded as a time series indexed by the
number of taps. All data are based on subjects’ successful completion of the requirement without interrup-
tion, without missing stimuli or making extra responses.

Five righted-handed subjects took part in the first experiment in which each performed two trials of
1200 continuous synchronization taps against the metronome set at 2 Hz. A total of 10 time series were
collected.

Eight subjects performed the two conditions in the second experiment where the metronome was set
at 1 Hz. In the synchronization condition the subject was required to tap in synchrony with the metro-
nome. The syncopation condition required the subject to press the computer key in between adjacent
stimuli. Each subject performed two trials for each condition, and a total of 32 time series, each containing
550 points, were collected from eight male subjects.

The third experiment was designed to produce syncopation by using different coordination strategies.
For the ‘‘2 :1’’ strategy, subjects (N 5 4) made two flexion movements during every 1-s stimulus interval,
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one flexion movement synchronized with the stimuli (no key depression), and a second key depression
movement occurred in the middle of the cycle, thus syncopating with the 1-Hz stimuli. In a way this
is like playing a drum twice as fast as the basic musical rhythm. The second strategy required subjects
(N 5 4) to intentionally control an extension movement (key-release) with the stimulus instead of a
downward flexion key-press, so that when the finger moves back to the lowest position, the (computer-
registered) key-press was in the middle of the cycle (syncopation). At 1 Hz, all these modes of coordina-
tion can be maintained, thus giving us a unique opportunity to investigate changes in the coordination
dynamics even though the environmental conditions remained the same. A total of 16 time series, each
again containing 550 points, were collected in the third experiment.

Data analysis. For all time series, the first 10 data points were eliminated to remove initial transients.
The next 1024 points from the first experiment and the next 512 points from the second and third
experiments were considered as realizations of stationary stochastic processes and used for further analy-
sis. The remaining data points in each time series are discarded.

A stationary stochastic process is characterized by its mean, variance, and autocorrelation function
C(k). The Fourier transform of C(k) gives the power spectrum. In this work the power spectrum is
estimated using the periodogram method after removing the mean and normalizing by the standard
deviation.

The autocorrelation function generally decays to zero as k increases. If C(k) decays sufficiently slowly
such that

^
k5∞

k50

C(k) 5 ∞ , (1)

we say that the process has long memory. Specifically, this occurs when

C(k) , k2β , (2)

with 0 , β , 1. The power spectrum of a long memory process is singular at f 5 0 and scales with f
as S( f ) , f 2α, where α 5 1 2 β (Beran, 1994).

To calculate the spectral exponent of each individual time series, the frequency domain maximal
likelihood estimation (MLE) was used, which estimates the long memory in a time series from its power
spectrum based on a fractional Gaussian noise model. The details of the method and the mathematical
background can be found in Beran (1994).

Another index for long memory processes is the Hurst exponent H. It relates to α through (Beran,
1994)

H 5 (1 1 α)/2 (3)

A direct way to estimate the value of H is the trend-corrected rescaled range analysis (Beran, 1994).
Let ei be the ith timing error and ei 5 ei 2 e, where e denotes the sample mean of the error time series.
Consider the cumulative sum, L(n, s) 5 ∑i5s

i51 en1i, where L(n, s) can be regarded as the position of
a random walk after s steps. Define the trend-corrected range of the random walk as R(n, s) 5 max
{L(n, p) 2 pL(n, s)/s, 1 # p # s} 2 min{L(n, p) 2 pL(n, s)/s, 1 # p # s}. Let S2 (n, s) denote the
sample variance of the data set {en1i} i5s

i51. If the average rescaled statistic Q(s) 5 , R(n, s)/S(n, s) .n

scales with s as a power law for large s, Q(s) , sH, then H is the Hurst exponent. One can show that,
if the autocorrelation function C(k) sums to a finite number, then generally H 5 1/2 (Rangarajan &
Ding, 2000), corresponding to the case of short term memory. If Eq. (1) holds, then 1/2 , H , 1, and
the time series is said to have long persistent memory. It is worth pointing out that the spectral method
or the rescaled range method applied alone can be susceptible to producing false results. Here we em-
ployed both methods in an integrated approach (Rangarajan & Ding, 2000), which requires the outcomes
from the two methods to be consistent through Eq. (3).

RESULTS

Experiment 1. Figure 1 shows a typical example of an error time series. Highly
irregular fluctuations indicate the presence of a underlying random process. We com-
puted its power spectrum, which is shown on a log–log scale in Fig. 2a. Excellent
straight line fit means that the power S( f ) scales with the frequency f as a power
law S( f ) , f 2α, where α < 0.54. The rescaled range plot for the same data is shown
in Fig. 2b where a straight fit gives H < 0.79, which is consistent with the spectral
α value through Eq. (3). From all 10 time series we obtain α 5 0.49 6 0.02.



STATISTICAL ANALYSIS OF TIMING ERRORS 101

FIG. 1. Example synchronization error time series from the first experiment. The error is defined as
the timing difference between a key-press and the associated metronome onset measured in ms resolution.

FIG. 2. (a) Spectral density of the error time series in Fig. 1. We have converted the unit of frequency
from 1/beat to Hz in the following way. Because the interval between two data points in error time
series is the stimulus period T (0.5 s in this case), the frequency f is define as f k 5 (k 2 1)/(mT ), for
k 5 1, 2, . . ., m/2 2 1, where m(1024) is the total length of the time series. (b) Log–log plot of averaged
R/S value Q(s) against window size s for the time series in Fig. 1. Adapted from Chen, Ding, & Kelso
(1997).
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FIG. 3. Averaged spectral density of the error time series for synchronization (top) and syncopation
(bottom) from the second experiment.

Experiment 2. Figure 3 shows the averaged power spectra for the two basic con-
ditions in a log–log plot. The scaling exponents are estimated to be α 5 0.54 6 0.03
for synchronization (top) and α 5 0.77 6 0.02 for syncopation (bottom). Although
the averaged spectra appear to give different slopes for the two movement conditions,
to evaluate the statistical significance of the difference, we applied the frequency
domain MLE to each of the 32 time series (16 from synchronization and 16 from
syncopation) to calculate the individual exponent α. The overall α value for synchro-
nization is 0.45 6 0.16, while for syncopation, α 5 0.73 6 0.17. The two exponents
are significantly different by a two-tailed t test (p , .025).

Experiment 3. Synchronization is a relatively simple task for humans to perform.
Syncopation, however, is more demanding, requiring longer training and a higher
level of concentration to ensure quality performance. Moreover, it is known that
syncopation is a less stable form of coordination, and that spontaneous switching to
synchronization can occur at both behavioral (Kelso, DelColle, & Schner, 1990) and
neural levels (Kelso et al., 1992). The difference between the α values for the two
conditions suggests that the scaling exponent is a correlate of task difficulty. It is
known that syncopation (e.g., flexion movements off the beat) can be performed at
high movement rates if the subject consciously decides to place extension movements
on the beat (Kelso et al., 1990). The question is whether it is possible to shift the
values of the scaling exponents by altering cognitive strategy. Were this so, long-
range correlation in timing behavior may be said to originate in the higher level
functioning of the human brain. The third experiment was designed to probe this
idea, and required subjects to use different sensorimotor coordination strategies to
produce movement responses between stimuli, thus giving rise to variable timing
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errors mimicking the syncopation task. For the 2 :1 strategy, using MLE, the scaling
exponent from the eight time series was found to be α 5 0.48 6 0.19, which is
nearly the same as that of the original synchronization. For the subjects who took
part in the ‘‘extension on the beep’’ strategy, the scaling exponents were found to
be α 5 0.87 6 0.07, which is very close to the syncopation value. However, closer
inspection of each subject’s response indicates that, for one subject who performed
the task particularly well, the exponent is about 0.45, close to that of the synchroniza-
tion task. These results offer some evidence that the cognitive strategy may influence
the value of the scaling exponent α, lending support to the notion that the source of
long-range correlations in timing lies in the central nervous system.

DISCUSSION

Recently proposed ideas (Vorberg & Wing, 1996; Pressing & Jolley-Rogers, 1997)
assert that the timing error en obeys the first-order autoregressive [AR(1)] model

en 5 λen21 1 εn , (4)

where εn is a uncorrelated random process. Equation (4) is a result of modifying the
central clock component of the Wing–Kristofferson model to include the influence
of sensory feedback. According to this equation, the autocorrelation function of the
errors decays exponentially in the form of C(k) , λk, leading to a Lorentzian type
of power spectrum shown in Fig. 4 (top curve). The inconsistency between this pre-
diction and the power law spectrum (bottom curve) is apparent.

The exponentially decaying autocorrelation function defines a characteristic time
scale in terms of the correlation length, which is a function of λ. A long memory
process is a process that does not possess a single time scale. In recent years, a
number of mechanisms, ranging from self-organized criticality (Bak, Tang, & Wie-
senfeld, 1987) to multiscaled randomness (Hausdorff & Peng, 1996), have been pro-
posed to explain the occurrence of such processes. A central theme of these models
is the presence of many interacting components acting on different time scales. Here

FIG. 4. The power spectrum of a first-order autoregressive process (top) is plotted against a 1/f α-type
spectrum (bottom). Notice that in the low frequency portion the autoregressive process shows a flattened
spectrum.
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we mention an explicit mathematical model of long memory processes proposed by
Granger (1980). The discussion of this model is instructive since the basic building
block in the model is an AR(1) process like Eq. (4) and it may lead to fruitful specula-
tions on the origin of the observed 1/f α spectra.

Let xn( j ), j 5 1, 2, . . . , be independent AR(1) processes defined by

xn ( j) 5 λj xn21( j) 1 εn ( j ) , (5)

where 21 , λ j , 1, and {εn ( j)} is a zero mean random process with variance σ2
j .

Consider the sum of N such processes

x(N)
n 5 xn (1) 1 xn (2) 1 . . . 1 xn (N) . (6)

Granger (1980) showed that, if λj and σ2
j are randomly and independently drawn

from a beta distribution with suitable characteristics, then for large N, x(N )
n is a process

of long memory and exhibits 1/f α spectra. Numerical simulations (Rangarajan &
Ding, 2000) show that, for a finite data set of several hundreds points, the sum of 4
or 5 AR(1) processes can behave in a way similar to the experimental observation
reported here.

Many lesion and pharmacological studies have revealed diverse brain structures
having time-keeping functions. For example, the basal ganglia is shown to be impor-
tant in rhythmic movement (Freeman, Cody, & Schady, 1993), because Parkinsonian
patients have a great deal of difficulty in performing various timing tasks. Ivry and
colleagues (Ivry & Keele, 1989) studied motor timing in patients with cerebellar
atrophy and showed elevated variability in the clock component. Recent brain im-
aging work has begun to reveal cortical structures that are important in the control
of timing behavior (Harrington & Haaland, 1999; Chen, Ding, & Kelso, 1999; Muller
et al., 2000). We suggest that the 1/f α long memory characteristic of the error time
series is consistent with the view that distributed neural systems participate in the
maintenance and execution of the synchronization and syncopation tasks. Further-
more, we hypothesize that each participating system may have its own time-keeping
mechanism, which undergoes Eq. (4) type of self-correction at different time scales.

Dunlap (1910) was the first to observe cycling behavior in the error time series.
He noted that the errors tend to grow larger and larger in a given direction (either
early or late relative to the stimulus) until a correction causes a change in direction
where the same pattern repeats. Dunlap called this the drifting phenomenon and at-
tributed it to a frequency mismatch between stimulus and response. Spectral analysis
reported here reveals a highly organized power law relationship between the ampli-
tude of the cycle and its frequency.

A very similar revelation has taken place in the past few years in a related move-
ment experiment called the continuation task, in which subjects continue to reproduce
a given time interval from memory after the metronome has been turned off. Early
work on this paradigm concentrated on the correlation between two adjacent intertap-
ping intervals (Wing & Kristofferson, 1973a, 1973b). Later experiments found that
intervals not directly abutting each other also exhibited significant correlation (Wing,
1977). More recent work using spectral techniques shows that in fact the interval
can be described by a 1/f α process with α 5 1 and such a process may take on
important cognitive functions (Gilden, Thornton, & Mallon, 1995).

Finally, we note that, despite the fact that 1/f α processes have been observed in
many physical and biological systems (Bak et al., 1987; Bassingthwaighte, Liebo-
vitch, & West, 1994; Chen, Ding, & Kelso, 1997; Collins & De Luca, 1995; Peng,
Havlin, Stanley, & Goldberger, 1995), the functions of such processes have remained
obscure. Our experiments establish a functional role for these types of processes by
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showing that the scaling exponent differentiates basic modes of sensorimotor coordi-
nation and may be altered by cognitive manipulations.

CONCLUSION

We established that the timing fluctuations in human sensorimotor coordination
tasks are characterized by a 1/f α type of long memory process. The specific value
of the exponent α was determined by task difficulty (synchronization or syncopation)
and may be altered by coordination strategy. Taken together, our experiments suggest
that the source of 1/f α fluctuations in human sensorimotor coordination lies in the
multiple time scale activities of distributed neural areas in the human brain.
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