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Earlier research established that spontaneous
changes in human sensorimotor coordination are
accompanied by qualitative changes in the spatiotem-
poral dynamics of neural activity measured by multi-
sensor electroencephalography and magnetoencepha-
lography. More recent research has demonstrated that
a robust relation exists between brain activity and the
movement profile produced. In particular, brain activ-
ity has been shown to correlate strongly with move-
ment velocity independent of movement direction and
mode of coordination. Using a recently developed field
theoretical model of large-scale brain activity itself
based on neuroanatomical and neurophysiological
constraints we show here how these experimental
findings relate to the field theory and how it is possible
to reconstruct the movement profile via spatial and
temporal integration of the brain signal. There is a
unique relation between the quantities in the theory
and the experimental data, and fit between the shape
of the measured and the reconstructed time series for
the movement is remarkably good given that there are
no free parameters. © 2000 Academic Press

1. INTRODUCTION

Spontaneous changes in human coordination behavior
have been a central research theme experimentally and
theoretically for the past 2 decades (see for a review
(Kelso, 1995; Haken, 1996). Recent developments in tech-
nology allow us to study the living brain noninvasively
using behavioral coordination paradigms as a tool to pre-
pare the brain in well-defined states. In the early 1990s it
was shown that spontaneous changes in sensorimotor
coordination are also accompanied by qualitative changes
in the spatiotemporal dynamics of neural activity mea-
sured by multisensor magnetoencephalography (MEG)
and electroencephalography (EEG) (Fuchs et al., 1992;
Jirsa et al., 1995; Kelso et al., 1992; Wallenstein et al.,
1995). More recently, a neurobiologically motivated the-
359
ory which combines features of excitatory and inhibitory
neural ensembles including their intra- and corticocorti-
cal connections was able to account for the observed re-
lationship between brain activity and behavior for two
different coordination paradigms (Jirsa and Haken,
1996, 1997; Jirsa et al., 1998). Key features of this field
heoretical approach describing neural activity as a func-
ion of space and time are the specific form of interaction
ithin the neural mass and particular functional input or

utput units. The latter correspond to specific locations in
he cortical sheet where, e.g., input from sensory path-
ays arrives driving the spatiotemporal dynamics. Like-
ise, cortical activity in motor-related areas can be used

o drive muscle joint linkages external to the sheet. These
unctional anatomical units provide a bridge between
nternal dynamics of the cortex and the externally ob-
erved behavior. Here we show through a development of
his theory how it is possible to directly connect cortical
ctivity and kinematic properties of behavior. Specifi-
ally, we derive an equation from the field theory that can
erve as a model in which signals emanating from the
otor cortex are seen to drive the finger as a damped
armonic oscillator. This model reproduces the recently
bserved robust relationship between brain activity and
elocity of movement (Kelso et al., 1998).
In section 2 we summarize the recent experimental

esults by Kelso et al. demonstrating the correlation
etween brain activity and the movement profile. Sec-
ion 3 describes the spatiotemporal decomposition
echniques that were used to establish the foregoing
elation. These methods serve as a necessary basis for
onnecting theory and experiment in section 4 in which
e reconstruct the observed relation between hand
ovement and brain activity from the basic equation

or the neural field.

2. THE EXPERIMENTAL OBSERVATIONS

Here we briefly review the results of a recent brain-
ehavior experiment (Kelso et al., 1998). In this exper-
1053-8119/00 $35.00
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iment, subjects were instructed to coordinate the move-
ment of their right (preferred) index finger with a
visual metronome at a frequency of 1 Hz in four differ-
ent task conditions: flexion (extension) synchronized on
the metronome beat (F-on and E-on conditions) and
flexion (extension) in between consecutive metronome
beats (F-off and E-off conditions). Note that these four
conditions may be grouped with respect to kinematic
characteristics, i.e., direction of the movement (flexion
vs extension) or according to coordination mode, i.e.,
movement in phase or anti-phase with the metronome
beats (synchronization vs syncopation).

Measures of finger displacement over time were ob-
tained as pressure changes in an air cushion detected
by transducers. During the experiment the magnetic
field generated by the ongoing neural activity was mea-
sured using a 68-channel full-head magnetometer
(CTF, Inc.) at a sampling frequency of 250 Hz. For each
condition a total of 100 movement cycles were recorded
and the brain signals in each sensor were averaged
after artifact removal.

Figure 1 (left) shows the averaged time series of the

FIG. 1. Relation between stimulus and response for all task con
conditions. Note that in the on-the-beat conditions the maximum amp
conditions these maxima are in the middle between the flashes. M
movement amplitude in a 4p plot. Circles plotted in blue deviate

istograms of the relative phases. Note that the variance is smaller
finger movements for the four task conditions in rela-
tion to the metronome for a typical subject. Note that
for the on-the-beat conditions the maximum displace-
ment coincides (in phase) with the stimuli, whereas in
the off-the-beat conditions the movement is anti-phase
with the metronome. Relative phase between the stim-
ulus and the peak of the movement was calculated for
each cycle and an average phase for each task condi-
tion determined. Figure 1 (middle) shows the relative
phase for each cycle plotted in the region from 22p to

2p over cycle number. Blue circles indicate cycles
hich deviate more than 660° from the average value

of relative phase and were excluded from further anal-
ysis. Figure 1 (right) depicts histograms of the distri-
bution of relative phase. Note that the variance is
smaller in the on-the-beat conditions, indicating higher
stability for the synchronized movement compared to
syncopation (Kelso et al., 1990).

Since the task was to coordinate peak finger flexion
or extension with an environmental signal, behavioral
and brain data were averaged on a cycle-by-cycle basis
with respect to maximum finger displacement for each

ons. Left: Metronome (green, top) and movement signals for all task
de coincides with the metronome flashes, whereas in the off-the-beat
le: Relative phase between the stimulus and the maximum of the
re than 60° from the required phase and were discarded. Right:
the on-the-beat conditions, indicating higher stability.
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361HUMAN BRAIN ACTIVITY AND HAND MOVEMENTS
task condition. Figure 2 shows topographic maps of the
temporal evolution of brain activity during the finger
movement for the conditions flexion-on and extension-
off (the other two conditions were similar). Below each
spatial pattern the movement profile (red) is plotted
together with a green bar indicating the brain pattern’s
location within the cycle. Near movement onset a
strong dipolar field arises over the left hemisphere.
After maximum displacement is reached a dipolar field
with reversed polarity and smaller amplitude is visi-
ble. Note that these dipolar structures appear to be
independent of the direction of movement (flexion vs
extension). They also appear to reach their maximum
magnitude at the time points of the peak movement
velocity, i.e., where the slope of the movement profile is
greatest.

In order to illustrate this correlation Fig. 3 shows an
overlay of the averaged brain signals from each SQuID
with the velocity profile of the movement for the flex-
ion-on condition. Especially inside the highlighted

FIG. 2. Topographic maps showing the spatiotemporal dynamics
and extension-off condition (bottom three rows). The box below each
location of the map within the cycle. A dipolar pattern appears ove
around the inclination point of the left flank of the movement profi
direction.
area, where the magnitude of the magnetic field is
strong, these curves are almost a perfect match (right
yellow circle), likewise if one is multiplied by 21 (left
ellow circle). It is evident that a strong correlation (or
nti-correlation due to the dipolar nature of magnetic
elds) exists between the neural activity and the ve-

ocity of the movement, a result of some interest for
hose who study the neural control of movements (see,
.g., Georgopoulos, 1991, for review).

3. BRIDGE BETWEEN THEORY AND
EXPERIMENT: ANALYSIS OF SPATIOTEMPORAL

BRAIN SIGNALS

In general, any decomposition of a spatiotemporal
pattern c(x, t) into spatial modes Fi(x) and correspond-
ing time-dependent amplitudes ji(t) is given by

c~x, t! 5 O
i

ji(t)F i(x). (1)

neural magnetic activity for the flexion-on condition (top three rows)
p shows the movement profile (red) and a green line indicating the
e area of left motor cortex, which reaches its maximum amplitude
Note that the polarity of this pattern is independent of movement
of
ma
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362 FUCHS, JIRSA, AND KELSO
In the discrete case this decomposition reads

ck(t) 5 O
i

ji(t)v k
(i), (2)

where ck(t) represents the time series at sensor k and
{v(i)} a set of basis vectors. Motivated by the strong
correlation observed between movement velocity and
brain signals we decompose the brain patterns as

ck(t) 5 r(t)v k
(1) 1 ṙ(t)v k

(2), (3)

where r(t) denotes the time series of the finger displace-
ment and ṙ(t) the movement velocity. The spatial
modes v(1) and v(2) are determined by linear regression
uch that the least-square norm E between the original

brain signal and its decomposition (3) is minimized:

E 5
1

T E
0

T

dt O
k

{ck(t) 2 r(t)v k
(1) 2 ṙ(t)v k

(2)} 2 5 Min.

(4)

FIG. 3. Overlap between brain signals (green) and movement v
xtremely high in channels inside the highlighted area. On the bottom
elocity (red) is shown.
The minimum is found by varying E with respect to
vector components vj

(i)

­E

­v j
(1)

z E
0

T

dt O
k

{ck(t) 2 r(t)v k
(1) 2 ṙ(t)v k

(2)}r(t) 5 0

(5)

­E

­v j
(2)

z E
0

T

dt O
k

{ck(t) 2 r(t)v k
(1) 2 ṙ(t)v k

(2)}ṙ(t) 5 0.

(6)

The solution of this linear system of equations
readily gives the required spatial modes v(1) and v(2). In
contrast to modes obtained through procedures like
Principal Component Analysis, v(1) and v(2) are not
necessarily orthogonal. Therefore, a set of adjoint vec-
tors v(1)1 and v(2)1 has to be calculated such that the
relation

v (i)1v ( j) 5 d (7)

city (red) in single channels. The correlation (or anti-correlation) is
ght the relation between the movement profile (blue) and movement
elo
ri
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363HUMAN BRAIN ACTIVITY AND HAND MOVEMENTS
is fulfilled (where dij represents the Kronecker delta).
hese modes are obtained by restricting v(i)1 to the
ubspace defined by v(1) and v(2), i.e., writing them in

the form

v (i)1 5 ai1v (1) 1 ai2v (2) (8)

and applying relation (7). The time-dependent ampli-
tudes are given by

ji(t) 5 O
k

v k
(i)1ck(t). (9)

Figure 4 shows decompositions of the spatiotemporal
brain signal for the four task conditions. For each con-
dition the upper patterns represent the modes v(1) and
v(1)1 corresponding to the finger displacements; the
lower patterns v(2) and v(2)1 correspond to the move-
ment velocity. Plotted on the right for each condition
are the time series of the averaged displacement (red,
top) and its temporal derivative, the movement velocity
(red, bottom). Green curves represent the projections of
the original brain signal onto the adjoint vectors, i.e.,
the time-dependent amplitudes j1(t) and j2(t) for a re-
construction of the signal according to (3). The value of
tot is an estimate of the quality of the reconstruction if

FIG. 4. Biorthogonal decomposition of the brain signa
both modes are used, i.e., the proportion of variance
accounted for.

From the spatial patterns v(1) and v(2) together with
their time-dependent amplitudes j1(t) and j2(t), respec-
tively, the signal at the locations of the sensors can be
reconstructed. Figure 5 shows an overlay of the origi-
nal signal (green) and the reconstruction (red) from the
two spatial patterns and their amplitudes. Evidently,
most of the spatiotemporal dynamics is reproduced.

4. CONNECTING THEORY AND EXPERIMENT

The most established field theoretical approaches for
modeling neural activity are the models by Wilson and
Cowan (1972, 1973) and by Nunez (1974, ). The Wil-
son–Cowan model describes the evolution of neural
firing rates in space and time, defined on an intracor-
tical space–time scale of 10 ms and millimeters. The
Nunez model considers also long-distance contribu-
tions of the cortical fiber system and is formulated in
terms of synaptic activities which are linearly related
to dendritic currents. The latter give rise to the signals
observed in EEG and MEG, but can also be mapped
onto firing rates (see Jirsa and Haken, 1997, 1996). In
recent years these models could be connected and for-
mulated on a macroscopic scale in space and time (i.e.,

to spatial modes fitting movement and velocity (see text).
l in
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364 FUCHS, JIRSA, AND KELSO
the scale of centimeters and 100 ms) as a single non-
linear retarded integral equation for the field c(x, t) in
the neural sheet G

c(x, t) 5 a E
G

dX f(x 2 X)

· SFrcSX, t 2
| x 2 X |

v D 1 pSX, t 2
| x 2 X |

v DG .

(10)

The neural field c(x, t) denotes the relative amplitude
of the dendritic currents generated in a neural mass at
location x and time t. Its amplitude is relative to an
average activity, thus it can acquire positive and neg-
ative values. Equation (10) states that the neural ac-
tivity in the cortical sheet at location x and time t is the

eighted sum of activity this location receives from all
ther locations X and the input units p at X which will
e our main concern in later sections. Since activity in
he sheet spreads at a finite velocity v it takes the time
x 2 X|/v to reach the location x from the point X

where it originated. The distribution function f(x 2 X)

FIG. 5. Reconstruction of brain signals from the two spatial mod
in green and the reconstructed signal in red. Note that the reconstru
signal is large.
describes the connection strength between x and X, r is
the fiber density, and a is the synaptic weight. The
sigmoid function S is approximately linear around the
origin and saturates for large positive or negative ar-
guments.

Using the method of Green’s functions (Jirsa and
Haken, 1997) and assuming that the distribution func-
tion is given by

f(| x 2 X |) 5
1

2s
e |x2X|/s, (11)

i.e., the connectivity falls off exponentially with dis-
tance, integral Eq. (10) can be rewritten in one dimen-
sion as a nonlinear partial differential equation,

c̈(x, t) 1 Sv 0
2 2 v 2

­ 2

­x 2Dc(x, t) 1 2v0ċ(x, t)

5 aSv 0
2 1 v0

­

­tD · S[rc(x, t) 1 p(x, t)],

(12)

(1) and v(2) for the flexion-on condition. Plotted are the original signal
n is very good especially in regions where the amplitude of the brain
es v
ctio
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where v0 5 v/§ (see Jirsa and Haken, 1997, 1996, for a
detailed derivation). This theory has been applied to a
situation in which subjects switch from a syncopated
coordination mode to synchronization when the pre-
sentation rate of a stimulus is systematically increased
(Kelso et al., 1990, 1992). The neural activity reorga-
nizes at the transition point, i.e., the dominating pat-
tern recorded in MEG changes from the shape shown
in Fig. 6 bottom left to the one shown on bottom right.

The spatiotemporal dynamics from a numerical in-
tegration of (12) is displayed as an x,t plot in Fig. 6, top,
with space in the vertical direction and time running
horizontally. The input into the neural sheet p(t)
shown below the x,t plot is spatially uniform. The ini-
tial condition is set to a pattern that corresponds to a
slow stimulus frequency which is stable in the “synco-
pation” mode. When the stimulus rate is increased (as
in the real experiment) this pattern becomes unstable
and switches to the pattern that corresponds to “syn-
chronization.” The dominating patterns from the sim-
ulation prior to and after the switch are shown as boxes
next to the circles that represent the patterns from the

FIG. 6. Reorganization of the spatiotemporal activity at the tra
field theoretical model. The switch from a spatially constant patter
frequency (blue time series) to a pattern with a minimum and maxi
the experimental observation (compare text).
experiment. Notice that shape changes from approxi-
mately constant in space to a pattern that has a max-
imum and a minimum. Second, prior to the transition
the amplitude of the constant pattern (blue line in the
diagram), oscillating at the same frequency as the
stimulus, is dominating. Past the transition the other
pattern, which oscillates at twice the stimulus fre-
quency, takes over. This switch in the temporal domain
is also observed in the experiment (see for details
Fuchs et al., 1992; Kelso et al., 1992; see also Jirsa et
al., 1994, for modeling of this effect).

The main point of this paper is to show how the
experimental findings presented in section 2 are re-
lated to the foregoing theory and how the actual move-
ment profile can be derived from this field theoretical
model. In other words, the goal is to derive an equation
of the form (3) from the general formulation and relate
all dependencies and coefficients to quantities that are
accessible from the experimental data. The relation
between the internal brain dynamics, sensory inputs,
and motor outputs within the theory is handled by
functional units, i.e., certain locations or areas in the

ion from syncopated to synchronized movement simulated from the
lue box, left bottom) and its amplitude oscillating at the stimulus

m (box bottom right) in space oscillating at twice this rate matches
nsit
n (b
mu
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cortical sheet. The sum of all inputs constitutes the
function p(x, t) in (12). An output signal is created as
the weighted sum of activity over the corresponding
output areas. The following two subsections describe
how these units are represented in their general form
and how they can be simplified under certain assump-
tions.

4.1. Functional Input Units

Peripheral signals, such as in proprioceptive or cu-
taneous feedback, generate activity in receptors that is
typically conveyed via the brain stem to higher areas of
the brain, in particular the neocortex. These afferent
signals excite neocortical neuron populations at spe-
cific locations and cause them to fire. Obviously, the
input-response mechanism between the periphery and
the excited neuron populations is complex and may
involve higher order contributions from memory and
internal feedback loops as well as depending on the
overall task context. The goal here, however, is not to
identify individual contributions to the input-response
mechanism but to define a compact mapping of the
peripheral signal to the time course of the firing rate of
the neural population that receives afferent excitation.
The latter is called a functional input unit p(x, t) and
can be formally expressed as

p(x, t) 5 E
t0

t

F(x, t, t)N i(rj(t)) dt, (13)

where the integral kernel F(x, t, t) defines its spatial
localization in the cortical sheet and a temporal convo-
lution. Ni(rj(t)) (where i denotes input) is a nonlinear
function. We make two assumptions:

1. There is a translational invariance in the tempo-
ral domain, i.e., the integral kernel depends only on the
difference t 2 t, and

2. the integral kernel factorizes in space and time,

F(x, t 2 t) 5 b i(x)f(t 2 t), (14)

which means that we neglect spatiotemporal input
phenomena such as traveling waves within a func-
tional unit.

Then (13) can be written as

p(x, t) 5 b i(x) E
t0

t

f(t 2 t)N i(rj(t)) dt. (15)

4.2. Functional Output Units

Similarly, an output signal r(t) to the periphery is
related to the cortical activity c(x, t) via
r(t) 5 E
G

E
t0

t

G(x, t, t)N o(c(x, t)) dt dx, (16)

here the integration in space, denoted by G, takes the
um of all neural activity on the cortical sheet related
o r(t) by the integral kernel G. Under the same as-

sumptions as in section 4.1 we rewrite the integral
kernel as

G(x, t, t) 5 b o(x)g(t 2 t), (17)

where bo(x) defines the spatial localization of the func-
tional output unit, g(t 2 t) defines the temporal convo-
lution, and o stands for output. We obtain

r(t) 5 E
G

b o(x) dx E
t0

t

g(t 2 t)N o(c(x, t)) dt. (18)

Now we relate the spatial localizations bi,o(x) and the
temporal transfer functions f(t 2 t), g(t 2 t) to the ex-
perimental data described in section 2.

4.3. Relation between Brain Theory and Movement

In section 2 we saw that the two signals, rj(t), the
finger movement, and c(x, t), the brain activity, both
oscillate with the same frequency. A simple Fourier
decomposition shows that the nonlinear functions Ni,o

can be approximated by their linear contributions. This
is not trivial as shown in the previous section in which
in the synchronization mode the brain signal oscillates
at twice the stimulus rate (which means that nonlin-
earities need to be included). On the large spatiotem-
poral scale obtainable by EEG/MEG measurements the
input and output localizations are not readily distin-
guishable, hence we approximate them as

b j
i(x) ' b j

o(x) 5 b(x), (19)

and drop the index j since we will be concerned with
one spatial function only. Now (18) can be written in
the form

r(t) 5 E
G

b(x) dx E
t0

t

g(t 2 t)c(x, t) dt. (20)

By integrating over space which gives the total input
into the cortical sheet at time t, (15) becomes
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p(t) 5 E
G

p(x, t) dx 5 E
G

b(x) dx E
t0

t

f(t 2 t)r(t) dt.

(21)

Inserting (20) into (21) we obtain the general relation
between the motor event r(t) and the spatiotemporal
neural activity c(x, t),

E
t0

t

f(t 2 t)r(t) dt 5 E
t0

t

f(t 2 t) dt

· E
t0

t

g(t 2 t9) dt9 E
G

b(x)c(x, t9) dx.

(22)

Now we expand r(t) on the l.h.s. of (22) into a Taylor
series around t,

c0r(t) 1 c1ṙ(t) 1 c2ṙ(t) 1 · · · 5 r.h.s., (23)

where the expansion coefficients cn are given by

cn 5 E
t0

t

f(t 2 t)
(t 2 t) n

n!
dt. (24)

From the experimental data we know that the spa-
tiotemporal neural activity can be approximated by
two spatial patterns multiplied by the time course of
the movement amplitude and velocity

c~x, t! ' b (0)(x)r(t) 1 b (1)(x)ṙ(t). (25)

Multiplying (25) by a spatial weight function b(x) and
integrating over space yields

r(t) E
G

b(x)b (0)(x) dx 1 ṙ(t) E
G

b(x)b (1)(x) dx

< E
G

b~x!c(x, t) dx,

(26)

which approximates an ordinary differential equation
of a driven overdamped harmonic oscillator of the form

a0r(t) 1 a1ṙ(t) 5 h(t). (27)

Comparing (26) with (23) we see that the temporal
convolutions on the r.h.s. of (22) must be equal to the
identity operator and that the coefficients cn have to
vanish for n $ 2. This means that we do not need to
take into account higher order derivatives, such as
acceleration or jerk (Flash and Hogan, 1985), that have
been postulated to be significant for the organization of
movement.

We now identify the spatial function b(x), which rep-
resents the input–output unit in the theory with the
pattern v(2), the dominating mode in the experiment.
Using a discrete notation and assuming that v(2) is
normalized in the way v(2)v(2) 5 1, Eq. (26) reads

ṙ(t) 1 v (2)v (1)r(t) 5 O
j

v j
(2)cj(t), (28)

where cj(t) represents the time series recorded in sen-
or j. This determines all quantities in (27), namely

a0 5 v (2)v (1), a1 5 1, and h(t) 5 O
j

v j
(2)cj(t),

(29)

which can be easily solved. The solution for large t is
given by

r(t) 5 k E
t0

t

h(t)e 2a0(t2t) dt. (30)

The effects of the operation on the r.h.s. of (30) are
shown in Fig. 7. In the top row left the input function
h(t) is a sine function plotted in red. The resulting
function r(t) (in blue) is shifted by a quarter of a period
representing a minus cosine or the sine function’s anti-
derivative. In top right noise is added to the input.
Nevertheless, the output is still smooth due to the
integration in time. In the bottom row the derivative
from the flexion-on movement amplitude is used as
input (red). The output is a smooth movement profile
even if noise is added to the input (bottom left).

Equation (30) together with (29) expresses the time
series of the movement in terms of the brain activity.
There is only one free scaling parameter k relating the
units in which the movement and the magnetic field
are measured. All other terms are well defined and can
be determined from the experimental data. Figure 8
shows the reconstruction of the movement profile from
the underlying neural activity according to (30) for all
task conditions. Note that the reconstructed movement
profile fits the experimentally observed movement par-
ticularly well in the active phase of the movement
represented by its positive flank. Discrepancies mainly
occur after peak displacement and are probably due to
the sensory feedback which is not accounted for in the
present formulation.
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Finally, from (24) and (30) we can find an explicit
form of the transfer functions f(t 2 t) and g(t 2 t) for
the input and output units, respectively:

f(t 2 t) 5 Fc0 1
­

­tGd(t 2 t)

and g(t 2 t) 5 e a0(t2t).
(31)

This closes the loop between the quantities that are
observed experimentally and the functions used in the
theoretical modeling in a self-consistent fashion.

5. SUMMARY AND CONCLUSION

How are biological events such as a finger movement
related to or represented by ongoing activity in the
brain? In recent experimental work, summarized here,

FIG. 7. Effect of the temporal integration on the r.h.s. of Eq. (30
plotted in red, the output r(t) is shifted by a quarter of a period repr
to the input signal—the output is still a smooth. Bottom: The input is
(red). The output is a smooth movement profile (blue) even if the in

FIG. 8. Reconstruction of movement profile from brain activity. F
to movement velocity is shown. The green curves are their time-dep
condition show overlays of the actual movement profile in blue and
we have established that a close relation holds between
the velocity of the movement and the MEG signal re-
corded over certain areas of sensorimotor cortex (Kelso
et al., 1998). Under the theoretical assumption that the
experimentally observed dipolar pattern represents
the functional input and output activity of the cortical
sheet we were able to derive the observed time course
of the movement produced. As a result, the amplitude
of the movement at a certain time is given as an inte-
gration over space and time and may be characterized
as an overdamped oscillator driven by the amplitude of
the dipolar brain pattern.

Our observations and theory may speak to one of the
reigning hypotheses about how the brain controls vol-
untary movements: The mass spring (Bizzi et al., 1991;
Feldman, 1966; Kelso, 1977; Polit and Bizzi, 1978) or,
in its new guise, the equilibrium point hypothesis. Re-
cent tests of the equilibrium hypothesis are based on

different input functions. Top left: The input h(t) is a sine function
nting the anti-derivative, a minus cosine. Top right: Noise is added
derivative of the movement amplitude from the flexion-on condition
is noisy.

all four task conditions on the left the spatial pattern corresponding
dent amplitudes, the function h(t) in (30). The right boxes for each
reconstruction, the function r(t) in (30) in red.
) on
ese
the
put
or
en
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369HUMAN BRAIN ACTIVITY AND HAND MOVEMENTS
peripheral measures of stiffness obtained during arm
movement (Gomi and Kawato, 1996) and subsequent
inferences regarding the form of the signal sent by the
brain. Direct measures of brain activity obtained in our
work show that the brain does indeed generate signals
that reproduce the actual movement trajectory inde-
pendent of direction. The present theory shows how
this neural signal may drive the finger, the intrinsic
dynamics of which have been shown to correspond to a
damped mass spring system (Kelso and Holt, 1980). An
approach complementary to ours has been taken by
Shidara et al. (1993), who show how the complex firing
f Purkinje cells in the cerebellum can be reconstructed
y inverse dynamics methods that use position, veloc-
ty, and acceleration of the eye (see also Wolpert et al.,
995). Though the mechanisms and the modeling strat-
gy are different, both approaches suggest that brain
nd behavior can be captured in the common currency
f dynamics.
In our work the relation between the experimentally

bserved quantities, i.e., the magnetic field picked up
y the sensors, and the spatial and temporal transfer
unctions used in the model is unique and all parame-
ers (except the scaling between amplitudes of the
rain signal and the movement) are determined. In
ther words no free parameters are available that
ould influence the time course of the movements in
he various task conditions as they are predicted by the
odel. This close connection between theory and ex-

eriment supports our contention that the global dy-
amical properties of the brain may be understood,
heoretically modeled, and linked to human behavior.
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