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Abstract. Earlier experimental studies by one of us 
(Kelso, 1981a, 1984) have shown that abrupt phase 
transitions occur in human hand movements under the 
influence of scalar changes in cycling frequency. 
Beyond a critical frequency the originally prepared 
out-of-phase, antisymmetric mode is replaced by a 
symmetrical, in-phase mode involving simultaneous 
activation of homologous muscle groups. Qualita- 
tively, these phase transitions are analogous to gait 
shifts in animal locomotion as well as phenomena 
common to other physical and biological systems in 
which new "modes" or spatiotemporal patterns arise 
when the system is parametrically scaled beyond its 
equilibrium state (Haken, 1983). In this paper a 
theoretical model, using concepts central to the 
interdisciplinary field of synergetics and nonlinear 
oscillator theory, is developed, which reproduces 
(among other features) the dramatic change in 
coordinative pattern observed between the hands. 

1 Introduction 

While researching voluntary oscillatory motions of the 
two index fingers, one of us (Kelso, 1981a) observed an 
interesting phenomenon 1. Under instructions to in- 
crease the frequency of out-of-phase, antisymmetrical 
motion (involving simultaneous flexor and extensor 
muscle activities), the subject's finger movements 

1 In discussions of these experiments with Shapiro (1981, 
personal communication) it was learned that Cohen (1971) 
observed occasional involuntary shifts into the in-phase co- 
ordinative mode when out-of-phase motions at a single cycling 
frequency (3 Hz)were required. Cohen did not, to our knowledge, 
examine the phenomenon further. Similar experimental findings 
on bimanual finger movements have been reported by 
MacKenzie and Patla (1983) and by Baldiserra, Cavallari, and 
Civaschi (1982) on ipsilateral hand and foot movements 

shifted abruptly to an in-phase symmetrical mode that 
involved simultaneous activation of homologous 
muscle groups. This finding was not restricted to finger 
movements. In later work (Kelso, 1982, 1984) that 
employed similar experimental manipulations, modal 
transitions in hand motions around the wrist were also 
observed: the antisymmetrical phase relationship be- 
tween the hands was replaced by symmetrical phasing. 
Moreover, although the phase transition occurred at 
very different frequencies of hand motion for different 
subjects, it was nevertheless predictable. When the 
transition frequency was expressed in units of preferred 
frequency, i.e., an independent measure of the rate at 
which each subject was content to cycle the hands "as if 
he/she were going to do it all day", the resulting 
dimensionless ratio or "critical value" was constant for 
all subjects. Introducing a frictional resistance to 
movement systematically changed both the preferred 
and transition frequencies for each subject, but did not 
change the critical value across all subjects (Kelso, 
1984). 

The most dramatic aspect of these simple experi- 
ments, addressed in detail in the present theoretical 
model, is the sudden and completely involuntary 
change in the ordering or phasing among muscle 
groups that occurs at a critical, intrinsically defined 
frequency (see Fig. 1). In this feature, the hand move- 
ment data share a likeness to gait transitions in 
locomotion a. For example, Shik et al. (1966) showed 
that a steady increase in electrical stimulation to the 
midbrain region of the decerebrate cat was sufficient 
not only to induce an increase in locomotion rate, but, 
above a certain value of current, gait shifts as well. Like 
the hand experiments in which "flipping" from one 

2 Indeed, it was the slogan of "... Let your fingers do the 
walking" promoted by advertisers of the Yellow Pages in U.S. 
telephone directories, that led to the idea behind the present 
experiments 
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Fig. 1. Bottom: Displacements over time of left (solid 
line) and right (dashed line) hands. The subject is simply 
increasing cycling frequency in an antisymmetric mode 
in response to a verbal cue from the experimenter. Top: 
Phase relationship between the two hands. The peaks of 
one hand movement act as a "target" file and their 
phase position is calculated continuously relative to the 
peak-to-peak period of the other "reference" file. The 
graphic display repeats the phase curve so that phase 
lags and leads can be noted 

mode to another occasionally occurred at higher 
movement frequencies, they too noted the presence of 
unstable regions in which the cat shifted from trotting 
to galloping and back again. Though the hand data as 
well as these findings on quadruped gait strongly 
suggest that changes in coordination may be ordered 
by changes in a single parameter, the neural processes 
underlying such motoric phase transitions are still 
poorly understood. As Grillner (1982, p. 224) notes for 
the case of quadruped gait transitions, the general 
conception is that there is a "switch mechanism" in 
which "coordinating fibers" serve to switch among 
hindlimb neural networks. But such coordinating 
fibers have yet to be identified neuroanatomically 
(Grillner, 1982) and their exact functional role in 
determining locomotor pattern remains to be 
explained. 

This problem of relating neuronal events to global 
patterns of behavior - in the present case abrupt 
macroscopic changes in the phasing of neuromuscular 
activities and changes in characteristic quantities such 
as frequency and amplitude - is somewhat reminiscent 
of a similar problem confronting physicists about 50 
years ago. After it was discovered that matter consists 
of atoms and after the properties of atoms were 
understood theoretically, it may have seemed straight- 
forward to derive the macroscopic properties of matter 
directly from the properties of the individual atoms. It 
turned out, however, that such a goal could not be 
reached immediately and it proved extremely fruitful 
to introduce macroscopic quantities for purposes of 
system description. Only later did it become possible to 
derive the equations governing the macroscopic 
quantities by means of a microscopic theory (for review 
and examples, see e.g., Wilson, 1979). It has been shown 
quite generally in the interdisciplinary field of synerge- 
tics (e.g., Haken, 1983) that in many cases the behavior 
of complex systems can be successfully modeled by 

means of a few macroscopic quantities in those situ- 
ations where the behavior of the system changes 
qualitatively. Such macroscopic observables are called 
"order parameters" following a term first introduced 
by Landau (1936) to describe the "degree of order" (cf. 
Ter Haar, 1965, p. 208) of matter as it undergoes 
changes in phase. In synergetics, however, which deals 
with cooperative phenomena in non-equilibrium, open 
systems, the concept of order parameter has added 
significance: not only is it created by the cooperation of 
the individual components of a complex system, but 
the order parameter in turn governs the behavior of 
these components (for many examples, see Haken, 
1975). Even in physical and chemical systems, finding 
the correct order parameter(s) is not always a simple 
matter. In the case of biological systems in general, and 
movement control and coordination in , particular, the 
strategic approach of synergetics allows some license 
in selecting order parameters, an issue that we turn to 
next. 

2 Initial Development of the Model: Order Parameters 
and the Potential Function 

To summarize, the main features of the experiments 
described briefly above are:0) the presence of only two 
stable phase (or "attractor") states between the hands 
(which one is observed is a function of how the system 
is prepared, i.e., an instruction to move the hands in the 
out-of-phase or in-phase mode); (ii)the abrupt tran- 
sition from one attractor state to the other at a critical 
cycling frequency; (iii) beyond the transition, only one 
mode (symmetrical in-phase) is observed; and 
(iv) when cycling frequency is reduced, the system stays 
in the symmetrical mode, i.e., it does not return to its 
initially prepared state - a result that suggests coex- 
istence of the basins of attraction for the symmetrical 
and antisymmetrical modes and the depletion of one of 
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them. Taken together, these results as well as other 
findings in the motor control literature support the 
hypothesis that phase is a relevant macroscopic (or 
"essential") parameter of certain movement patterns 3. 
For example, the internal phasing structure of activ- 
ities as widely varied as chewing, locomotion, hand- 
writing, and speech remains invariant across scalar 
changes in force or rate (Grillner, 1982; Kelso, 1981b; 
Schmidt, 1982; Tuller et al., 1982). Similarly, in the 
experiments described above, phase is preserved con- 
stant over a wide range of frequencies, even though the 
magnetitudes and durations of muscle activities and 
other kinematic variables change considerably. Only 
when frequency is scaled beyond a critical value does a 
phase shift occur. 

In the present paper it seems reasonable to propose 
phase as an order parameter for at least two reasons. 
First, unlike many other possible candidates, phase is 
an accurate reflection of the cooperativity among the 
components of the system. Thus, we can say, in a 
manner consistent with synergetics, that the configu- 
ration of the subsystems (in the present context defined 
as the individual hand motions) specifies their phase 
relation, and conversely, that the phase variable spec- 
ifies the spatiotemporal ordering of the subsystems. 
Second, it is phase that remains invariant across 
transformations in many motor activities that involve 
very different anatomical substrates. This highlights an 
important further feature of the order parameter 
concept, namely, that the order parameter (by hypo- 
thesis here, the relative phase) changes much more 
slowly than the variables describing the behavior of the 
individual components (e.g., velocities of each hand 
motion). 

Our first step in the development of the present 
model is to provide a mathematically accurate descrip- 
tion of the main qualitative features of the data. We 
therefore specify a potential function that corresponds 
to the layout of attractor states and how that layout is 
altered as a control parameter is changed. In a 
following section, we employ nonlinear oscillator 
theory to show how the model equations describing 
the potential function can be derived from the equa- 

3 The reader must be warned that the word "phase" in the 
context of this paper has two different meanings: 

1) "phase" as a temporal relationship whose precise defi- 
nition is given in (2.1)-(2.3). 

2) "phase" as a state of aggregation of matter (e.g. liquid or 
solid) or, more generally, different modes of behavior. Therefore, 
in physics, "phase transition" means transition from one state, 
e.g. fluid, to another one, e.g. solid. In synergetics, transitions 
between different dynamic states (e.g. behavioral modes) are also 
called phase transition. 

Since in the present paper the behavioral modes are charac- 
terized by definition 1), the notion "phase transition" is unique - 
in spite of the double meaning of "phase" 

I - X 1 X J 

Fig. 2. The displacements of x, and Xz of the finger tips of the left 
and right hand in the symmetrical (in-phase, homologous) mode 

tions of motion of each hand and a (nonlinear) 
coupling between them. 

For sake of clarity we introduce the elongations of 
the finger tips xl and Xz as shown in Fig. 2. In order to 
define the relative phase ~b we assume that the motion 
of the hands is more or less harmonic (see Fig. 1) so that 
we put 

x 1 = r t cos(cot + ~bt) , (2.1) 

X 2 = r 2 COS(cot + ~2), (2.2) 

where co is the basic frequency of the hand movement, 
while the amplitudes rt, r2 and the phases ~bl, ~b 2 are 
time dependent quantities whose time dependence is 
assumed to be much slower than that defined by the 
frequency co. The relative phase is defined by 

~ = ~ b z - ~ .  (2.3) 

In order to describe the change of phase we adopt basic 
ideas from synergetics. As shown in synergetics, in 
many cases the equations for order parameters are of 
the form 

= OV, (2.4) 

where V is the so-called potential function. In our 
search for a model we make a few rather obvious 
assumptions about V. Since ~b occurs under cosine or 
sine functions [cf. (2.1) and (2.2)] 4 the properties of the 
physical system must not change when ~b is replaced by 
~b+2n. Consequently, we shall postulate that the 
potential V is periodic: 

+ = (2.5)  

We furthermore introduce the assumption that both 
hands play a symmetric role 5. In such a case the 
behavior of the system must not depend on the way we 

4 This become obvious when we change the origin of time so 
that ~ot + ~b 1 =o9~. In this case xl = q  cos(e)r), 
x2 = r2 cos (o9~ + ~2 - ~1) 
5 Our model can easily be generalized to include asymmetries 
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Fig. 3. The potential V(2.7) for b=0 
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Fig. 4. The potential V (2.7) for a = 0 

label the right hand and the left hand. This means that 
V must remain unchanged when we exchange the 
indices 1 and 2 in Eq. (2.3). This in turn means that the 
potential V is symmetric: 

V(~b) = V ( -  ~b). (2.6) 

We assume that V obeys the conditions (2.5) and (2.6) 
in the simplest form which explains the above men- 
tioned experimental results. To this end we write Vas a 
superposition of two cosine functions: 

V = - a cos ~b- b cos 2~b. (2.7) 

As is known from synergetics, the behavior of the 
system obeying the Eq. (2.4) can be easily described by 
identifying ~b with the coordinate of a particle which 
moves in an overdamped fashion in the potential V. 

To illustrate this let us consider Fig. 3 where b is 
put equal to 0. There is only one stable equilibrium 
position, namely at q~ = 0. When we taken a = 0, b + 0, 
the potential function looks like the one shown in 
Fig. 4. 

Here we have two equivalent positions, namely at 
~b = 0 and q~ = rc (which is equivalent to ~b = - re). When 
we take the total superposition (2.7) but change the 
ratio b/a we run through a series of potential fields 
shown in Fig. 5. When we initially prepare the system 
in a state shown by the black ball and increase the 

frequency, and likewise assume that b/a decreases with 
increasing frequency we obtain a critical value coc 
where the ball falls to the lower minimum belonging to 
~=0.  

This means that the hand movement made a 
transition from the antisymmetric (~b = - ~  state) into 
the symmetric state with ~b = 0. The hand movement 
stays in that state when co is further increased. When we 
decrease co starting from high values, the system 
remains all the time in the ~b = 0 state even if co drops 
below coc. This "hysteresis" phenomenon is well known 
in many physical and biological systems. 

In order to study at which value of b/a the 
transition occurs, we seek the extrema of V which are 
defined by 

dV 
- -  = 0 .  ( 2 . 8 )  

Using (2.7), (2.8) reads: 

- a sin~b- 2b sin 2~b = 0. (2.9) 

The second term can be transformed by means of: 

sin 2~b = 2 sin~b cos ~b, (2.10) 

so that (2.9) can be cast into the form: 

- a sin~b- 4b sin~b cos~b = 0. (2.11) 
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b/a. The numbers refer to the ratio b/a 



One set of roots is given by: 

s i n ~ = 0 ,  (2.12) 

namely 

~b=0, ~b= _+~. (2.13) 

The other set of roots is given by: 

- a - 4 b  cos~b=0, (2.14) 

or, when we solve for cos~b, by: 

a 
cos~b- 4b" (2.15) 

This value of cos~b corresponds to the inner maxima of 
V. The transition occurs when these maxima vanish 
which is the case if (2.15) can no more be fulfilled by a 
real ~b. This happens provided: 

b > 1, (2.16) 

or 

Ibl < la[/4, (2.17) 

i.e., the transition occurs if Ibl drops below the critical 
value be= la[/4. On the other hand, we know from 
experiments that the amplitudes q ,  r2 decrease with 
increasing co. This suggests that b can be expressed by 
means of the amplitude r = r a = r z  and a critical 
amplitude rc so that we may write the potential 
function in the form: 

- a ( c o s ~ +  1 r(co) 2 V =  ~ T - 2  cos2~b), (2.18) 
\ 

where rc is defined as that value of r where the 
transition occurs. 

3 Further Development of the Model 

In the next step of our analysis we want to show how 
the model equations derived in the previous section 
can be derived from equations for the movements of 
the individual hands and a coupling between them. We 
write the corresponding equations in the form: 

Xl -I-fl (X1, "~1)= I12(XD X2), (3.1) 

x2 +f2(xz, x2) = 121(xl, x2). (3.2) 

The left hand sides describe the motion of the 
individual hands with amplitudes xl and x2, respec- 
tively, while the right hand sides describe the coupling. 
Of course, the coupling is achieved via the nervous 
system and in this way the Eqs. (3.1) and (3.2) describe a 
complex system composed of the mechanical motions 
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of the hands generated, in large part by neuromuscular 
input. It is our goal to derive a minimal model for the 
macroscopic observables which are now the ampli- 
tudes and phases of the hand motion. Since the motion 
is basically oscillatory, we need at least a second order 
differential equation so that the terms 21, 22 occur. 
With respect to the restoring and damping forces we 
have a certain repertoire at hand and in all likelihood 
the choice of f l  and f2 is not unique. Since the hand 
movement has a more or less stable amplitude the 
equations must be nonlinear. We study several differ- 
ent examples. The first is well known from the oper- 
ation of vacuum tube oscillators. Here, of course, we 
shall use only its mathematical properties. Let us 
consider the Van der Pol equation of the form: 

5~ + e(x a - r~) ~ + a x  = 0, (3.3) 

where 5, r 0 are adjustable, but then fixed parameters, 
while a serves as a control parameter. In order to solve 
this equation for not too high amplitudes and in order 
to cast it into a form convenient for our later purposes 
we put: 

x = A e  i~t + A *  e -  io~t (3.4) 

where o) 2 = a and the complex amplitude A can be time 
dependent. It is assumed, however, that its time 
dependence is much slower than that of e z~t. One can 
then perform two approximations well known in the 
theory of nonlinear oscillators (e.g. Haken, 1984). The 
"slowly varying amplitude approximation" means that 
we neglect terms A compared to terms coA. The 
"rotating wave approximation" means that we may 
neglect terms containing e 3i~t and e -  3io,~ compared to 
e i~t and e -i~ By means of these approximations (3.3) 
is transformed into: 

ei~ + ~(AIA[ 2 - Ar~))  = 0. (3.5) 

In the steady state the amplitude A is a constant and 
the only non trivial solution reads Ia12= rg. Thus the 
amplitude becomes frequency independent. 

In order to find a decrease of the amplitude with 
frequency we adopt a new model equation, namely: 

5~ + e(22 - co2 o r2o) 2c + a x  = 0. (3.6) 

Making again the rotating wave approximation and 
the slowly varying amplitude approximation and using 
the hypothesis (3.4) we readily obtain for (3.6): 

e i~'tico(2A + e(3AIZl 2 co2 _ Acoo 2 ro2)) = 0. (3.7) 

In the steady state where A = 0, (3.7) has the nontrivial 
solution 

cooro 
Ial = V 3'=-co" (3.8) 
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Thus the amplitude indeed drops with 09-1, giving us, 
therefore a model equation which describes both the 
oscillatory motions of the hand and a drop in ampli- 
tude with increasing 09. 

The experimental results suggest a superposition of 
a constant amplitude function [corresponding to 81 in 
Eq. (3.9)] and a function that decreases with 09 [corres- 
ponding to 82 in Eq. (3.9)]. That is, there is an intercept 
as well as a slope to the observed relationship between 
amplitude and frequency of hand movement. Such a 
behavior can be modelled by a superposition of (3.3) 
and (3.6): 

f / =  2 2 "2 2 2 �9 [81(xi - ro) + 82(xi - O9o r0)] x i  + a x i  . 

This leads in the steady state to: 

(3.9) 

[AI 2_  (el +8209o2)ro 2 
(81 + 382092 ) . (3.10) 

As we shall see, however, the main features of the phase 
transition can be modelled by choosing 3.6 as a basic 
equation. 

We now come to the central problem, namely to 
derive a suitable coupling between the two macro- 
scopic quantities, i.e. the amplitudes xl and x2. The 
simplest hypothesis would be a linear coupling of the 
form: 

112 = ~(x 1 - x2). (3.11) 

However, as we shall see below such a coupling will 
not lead to the required potential V for the relative 
phase. Rather we have to add a non l inear  coupling. 
Requiring that this coupling term has the same 
symmetry properties as (3.11) we are led to a coupling 
term of the following kind: 

I12 = ct(xl-x2) + f l ( x  I --X2) 3. (3.11a) 

A detailed analysis reveals that such a coupling 
term still lacks an important feature, namely, it does 
not produce the correct phase relation between the 
motion of the individual hands. We have to introduce 
the coupling term either via a time delay or by using 
time derivatives. We first study the coupling by a time 
delay. This can be achieved by averaging over past 
values of (3.11a) so that we can replace (3.11a) by: 

t 

I12= I 
- - 0 9  

[e(x 1 - x2)~ + f l ( x ,  - x2)~] e-  ~(t- ~)dz. (3.11 b) 

An equivalent formulation is obtained by the require- 
ment that 112 obeys the differential equation: 

i12+yl lz=~(xl-x2)+/~(xl-x2)  3. (3.11c) 

In order to facilitate the subsequent calculation we 
shall assume that 7 is much smaller than 09. This 
assumption is not all that crucial, however, since it 
does not change the basic structure of the equations. In 
order to proceed further we differentiate Eqs. (3.1) and 
(3.2) with respect to time. Making use again of the 
slowly varying amplitude approximation and the 
rotating wave approximation, Eq. (3.1) acquires the 
form 

- 0 9 2 ( 2 A 1  +e(3A 11Zlf092-a l  092r2)) 

=o:A1 + 3 f l A I I A l l  z + K 1 2 .  (3.12) 

The first two terms on the right hand side of (3.12) 
can be absorbed into the terms on the left hand side 
containing the factor e and do not alter qualitatively 
the behavior of the system. The term K12 specifies the 
coupling influence of oscillator 2 on oscillator 1, 
corresponding to the motions of the two hands. In the 
above mentioned approximation K12 reads: 

K 1 2  = - o~A2 - 3 f l (A  2 A~ + 2 IA112A2) 

+ 3fl(2A 1 ]A212 + A ~ A  2 ) -  3 f lA  2 [Az[ 2 . (3.13) 

We are now in a position to show how our model 
Eqs. (3.1), (3.2) with the specific choice (3.11b) allow us 
to derive the order parameter Eq. (2.4). To this end we 
make the hypothesis: 

A j  = r j e  icj, j = 1,2, (3.14) 

where rj and ~i may be time-dependent, which trans- 
forms (3.12) into: 

e,r 092 {2fl + 2i~1 rl + 8(309 2 rl 3 --  09~ r 2 rl)} 

- -~tr l  --  3f ir1] = K12 .  (3.15) 

K t 2  acquires the form: 

K 1  2 = - ~r2 e i~ '2-  3fl r2 rE( 2e~r + e 2ir -ir 

+ 3flrlr2(2e~g'l +e2 iO2- i4 ' l ) - -3 f l rae  ir . (3.16) 

Similarly the equation for the oscillator 2 contains the 
coupling term 

K 2 1  = - -  o:rl ei~'l - 3fl  r2 r l ( 2eiel + e2i4~2 -ick 1) 

+ 3f ir2 rE(2eir + e2ir -i4,2) _ 3flrale~,l. (3 .17)  

We divide Eq.(3.15) by --092re14~ and consider its 
imaginary part, 

- .q~r) e 'e~K12)-" , (3 .18)  ~1 = Im( 

where g(r) = 209 2 r 1. 
Applying an analogous procedure to oscillator 2 

and taking the difference of the two equations for ~ 1, ~2 
we obtain after a small intermediate calculation: 

= - ~ [(~r + 6fir  a) sin ~ - 3fir  a sin2~]. (3. 19) 
gtr)  



We have assumed r = r~ = r 2 and is well stabilized, so 
that r is practically time independent. If the assump- 
tion y ~ co is dropped, then 0(r) is replaced in Eq. (3.19). 
by 0(r) = 2(co 2 + y2)r. AS we shall see/~ must have a sign 
opposite to ~ in order to obtain agreement with 
experimental findings. Therefore we put: 

~=  - /q .  (3.20) 

Thus we are left with our final equation: 

q~ = - 9@r) [(~r - 6fir 3) sin~b + 3/qr 3 sin2~b], (3.21) 

which indeed has the required structure of the order 
parameter Eq. (2.4) with (2.7). However, we are now 
in a position to relate the coefficients a and b to the 
amplitude r. The phase transition takes place for: 

lal ~if 41b[>lal bistable 
[b l=4- ( i f  4[bl<la[ monostable 

(3.22) 

[cf. (3.16)]. Comparing the coefficients a and b with 
those occurring in (3.21), enables us to cast (3.22), into 
the form: 

3 -  2 1 6fir2 ) (3.23) 

or, after a little algebra, into 

2_ ~ (3.24) 
rc - -  1 ~ "  

We thus find that bistable operation, particularly in the 
antisymmetric mode, occurs when/.2 fulfills (3.24). In 
the other case, with decreased amplitude the system 
becomes monostable and operates in the symmetric 
mode. 

As mentioned above, there is still another possi- 
bility of defining Ki2 , namely by means of time 
derivatives. In the sense of a minimal model we choose: 

Kl2 = (xl - x2)" (e +/?(xl - X 2 ) 2 )  �9 (3.25) 

Again to the same degree of approximation as used in 
Eqs. (3.11)-(3.21) we obtain the equation for the phase: 

q~ = (a -k 2fir 2) sin~b - f ir  2 sin 2~b. (3.26) 

The critical amplitude is then given by: 

2 0~ 
r~ - ~ .  (3.27) 

In the transitions generally studied in synergetics, 
fluctuating forces play an important role. Extrapolat- 
ing to the present case, a transition, say from ~b = n to 
~b = 0 can be initiated only if fluctuating forces, F are 
present. To this end we enlarge the Eqs. (3.1) and (3.2) 
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to include such forces, so that these equations now 
read: 

5r + f l  (x j, :~i)= I i2(xt ,  x2)+ Fx (t), (3.28) 

x'2 + f2(x2, 22) = Iz i (x l ,  Xz) + F2(t) �9 (3.29) 

In the context of the present paper it suffices to assume 
F j, j =  1, 2 as a random small variable, which can be 
easily mimicked on a digital computer. At present, we 
cannot say much about the source of these fluctuations 
from existing experimental data. However, ongoing 
experimental work in which fine-wire electrodes are 
inserted into the finger muscles involved, is exploring 
their possible neuromuscular origin [see also Good- 
man and Kelso (1983) for evidence pertaining to the 
relationship between physiological tremor "fluc- 
tuations" and voluntary movement]. 

4 Numerical Results 

In this section we present some numerical results that 
correspond to the analytical treatment provided 
above. We solve the minimum model given by Eq. (3.6) 
along with the coupling (3.25) on a digital computer 
using a fourth order Runge-Kutta method. To test the 
stability of a stationary solution small random fluctu- 
ations of finite amplitude are introduced. The resulting 
simulation shown in Fig. 6 compares quite favorably 
with the experimental data (e.g. Fig. 1). In Fig. 6a the 
displacements xl, x2 are plotted over time and in 
Fig. 6b the corresponding phase difference between the 
oscillators is plotted for the same motions. As in the 
bimanual experiments, the coupled oscillation is pre- 
pared in the state ~ = n  and the frequency co is 
increased monotonously. A transition from the 
out-of-phase mode to the in-phase mode is observed, 
when co exceeds a critical value. However, the fre- 
quency of the oscillation changes rather quickly so that 
stationary oscillations are not reached. Thus the exact 
form of the curves depends strongly on the noise level 
and the rate of changing co. 

The steady state amplitudes for the in-phase mode 
and the out-of-phase mode are shown in Fig. 7. The 
unstable branch of the out-of-phase mode is shown by 
dotted lines. The co- 1 dependence of the amplitudes is 
quite clear. This feature is exhibited only by the 
simplified model equations and will change if Eq. (3.9) 
is used. As shown in Fig. 7 for co smaller than coc, the 
in-phase mode and the out-of-phase mode are both 
stable. Due to the coexistence of two basins of attrac- 
tion, the particular mode observed depends on the 
initial conditions, i.e. which coordinative state is 
prepared. 
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Fig. 6a and b. A numerical simulation of the phase 
transition in voluntary cyclical hand movement. In a 
the displacements of the oscillators and in b the 
corresponding phase difference between the 
oscillators is plotted over time. The parameters of the 
Eqs. (3.6) and (3.25) were fixed at e = 1, (D 02/'02 ~ 1,  

ct= -0.2, fl=0.2. From the left to the fight of the 
displays, co changes from (D = 1.17 to m = 3.05 
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Fig. 7. The steady state amplitudes of the in-phase mode (1) and 
the out-of-phase mode (2) are shown as a function of re. The other 
parameters are fixed at the same values as in Fig. 6. Stable 
branches of the oscillations are shown by the solid lines, while the 
unstable branch by the dotted line 

If one starts in the antisymmetric phase and 
increases co slowly, the oscillation remains in this mode 
until the solution becomes unstable. At this point a 
jump in amplitude occurs and the only stable station- 
ary solution revealed by the system corresponds to the 

in-phase mode. Such is the case when 09 is increased 
further. On the other hand, if co is decreased slowly the 
system stays within the basin of attraction of this 
solution even when co drops below co c. As we men- 
tioned earlier, this hysteresis phenomenon is typical for 
such bistable situations. To summarize, it is quite clear 
that the main features of the experimental data de- 
scribed at the beginning of Sect. 2 are captured by the 
present mathematical  formulation as illustrated by 
these numerical results. 

5 Concluding Remarks 

In this paper  we have introduced a minimal theoretical 
model that reproduces a number  of the observed facts. 
The hand movements  are described by two nonlinearly 
coupled oscillators which are self-sustained, i.e., not 
driven from the outside. The assumption of autonom- 
ous limit cycle oscillators is quite consistent with 
pertubation studies of two-handed cyclical move- 
ments, showing that  an unexpected pertubation to one 

hand does not disrupt the phasing relation be tween  the 
hands. The perturbed hand returns to its limit cycle 
almost immediately (see Kelso et al., 198 1; Yamanishi 
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et al., 1980). Similar results in very different prepar- 
ations (e.g. Cohen et al., 1982; Willis, 1980 for reviews) 
have also led to limit cycle models of neutral pattern 
generation. 

In the present model the frequency e) is defined as a 
control parameter via the coefficient, a, of the restoring 
force. The model describes not only the observed 
decrease in hand movement amplitudes with increas- 
ing frequency co, but, more importantly, the phase 
transition, i.e., the change of qualitative behavior from 
antisymmetric to symmetric hand movement. A rel- 
ation which automatically results from the equations is 
that the transition takes place at a critical frequency via 
the amplitudes. This prediction is now open to further 
experimental test. In future studies a number of 
phenomena known to acccompany phase transition in 
synergetic systems (e.g., critical slowing down; critical 
fluctuations) will also be analyzed. 

For  the moment, any speculation on the origin of 
the coupling between the two hands is certainly 
premature. One coupling may be established via the 
corpus callosum, the well-known band of fibers that 
joins the two hemispheres of the brain. On the other 
hand, recent experiments (Tuller and Kelso, 1984) with 
patients whose corpus callosum has been severed, 
effectively cutting off communication between the left 
and right cerebral hemisphere, show that even in this 
case, control of the two index fingers in cyclical tasks is 
not independent. When asked to follow two pacing 
lights whose phase was varied between synchrony and 
alternation, split-brain subjects produced predomi- 
nant synchrony or alternation even when paced at 
intermediate phase values. This bias in intermanual 
phase toward temporal symmetry is extremely power- 
ful (see e.g., Kelso et al., 1979; Yamanishi et al., 1980, 
for evidence in normal populations ) and suggests that 
the neural coupling for the voluntary hand move- 
ments may be established subcortically. 

In conclusion, although we have shown here how a 
transition from one modal configuration to another is 
possible in our model, it remains for further theoretical 
and experimental research to address how it is that 
only two stable modes emerge in the first place from a 
wealth of possibilities, i.e. how these particular co- 
operativities arise. What  is clear, however, from the 
present analysis, borne out by our numerical results, is 
the need to characterize the individual oscillators as 
nonlinear. But more important the coupling between 
oscillators must be nonlinear for the phase transition 
to occur. Although the present formulation clearly 
points to the important role of nonlinearities in certain 
basic motor behaviors (i.e. the frequency - amplitude 
relation in individual hand movements, modal tran- 
sitions between the hands), the physiological under- 
pinnings of such nonlinearities remain an open issue. 

On the other hand, though their physiological 
basis may be obscure at present, it is entirely 
reasonable to enquire how a complex neuromuscular 
system might exploit these nonlinearities. Why are 
they important attributes for a neural control system 
to possess? What  are they for? First, nonlinearity 
affords a stable coupling between the fundamental 
physical variables of space and time (i.e., the 
amplitude-frequency relation). In a linear system no 
such preferred coupling exists between these variables. 
Second, nonlinearity provides a means by which 
switching among coordinative states is possible 
(though other properties, e.g. fluctuations, play a key 
role also). In principle, there is no reason to limit this 
conclusion to the two phasing relations studied here. 
Thus, both of these attributes, we hypothesize, 
guarantee - in the present context - stability and 
flexibility of motor function. 
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