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In this chapter we show how beamforming, an analysis procedure for EEG and
MEG data sets that is becoming increasingly popular, can be used to obtain
insight about functional connectivity between brain regions. To this end we
introduce a parameterization of cortical surfaces based on output from the
software package Freesurfer and restrict the potential current sources to the
cortical gray matter. We create a data set assuming two brain areas being
active with different time dependencies of the activation. These activation
patterns are then reconstructed using beamforming procedures with a variety
of parameters demonstrating the dependencies of the reconstructed patters
of activity on these parameters. Finally, we apply two statistical techniques,
namely coherence and Granger causality to the data set, showing that the
data can be understood by assuming a one-directional connection between
the two active brain regions.

1 Introduction

In recent years an analysis procedure called beamforming has become increas-
ingly popular for the analysis of non-invasively recorded electrophysiological
data sets like EEG (electroencephalogram) and MEG (magnetoencephalo-
gram). The original ideas can be found in the engineering literature of the
1970’s [1], [2] (see also [3]) before they were applied to brain imaging roughly
25 years later [4], [5], [6]. The goal of beamforming is to use an array of sen-
sors and combine the signals recorded at individual sites to increase the sig-
nal/noise ratio or resolution, and to focus the entire array on a certain region
in space. The best known example for this technique is found in astronomy
where many radio telescopes that can be distributed all over the earth be-
have as a virtual single antenna. In brain imaging, arrays of up to about 250
electrodes (EEG) or SQuID (superconducting quantum interference device)
sensors (MEG) are used to measure the electric potential on the scalp surface
or the tiny magnetic fields produced by the electric currents flowing inside
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the brain, respectively. When beamforming is applied to electrophysiological
recordings the intention is to find the magnitudes, locations and directions of
these currents, in short, detect the neurally active regions of the brain un-
der a certain task. Various flavors of beamforming algorithms can be found
in the literature and we will discuss their similarities and differences later
in this chapter. In most applications beamformers are used to scan regions
of interest or the entire brain volume on a voxel by voxel basis [4], [5], [6].
More recently a slightly different approach has been developed which applies
anatomical constraints to the locations and directions of potential cortical
sources [7], [8]. Specifically, the locations of neural activity are restricted to
the cortical gray matter and the directions of the currents are assumed to
be perpendicular to the cortical surface. The reasons for these constraints on
location and direction are twofold: first, in the cortical gray matter pyramidal
cells form columns which are orthogonal to the folded surface and the current
flow is along these columns [9]. Second, the columns are bundled together to
form so-called macrocolumns of about 10° neurons acting coherently [10]. It
has been estimated that several tens of thousands of simultaneously active
cells are necessary to produce a signal that can be picked up by EEG or MEG
[11] and the only part of the brain where this is the case is the cortical gray
matter!.

We will proceed through this chapter in four steps: first, we will show how
MRI scans and the locations of sensors of a magnetometer used to record
MEG can be coregistered to a common coordinate system, and how the cor-
tical surfaces can be extracted and parameterized. Second, we will create a
dataset by assuming neural activity in two distinct regions along opposite
walls of the central sulcus and calculate the spatiotemporal patterns that
would be measured by the MEG system. Third, we will use this dataset and
apply beamformers to reconstruct the activity in order to show how certain
parameters affect the quality of performance. Finally, fourth, we will demon-
strate how the statistical measures known as coherence and Granger causality
allow us to identify functional connectivity between brain regions including
the direction of influence between different locations on the cortical surface.

2 Coregistration and Parameterization of Cortical
Surfaces

In order to combine the recordings from different imaging modalities it is
necessary to represent all data in a common coordinate system. This sounds
like a trivial prerequisite but the different manufacturers of EEG and MEG
recording systems all have their specific preferences and a commonly accepted

L An exception to this rule is the auditory brainstem response but in this case sev-
eral thousand events have to be averaged in order to obtain a decent signal /noise
ratio.
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standard is nowhere in sight. Moreover, radiologists like to display the pa-
tient’s left side on the right and vice versa, because this is the view they get
when they look at them face to face.

2.1 Coregistration

The coordinate system we will use here is based on three landmarks on the
human head that can easily be identified: the left and right pre-auricular
points and the nasion. OQur z-axis runs from the left to the right pre-auricular
point, the y-axis runs through the nasion and has an intersection with the
xr-axis at a right angle. The z-axis is orthogonal to the zy-plane through the
origin and points upwards to form a right-handed coordinate system. In a
first step we will transform a structural MRI scan and the locations of EEG
electrodes and MEG sensors into these coordinates.

Fig. 1. Left top: Locations of fiducial points in a T7 weighted fullhead MRI scan.
Left bottom: The transformed volume. Note that all three landmarks are now lo-
cated in the same axial slice, which represents the xy-plane. Right: The skin surface
reconstructed from the MRI with fiducials (rod dots), EEG electrode locations (blue
dots) and the surface defined by the locations of the MEG sensors (green).

Our starting point is a MRI volume of axial slices from a fullhead scan
with a voxel size of 1x1x1mm3. From this scan the 3d-coordinates of three
landmarks on the subject’s head, i.e. the nasion and the left and right pre-
auricular points, have to be found. This task is considerably simplified if
vitamin E capsules have been attached to these points prior to the scan so
that they can be easily identified as bright spots on a T} weighted scan due to
the short spin-lattice relaxation time in its C-Hs chains. The top row of fig. 1
(left) shows examples for such landmarks in an axial, coronal and sagittal
slice, respectively. In these images no two of the fiducials are located in the
same slice. Our goal is to find a transformation matrix that defines a rotation
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and shift of the volume in 3d-space such that all three landmarks end up in
the same axial slice which then defines the new xy-plane.

Fig. 2. Relation between the origin of the old coordinate system (o), the landmarks
(I, r and n) and the new z- and y-axis. The shaded triangle represents the vector
relation (3).

Figure 2 shows a sketch of the relation between the landmarks (r, I, n)
and the old origin (0). The new z-axis which runs from the left to the right
pre-auricular is given by I 4+ « (r — I). In the same way the xy-plane can be
expressed as I+ (r —1) 4+ 8 (n —1), where a, 8 and ~ are arbitrary real
numbers. The new y-axis is represented by the line in the xy-plane which is
orthogonal to the z-axis and runs through the nasion (n). All lines in the
xy-plane perpendicular to the z-axis fulfill the condition

=D+ -D}-{r-1}=0 (1)
which leads to a relation between v and (3, namely

SRS NS 0

Using (2), the expression for the xy-plane and the abbreviations r — 1 = 7y
and n — I = ny the boundary of the shaded triangle in fig. 2 can be expressed
as -
arl—i—ﬂ{nl—ﬁn}:nl (3)
representing a set of three linear equations for the three vector components,
and « and (3 can readily be calculated from any two of them. The origin of the
new coordinate system is then given by ! + ary, for instance. The directions

of the new axes can be written in the form
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Ty for the z-axis,
n; — "h{l‘(;l Ty for the y-axis, and (4)
X {n; — "hfl"’;‘ i} for the z-axis.

Once normalized, these vectors compose the rotation matrix R which defines
the new coordinate systems after the origin has been shifted to its new location
l + ary.

In general, a rotation in three dimensional space can be described by con-
secutive rotations around three axes and parameterized by the Euler angles
¢, 6 and 1. There are various ways to define these angles and the sequence
of rotations. We will use here a form that first rotates the volume around the
z-axis, then around the y-axis and finally around the z-axis. The correspond-
ing transformation matrix R is the product of the matrices that describe the
single rotations and reads explicitly

1 0 0 cosf 0 —sin 6 cos¢p sing 0
R=R;RyR.= |0 cosy siny 01 0 —sin¢ cos¢ 0
0 —siny cosy sinf 0 cos@ 0 0 1

(5)

sin v sin 6 cos ¢ — cos Y sin ¢ sin sin @ sin ¢ + cos 1 cos ¢ sin ) cos O
cos Y sin @ cos ¢ + sinpsin ¢ cos sin @ sin ¢ — sin cos ¢ cos Y cos O

( cos 6 cos ¢ cos 6sin ¢ —sin@ )

From the components R;; of the rotation matrix on the right hand side of
(5) we can determine the Euler angles as

¢ = arctan Rz f = arctan “fizsing 1 = arctan R (6)

11 Rio R33

These angles together with the shift of the origin can be used in standard
MRI software to create a new volume which has all three landmarks in the
slice that now represents the xy-plane as shown in the bottom row of fig. 1
(left).

Transforming the locations of electrodes or sensors into the the same coor-
dinate system is straightforward. First the new origin is calculated according
to (3) and the locations are shifted. Then a rotation with the normalized ma-
trix (4) is performed which completes the coregistration procedure between
the subject’s head, and the electrodes and sensors as shown in fig. 1 (right).

2.2 Parameterizing the Folded Brain Surfaces

The work of Dale, Sereno, Fischl and co-workers provided the scientific com-
munity with a powerful software tool known as Freesurfer [17], [18], [19].
Freesurfer creates tessellations of cortical surfaces like the boundary between
the gray and white matter or the boundary between the gray matter and the
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cerebral spinal fluid. The folded surfaces for each hemisphere can then be in-
flated by reducing the local curvature in an iterative process and eventually
mapped onto the surface of a sphere. This transformation is unique and invert-
ible, i.e. every point on the cortical surfaces corresponds to a single point on
the sphere and vice versa (a property mathematicians call an isomorphism).
Moreover, the neighborhood relation between points, i.e. the topology, is pre-
served. Such a one to one mapping is possible because the spherical and the
cortical surfaces are both singly connected and therefore topologically equiva-
lent. For each cortical hemisphere Freesurfer creates files containing the vertex
coordinates (of about 100,000 vertices) and the corresponding tessellation (of
about 200,000 triangles) for the gray-white matter boundary, the boundary
between the gray matter and the cerebral spinal fluid, the spherical surface,
and surfaces from inflation steps as desired. The tessellation for all of these
surfaces is the same and every point on the sphere has a unique partner on
all the other surfaces. This allows for a parameterization which maps the 3-
dimensional cartesian coordinates (x,y, ) of the vertices for each surface onto
two angles, the latitude ¢ and longitude ¢ on the sphere. In other words, for
each pair of angles (¢, @) there exists a triple of coordinates (x,y, z), which
corresponds to a point located on a cortical or inflated surface. An example
for the color coded z-, y- and z-coordinates of the gray-white matter bound-
ary is shown in fig. 3 (top row) with ¢ running along the horizontal axis
and ¥ running vertically. The middle row shows a representation of the same
quantities in polar coordinates where ¢ runs in the radial and ¢ in the az-
imuthal direction. Contour lines for constant values of z, y and z (indicated in
green) represent the surface in sagittal, coronal and axial slices, respectively,
as shown in the bottom row.

Such a parameterization in spherical coordinates also allows for defining
a coordinate system on the folded surfaces as shown in fig. 4. Such a coordi-
nate system is useful for visualization purposes and for comparisons between
different subjects [19], [20].

3 The Dataset

Throughout this chapter we will use a dataset that simulates an MEG ex-
periment where sources are active at two locations along the anterior and
posterior wall of the central sulcus pointing into a direction perpendicular to
the gray-white matter boundary as shown in fig. 5.

We assume the time courses of activity at these locations to be damped
oscillations plotted in the inserts, where the red curve is a time shifted version
of the time series plotted in blue. We further assume that we measure the gra-
dient of the radial component of the magnetic field at locations derived from
a CTF Omega-151 magnetometer system (VSM MedTech Ltd., Port Coquit-
lam, BC, Canada), by calculating the superposition of magnetic fields form
the individual six dipoles using the formula by Sarvas [15], which implicitly
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Fig. 3. Parameterization of the cortical surface. The z-, y- and z-coordinates of
the folded three dimensional surface are expressed as continuous functions of the
variables ¢ and ¢.

takes the contributions from the induced secondary currents in a spherical
conducting volume into account.

Ho
B(r) = m{F(r,rq) axrq—[(qxrq) r]VF(r,rq)} (7)
where r denotes the location where the field is measured and rq is the location
of the dipolar current source with direction q. The scalar function F(r,rq)
and its gradient VF(r,rq) are explicitly given by

F(r,rg) =d (rd+r*—rq-1)

)
¢ d- d- (

VE(r,rq) = {—+ == +2(d+r)}r —{d+2r+ —}rq

where the abbreviations d = r —rq, d =|d| and r =|r| have been used.
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Fig. 4. Inflation steps of the cortical surface into a sphere. Because of the topolog-
ical equivalence between the folded surfaces and the inflated sphere, the spherical
coordinate system can be mapped back onto the cortical surface.

Fig. 5. Sources at two locations along the anterior and posterior wall of the central
sulcus pointing into a direction perpendicular to the gray-white matter boundary.
The red and blue curves in the inserts represent the time course of neural activity
in these regions.

The signal that is picked up by a sensing coil is given by the scalar product
of the vector of the magnetic field and the normal vector of the coil area. A
first order gradient is simulated by subtracting the signal measured at the
outer coil from the signal picked up by the inner coil. In addition to the
deterministic activity from the sources in the two active regions in the central
sulcus two kinds of noise are added. First, to the sources themselves, and
second to 500 locations on the cortical surface that are randomly chosen at
each of the simulated 100 time steps. This way a total of 200 ’trials’ are
created. Plots of the average time series across trials in a topological layout
of the sensors as well as the spatial patterns at 20 points in time that would
be measured in the given scenario are shown in fig. 6 and fig. 7, respectively.
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Fig. 6. Time series of the simulated data at 144 spatial locations, assuming that
7 of the 151 sensors were broken. Sensors are shown in polar projections with the
nose on top.

4 Beamforming

4.1 The Basics

The basic idea behind beamforming in human brain research is to estimate
the time course ¢(t) of a current dipole at location r and direction d given
measurements of one or more components of the magnetic field along a surface
outside the head (MEG) or/and the electric potential on the scalp surface
(EEG). We assume that we have recordings from M different sensor locations
taken within a time span T and lumped together to a vector H(t) representing
the measured signal. The goal is to find a set of filter coeflicients w such that
the relation

a(t) = w- H(t) (9)

is fulfilled. The components of w are called the beamformer weights and are
determined by minimizing the source power P over a time span T while keep-
ing the projected signal constant w - L = 1, where L is the forward solution
or lead field [12] of a unit source located at r with direction d. The (average)
source power can be expressed as
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Fig. 7. Spatial patterns at 20 time points from top left to bottom right.

P

T T
%/0 a2 (t) dt:%/o {w-Ht) P dt=w-Cw (10)

where C' represents the correlation matrix Cj; = = fOTHi(t) H;j(t) dt.

The details on how to deal with such a minimization under constraints are
described in appendix A where the beamforming vector w is explicitly derived
as o

L
= 11
YTL oL (11)

and where it is also shown that the source power P can be written in the form
P=w-Cw={L-C'L}! (12)

As pointed out by Huang et al. [13] the expression for the beamformer
weights (11) and the global source power (12) are the same for all so-called
linearly constrained minimum variance beamformers (LCMV) that exist in
the literature. The differences between them are essentially threefold: First,
in the way two quantities called the global and time dependent neural activity
index are calculated. The global neural activation is a measure of activation
in brain areas over a certain time span. The time dependent neural activity
index is a time series representing local activations and is most meaningful at
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locations where the global index is large. The beamformers differ in the way
these quantities are normalized, an issue originating from the inhomogeneous
sensitivity of the beamformers with respect to depth and direction of the
sources. An extreme case is MEG which is virtually blind to dipoles with a
radial direction?.

The second difference is how the beamformers treat low dimensional sig-
nals, i.e. signals with a low noise level like averages, where the correlation
matrix C is singular and does not have an inverse. This problem can be dealt
with by either subspace projection or regularization. The former reduces the
dimensionality to the subspace defined by the eigenvectors of the correla-
tion matrix which correspond to eigenvalues that are significantly bigger than
zero. The latter is performed by adding a constant (representing uncorrelated
noise) to the diagonal of the correlation matrix while keeping its original di-
mension. Both techniques, as discussed in detail in the following section, lead
to matrices that are invertible. Explicit expressions for the global and time
dependent neural activity index for the different types of beamformers found
in the literature as distinguished by Huang et al. [13] are given in table 1.

Type Global activity index Time dependent activity index Ref.
I No=HEpa =2t na) = gty = pid= bl
M Ny=Gw Lo L g, = [eBOE _ Lo HOE ) [1q)
M N,=%gw— LCIL g, ()= HOP _ O HOE (g

_{rcTmym! _ Lx-"L _ w{H®)H®}"w _ H)*"w?
IV N, = Lz 7L T LC "L na(t) = > 7L ~— L.x—nL [13]

Table 1. Classification of the global neural activity index N, and the time-
dependent index nq(t) according to Huang et al. [13]. Here L represents the lead
field, H(t) is the signal measured at the sensor locations, w the beamforming filter,
C is the covariance matrix of the signal at the times of interest and X' the covariance
matrix of the noise. X' is either estimated from baseline data or chosen as a constant
times the identity matrix.

The third difference between the linearly constrained minimum variance
beamformers concerns the way the underlaying brain volume is scanned. There

2 Tt should be pointed out that this is not due to technological limitations and also
has nothing to do with the fact that the CTF system we are using here measures
mainly the radial component of the field. The reason is that a radial current in a
spherical conductor does not produce any magnetic field outside the sphere which
can be easily seen in the formula by Sarvas (7). As the direction of any radial
current q is parallel to the position vector rq, their vector product is equal to O,
which implies B(r) = 0.
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are essentially three procedures to estimate the neural activity inside the
brain. First there is vector beamforming: the volume is divided into voxels
of a certain size (typically cubes with a side length of a few millimeters)
and the global neural activity index for the center of each voxel is calculated
three times for unit sources pointing into the x-, y- and z-direction. This way
not only the activity is detected but also the direction of the source can be
found. There are drawbacks using this method particularly with MEG, which
is insensitive to radial currents, and therefore the estimate of a vector with
a strong radial component is prone to large errors. This problem with radial
components is avoided in the procedure introduced by Robinson and Vrba [6]
known in the literature as SAM (Synthetic Aperture Magnetometry). For this
procedure within each voxel only tangential dipole directions are scanned and
the direction showing the largest activity is used. It is this search in the tan-
gential plane, which is different for every voxel as opposed to the fixed three
components of the vector beamformers that has led some authors to call SAM
a nonlinear procedure [16]. The third possibility to define locations and direc-
tions of potential sources, which we will use for demonstrating beamformers’
performances later in this chapter, is to apply anatomical constraints where
the currents are restricted to the cortical gray matter with a direction perpen-
dicular to the gray-white matter boundary. This constraint is motivated by
the fact that gray matter is organized in macrocolumns of pyramidal cells that
act coherently to build assemblies of 10* — 10 simultaneously active neurons
which are necessary to produce a signal strong enough that it can be picked
up by MEG sensors or EEG electrodes. The disadvantage here is the need for
high-resolution structural MRIs from all subjects that are well coregistered
with the sensor or electrode locations.

4.2 Beamformer Performance: Regularization and Subspace
Expansion

Independent of which one of the beamformer types is used it is always neces-
sary to obtain the inverse of the covariance matrix® C. An inverse may not
exist or its computation can be numerically unstable if C' is close to singular
which happens if the signal space has a dimension smaller than the number of
sensors. In a covariance matrix calculated from averaged signals, for instance,
there are typically only a few eigenvalues that are significantly different from
zero and the matrix is at least numerically singular. As mentioned above there
exist two ways to work around this problem called regularization and subspace
projection.

3 The covariance matrix is the correlation matrix scaled such that the sum of all
its eigenvalues is equal to 1. As we give numerical values for the regularization
parameters this is a more appropriate representation than the correlation matrix,
since the values in the covariance matrix do not depend on the units the magnetic
field is measured in.
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In regularization a constant ¢ is added to the diagonal of the covariance
matrix in order to create a non-singular matrix. The effects of regularization
are shown in fig. 8 for both the global and time dependent neural activity
index calculated from the dataset described previously using a beamformer
of type III. In contrast to Huang et al.’s version given in the table, we will
not use the square in the numerator for the time dependent activity index in
order to preserve direction of current flow. The global activity index is color-
coded from red to yellow and thresholded at the same level for all four plots
at 30% of its maximum. The inserts show the time series (solid) representing
the time dependent activity index on top left in red for the active region in
the posterior wall of the central sulcus and on bottom right in blue for the
source in the anterior wall. The dashed lines in the inserts represent the ideal
response.

Fig. 8. Global neural activity index on the cortical surface for four different regu-
larizations calculated from a beamformer of type III. From left top to right bottom
the regularization parameter o is increased from 5x10~* to 0.5 by factors of 10. On
the top left the regularization parameter is too small and numerical instabilities dis-
tort the beamformer performance. In the bottom row o is too big, the beamformer
becomes less focussed or even blurred and activity from other regions leaks into the
locations of interest. Inserts show the time dependent index reconstructed at the
regions of maximum activity (solid) and the ideal curve (dashed). Especially on the
bottom right a phase shift between these curves can be seen that originates from
leakage of activity between the two regions due to a lack of focus.
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In the top left plot a regularization parameter of ¢ = 5x107% is used.
The time series for the time dependent activity index are in good agreement
with the ideal shape, but the global index shows activity in many regions
where no source is present. The determinant of the covariance matrix in this
case is too small so that numerical errors prevent the calculation of a correct
inverse. In the plot on the top right the regularization is ¢ = 5x10~3 and the
matrix is well regularized. The time series overlap well with the ideal curves
and the global activity index is focused and localized at the correct spots.
In the lower left o is 0.05. The spots of activity become slightly blurred and
the time series start to show a phase shift with respect to the ideal functions
indicating a superposition of the two original curves. These effects are even
more pronounced on the bottom right with o = 0.5, where over-regularization
is obvious: the activity is blurred over wide regions and the time dependent
index is clearly shifted, i.e. we obtain superpositions of the two time series.
In short, if the regularization parameter is too small numerical instabilities
distort the beamformer performance, if ¢ is too big the beamformer becomes
less focussed or even blurred and activity from other regions leaks into the
locations of interest. Unfortunately, o is not known upfront and needs to be
determined by trial and error.

The subspace projection is done by using the subspace defined by the
eigenvectors of the covariance matrix whose corresponding eigenvalues are
sufficiently different from zero. Subspace expansion of the type III beamformer
is shown in appendix A and the beamformer weights and the neural activity
indices with the proper normalizations turn out to be

N vz XN Ly(m2
W — Z {L \% } {Z {L A% } }71 V(k)
k=1 n=1

NG N
N n
N, = Znmflo v} (13)
N L.v(n)12
Yoot e
CH(t
na(t) = 10
|w|

where A and v(™) are the eigenvalues and eigenvectors of the covariance
matrix, respectively.

Figure 9 shows the effects of subspace projection when taking different
numbers of eigenvalues and eigenvectors into account. Specifically, starting at
the top left to bottom right these numbers are 4, 8, 12 and 50, respectively. The
global activity index is blurred if not enough dimensions are taken into account
and gets more focused as this number increases. On the other hand, if too
many dimensions are used the time dependent index becomes contaminated
by noise.
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Fig. 9. Global neural activity index on the cortical surface for four different subspace
dimensions calculated from a beamformer using (13). From top left to bottom right
the subspace dimensions are 4, 8, 12 and 50, respectively. The global activity index
is blurred if not enough dimensions are taken into account and gets more focused
as this number increases. On the other hand, if too many dimensions are used the
time dependent index becomes contaminated by noise.

5 Coherence and Granger Causality

Statistical measures have been used for a long time to study synchronization
and desynchronization in higher frequency bands in datasets from EEG/MEG
recordings (see e.g. [21]) and measurements of the local field potential from im-
planted electrodes [22]. Here we will establish coherence and Granger causality
obtained from the time dependent neural activity index of the two active re-
gions on the cortical surface as measures that allow for detecting connections
between different brain regions or functional brain connectivity in general.
We will briefly describe how these quantities are defined and calculated, and
refer the reader to the chapter by Kaminski (this volume) for more detailed
discussions on related topics.

5.1 Coherence

Coherence is calculated starting from two time series z(¢) and y(¢) and ob-
taining their Fourier transforms

X(w) = /0 Tx(t) e“tdt  and  Y(w)= /O Ty(t) et dt (14)



16 Armin Fuchs

which leads to their spectral density functions

1 1
Sex(W) = = [ X (W) |2 Syy(w) =m |Y(W)|2

T T (15)
S) = 3 XM (@) V() = Sye(e) = 4 V() X ()

From these functions the so-called squared coherence spectrum can be calcu-

lated as )
| Say(w) |
Sraz(w) Syy (w)

and we can define a global coherence as the integral of Cy,(w) across all
frequencies.

Coy(w) = (16)

5.2 Granger Causality

From the coherence between two signals we can conclude whether they have
an influence on each other. We cannot identify the direction, i.e. whether x
drives y or y drives x, or whether there is mutual feedback between the two.
A quantity which allows for such a distinction is a measure called Granger
causality, where the word ’causality’ in its name is a rather unlucky choice.
Given two time series 2(t) and y(t) we can never determine by any kind of
analysis alone whether there is a causal relation between them, let alone who
causes who. What Granger causality does allow to determine is whether the
knowledge of one of the time series enables us to make a better prediction
about the other one than would have been possible without that knowledge.

Granger causality is usually calculated from multivariate autoregressive
models. To this end we assume that we have two time series z; and y; sampled
at discrete? times ¢t. Now we can set up autoregressive models for z, and y,
i.e. express their values at times ¢ in terms of their past

p p
Ty = Z ag Ti—p + egx) Y = Z Ck Yk + egy) (17)
k=1 k=1

where we take p previous values of the time series into account to obtain a
prediction of x; and y;. The equations in (17) are models of order p and the
coefficients aj and c; have to be determined across all sequences in the time
series. The difference between the predicted and the actual values for each x;
and y; is given by the errors efﬁ”) and e@, respectively. Similarly we can set
up multivariate autoregressive models where z; does not only depend on its
own past but also on previous values of y; and vice versa

4 We assume discrete time steps for simplicity, for continuous time series an em-
bedding has to be determined, see Chen et al. [23] for details.
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p p
T = Z Ak Te— + bi ye—i + ng‘y) Yt = Z ChYr—k +dr g+ egym (18)
=1 =1

We now say that y has a Granger causal influence on x if including y in the
model for x on average improves the model, i.e. decreases the error

< eﬁ“"y) >

< e§"”)

<1 (19)
>

where < ... > denotes the expectation value.
There are different ways to quantify the Granger causal influence of one

time series onto another. One straightforward definition is evidently by means

of the errors

<™

<>

Gyoz =1— (20)
which is a number between zero and one with g,_., = 0 indicating that there
is no influence.

5.3 Application to the Dataset

We applied the coherence measure and Granger causality to data sets that
were constructed in the following way. A beamformer was separately applied
to the 200 trials of simulated MEG data. Then the time series from each
trial at the two active locations were extracted, the average time series was
subtracted from each of the realizations and concatenated for each of the two
regions. The time series corresponding to the red curve in fig. 5, we shall call
x(t), is a shifted version of the blue curve y(t), which can be interpreted as
originating from a one-directional coupling from the lower to the upper brain
region with the finite distance between them leading to a time delay. We can
vary the coupling strength between the two regions by gradually varying the
second time series from random noise to y(t). We therefore define a time series
ye(t) as

ye(t) = cy(t) + (1 — ¢) &(F) with 0<e<1 (21)

where £(t) represents gaussian white noise. Plots of coherence and Granger
causality as functions of coupling strength ¢ are shown in fig. 10. In the left
plot the coherence between the two time series z(t) and y.(t) increases with
increasing coupling strength c. On the right, the line with squares represents
the Granger causal influence g, ., of y.(t) on x(t) which also increases with
coupling ¢, whereas g,_., represented by the line with circles stays close to
zero independent of c. We can therefore conclude that there is a one-directional
connection between the two brain regions where the lower region feeds into
the upper but not vice versa.
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Fig. 10. Coherence (left) and Granger causality (right) as a function of the coupling
strength between the two active regions. On the right, squares indicate a feed from
the lower into the upper region whereas circles stand for a feed into the opposite
direction. We can conclude that there is a one-directional connection between the
two regions as the dashed line with circles stays close to zero for all couplings.

6 Conclusions and Outlook

Noninvasive recording of human brain activity has undergone a major change
during the last decades with the development of high-density electrode and
sensor grids in EEG and MEG, the introduction of MRI and functional MRI,
and the explosion in computational power and storage capacity, representing
one side of the coin: advances in technology. On the other side of this coin
is written: "What do we get from all this stuff and how do we make sense
of it?” How do we extract relevant information from a humongous tangled
mass of data. Even though "relevant information” is a subjective matter that
strongly depends on the specific questions one is interested in, relying on a
single technology is in most cases not a good idea. In this chapter we have
tried to show how different imaging technologies can be used to implement
anatomical constraints on potential sources whose time series can then be
identified from electrophysiological recordings and, moreover, give us insight
regarding the existence and nature of a connection between two brain areas.
There are other independent methods like Diffusion Tensor Imaging [24] or
Structural Equation Modeling of functional MRI data [25] that can be used
to probe connectivity, and only if different methods converge onto the same
results can we have confidence that we have found something that really exists.
In any case, there is no doubt that beamforming can become and probably will
become one of the pillars that a future understanding of brain connectivity
will be built on.
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A Minimizing the Source Power under Constraints

Here we show explicitly how the beamformer coefficients w and the source
power P as given in (12) can be derived. Our starting point is a signal H(t)
from EEG or MEG recordings where each of the M component H'(t) repre-
sents a time series from a single channel. Even though in practice these time
series will be sampled at a finite rate we will treat time here as a continuous
variable because the notation is less confusing that way. It is our goal to find
a set of coefficients wg such that the sensor array becomes most sensitive to
a current source at a certain location (z,y, z) and a certain direction (9, ¢)
which we will abbreviate by 8 = 0(x,y, 2,9, ¢). Applying the beamformer wg
to the signal H(t) we can write the global source power originating at 6 in
the form

Po= 4 [y dt{we-H(1))?

= & Jy dt S {w Hi(t))?
(22)

.1 (T ; ,
-S| HO PO

where Cj; represents the correlation matrix. Using C, the global source power
originating from 6 can now be written in the compact form

M M
szzzcijwéwZZWQ-Cwe (23)

i=1 j=1

The goal of finding a vector wg such that the sensor array becomes most
sensitive to a current source at 8 is achieved by minimizing the global power
from all locations and directions while keeping the signal originating at 6
constant. In other words

Py =wg-Cwg =Min with the constraint wg-Lg =1 (24)

where Lg is the forward solution or lead field from a unit current source
at 0. The constraint in (24) means that the components of wg cannot be
varied independently in order to find the minimum but only combinations for



20 Armin Fuchs

which the constraint is fulfilled are allowed. Without the constraint an obvious
solution for the minimum would be wg = 0, which is certainly not what we
are looking for, and it also violates the constraint.

The problem of finding the minimum under constraints of the form (24) is
well known in physics and engineering, and can be solved using the method
of Lagrange multipliers. The idea is to rewrite the constraint in the form

wg -Lg—1=0 (25)

where now the expression on the left hand side of (25) vanishes. It still vanishes
if we multiply it by a constant A, and it does not change anything if we add
it to the global power we want to minimize, because we are essentially adding
Zero

M M M
Po=> > Ciwyw)+A{D _ wyLy—1}=Min (26)
i=1 j=1 i=1

But now we can vary the components of wg independently and we find the
minimum by taking the derivative of Py with respect to wh and solve

0P,
[ E . i k
7w§ —QZ 101]4;1U9+AL9—0 (27)

for wg. If we rewrite (27) in matrix form

2Cwg = —ALg (28)
we find immediately
Wg = —%C_l Lo (29)

This solution still depends on the unknown Lagrange parameter A, which can,
however, be determined by inserting (29) into (25) leading to

{—% Cl'Lg}Lg=1 or A=-2{Lg-C 'Ly} ! (30)

By inserting (30) into (29) we finally obtain for the beamformer coefficients

C 'Ly
- 31
we Lg . C_l Lg ( )
and for the global source power
Pg :WQ'CWQZ{LQ'C_ng}_l (32)

As mentioned previously, if the signal space is low-dimensional as for av-
eraged signals for instance, the correlation matrix C' is singular and does not
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have an inverse. In this case a projection onto the relevant subspace can be
achieved by expanding the beamformer vector w and the lead field L into the
eigenvectors v(¥) of the correlation matrix that correspond to the N eigenval-
ues \(®) that are significantly bigger than zero®

N N
w = Z wy v and L= Z ™ (33)
n=1 n=1

Inserting (33) into (31) and (32) we obtain after straightforward calculations

¢ N 2 N o 2
_ k n —1 _ n —1
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