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1 Introduction

”Does old Scotty still make a living from finger wagging?” A question asked
by an Irish man who had known Scott Kelso since both were children. The
answer: ” Yes, and doing quite well, actually” triggered the much tougher ques-
tion: ”What can be studied there for half a life span?” Such was not possible
to respond in detail as we were at the airport in Miami and had to catch our
flights. But the question remains, in more scientific terms: why do we study
coordination dynamics? Why are not only psychologists and kinesiologists
but also theoretical physicists interested in finger wagging? Theorists appreci-
ate laws and first principles, the more fundamental, the better. Coordination
dynamics provides such laws. They are the basic laws for a quantitative de-
scription of phenomena that are observed when humans interact in a certain
way with themselves, with other humans and with their environment.

2 Elementary Coordination Dynamics

The most basic phenomenon in coordination dynamics is easy to demonstrate:
When humans move their index fingers in an anti-phase coordination pattern
(one finger flexes while the other extends) and the movement frequency is
increased, the movement spontaneously switches to in-phase (both fingers flex
and extend at the same time) at a certain critical rate . This does not mean
that the subjects could not move their fingers faster, say due to biomechanical
limitations, in fact they can but only in the in-phase pattern, not in anti-phase.
Why is that so? As with most of the 'why’ questions the answer is: we don’t
know. But then Sir Isaac Newton didn’t know ’why’ the apple falls or "why’
the moon moves around the earth, however he had figured out ’how’. So, how
does coordination work and how can we describe or model its phenomena
quantitatively?
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In the early 1980s Scott Kelso met Hermann Haken, a theoretical physi-
cist at the University of Stuttgart, Germany. Their collaboration led to a by
now seminal paper in 1985, where they published what became known as
the Haken-Kelso-Bunz or HKB model [7]. The model was worked out in the
spirit of synergetics [6], a general theory for systems that are far from ther-
mal equilibrium and undergo qualitative changes in their dynamical behavior
(so-called non-equilibrium phase transitions) when an external quantity (the
so-called control parameter) exceeds a critical threshold. Synergetics further
predicts that even though the systems themselves are complex (in our case
muscles, tendons, bones, joints, controlled by an even more complex system,
the brain), close to transition points they exhibit low-dimensional behavior
and their dynamics on a macroscopic scale can be described by a few collective
variables, the so-called order-parameters. In systems from physics, like fluids
or lasers, these order-parameters can be derived from a mesoscopic level where
field theoretical equations, in fluid dynamics the Navier-Stokes equations, are
known from basic laws of nature, here the conservation laws of energy and
momentum. The strategy for modeling the transition from anti-phase to in-
phase in human movement coordination had to be different as the laws guiding
coordination- or brain dynamics on the mesoscopic level are not known a priori
and cannot (yet?) be derived from basic principles. Therefore, the approach of
Haken, Kelso and Bunz was top-down rather than bottom-up, i.e. to first find
a description on the macroscopic, order-parameter level and then determine
what kind of lower level dynamics can lead to such a macroscopic behavior.

2.1 The Macroscopic Level: Relative Phase

The first step in a top-down approach for movement coordination consists
of determining one or a few quantities that represent the order-parameters
together with a dynamical system for these variables which is consistent with
the experimental observations, namely:

e At slow movement rates subjects can move their finger in either in-phase
or anti-phase;

e If a movement is initially in anti-phase and the movement rate is increased
subjects spontaneously switch to in-phase;

e If a movement is initially in in-phase and the movement rate is increased
or decreased no transitions are observed.

Translated into the language of dynamical systems we can state: the move-
ments of the single fingers are oscillations. Oscillations x(t) are described by
a closed trajectory (a limit cycle) in phase space with an amplitude r(¢) and
a phase ¢(t). The difference between an in-phase and an anti-phase move-
ment of two oscillators is captured by the the difference between their phases
d(t) = @1(t) — @a(t), the relative phase. Relative phase is 0 for an in-phase
movement and 7 or 180° for an anti-phase movement and became the most
important order-parameter of coordination dynamics.
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Now we can reformulate the experimental findings above for the dynamics
of the relative phase ¢:

e At slow movement rates the dynamics for ¢ has two stable fixed points at
¢ =0 and ¢ = 7 and the system is bistable ;

e At fast rates there is only one stable fixed point at ¢ = 0 and the system
is monostable ;

e Relative phase is a cyclic quantity and its dynamics must be periodic
modulo 27, i.e. expressed in terms of sine and cosine functions.

The simplest dynamical system that fulfills all these requirements is given by

¢ = —asing — 2bsin2¢ (1)

which can also be derived from a potential function

. dVv .
¢ = ~ with V = —a cos¢ — b cos 2¢ (2)
- 4,V - |V =1 v - vV -7 VT —7T ‘Vrr
AL AR D nlm, My, WY
A Te N[ e N[ e N e ) Te Y T
| \f | | / | Ji | ’\ ; | I‘ll ."I | | '|‘.‘ |
B | | L 5
&y 12 2 AT iyt iR
i i a if\ i R il |
! VR '/ e N
b Am A s s s Y
o Y Vi "‘uf
k=0 k=0.125 k=0.25 k=0.375 k=0.5 k=0.675
¢,(f)
r 2m
-9—*9—‘3_943_9_0_0_9 & O—o—B—6—6—0
s - rr
VT8 eoo06 600606000600
—0—8—0—90—0—0—8—80—90—0—0—8 0000500000000
C ! =
B I I e
—4 =TT
6668096 s 0588000
——0—0—0—0 0900000000000 000000000 _Eﬂ'

Fig. 1. Dynamical properties of (1) as a function of the control parameter k = b/a.
Potential function (a), phase space plot (b), and bifurcation diagram (c), where solid
and open circles indicate branches of stable and unstable fixed points, respectively.
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The control-parameter in this system is the ratio k = 3 which corresponds
to the movement rate. An increase in this ratio reflects a decrease in movement
rate and vice versa. The critical value where anti-phase movement is no longer
stable is given by k = g = 0.25. The dynamical properties of (1) are shown
in Fig. 1 with the potential function in the top row (a), a phase space plot
(¢ over ¢) in the middle row (b), and a bifurcation diagram in the bottom
row (c), where solid and open circles indicate branches of stable and unstable
fixed points, respectively. A transition occurs when the system is started in
anti-phase at values of k greater than 0.25 (corresponding to slow movements)
and k is decreased to a value smaller than 0.25 (corresponding to an increase
in movement rate beyond its critical value).

2.2 The Mesoscopic Level: Oscillators and their Coupling

As pointed out before, equation (1) describes coordination behavior on the
macroscopic level of the quite abstract order-parameter relative phase. As
shown already in the original HKB paper of 1985 [7] this equation can be
derived from a lower level by modeling the oscillator dynamics of the moving
fingers. In order to define a relative phase and derive (1), we need two oscil-
lators and a coupling function. What would be a good oscillator to describe
human limb movement? The easiest oscillating species, that is linear harmonic
oscillators, are not good candidates because they do not have stable limit cy-
cles. If a linear oscillation is perturbed, the system will switch to a new orbit.
In contrast, if a human limb movement is perturbed, the oscillation will relax
back to its original amplitude. We therefore need nonlinear terms in the oscil-
lator equations and as it turns out the most important ones for our purpose
are 224 (called a van-der-Pol term) and i* (known as the Rayleigh term).
Together this leads us to a system that has been termed hybrid oscillator and
reads explicitly

&+ ei + wla + yx?i + 622 =0 (3)
There are good reasons to pick this specific form. First there is symmetry. In
human limb movements the flexion phase is in good approximation a mirror
image of the extension phase. This means that the equation which describes
such movements must be invariant if we substitute x by —z, reflecting a point
symmetry with respect to the origin in phase space. This constraint does not
allow any quadratic terms because they would violate the required invariance
or break the symmetry. The second reason stems from two experimental find-
ings. The amplitude of a moving limb decreases linearly with frequency as has
been shown by Kay, Saltzman and Kelso [13] and the phase portraits of limb
movements are almost circular.

To couple two oscillators of the form (3) such that their relative phase
follows the dynamics described by (1) is the true challenge. We can think of
coupled oscillators as two swinging pendulums connected by a spring. The
force exerted by the spring onto the pendulums is then proportional to the
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difference in their locations x1 (t) —z2(t). It is easy to show that such a coupling
between two hybrid oscillators does not lead to a dynamics for the relative
phase of the form (1). Closer investigation reveals that there are several ways
that lead to the correct phase relation. The arguably easiest form of a coupling,
which was also given in the original HKB paper, consists of a combination of
differences in the locations and velocities of the individual components. In
this case the complete system of coupled oscillators that leads to the phase
relation (1) reads

27+ €exq + w2x1 + 'yxfi‘l + (5$‘;’ = (i’:l — i‘z){a + ﬁ(.’lﬁl — .’EQ)Q} (4)

.’EUQ + 65.82 + w2m2 + ’Yl’g(ﬂg + 5CE§ = (.’EQ — a'cl){a + ﬂ(l’z — 1'1)2}

The parameters a and b in (1) can now be expressed in terms of parameters
in the oscillators and the coupling terms in (4) and read explicitly

2 L o : 2 —€
a=—-a—208r b—Qﬁr with »r =305 (5)
where r represents the amplitude and w the frequency of the individual hybrid
oscillators.
A numerical simulation of the system of coupled oscillators (4) is shown
in Fig. 2. When the system is started in anti-phase and the frequency w
is continuously increased a switch to in-phase occurs at the critical value w,.
(top row). No transition occurs when the the oscillators are started in in-phase
(bottom row).

Fig. 2. Numerical simulations of (4) with initial conditions in anti-phase (top) and
in-phase (bottom). The frequency is continuously increased from w = 1.4 on the
left to w = 2.1 on the right. Switching at a critical value of w. occurs only in the
anti-phase case (other parameters e = —0.7, y =6 =1, a = —0.2, 8 = 0.5).

It is important to be aware of the fact that there are other ways to in-
troduce a coupling between two hybrid oscillators that leads to the right
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dynamics for the relative phase. In general, the bottom-up approach from
the mesoscopic to the macroscopic level of description of complex systems is
unique, the top-down approach is not. However, knowledge of the macroscopic
behavior of a system drastically reduces the possible models on the mesoscopic
level and also provides important guidance for the design of experiments.

3 Breaking the Symmetry: Aw

The most striking feature of the Haken-Kelso-Bunz model is its validity when
we go beyond the simple symmetric cases discussed above. What does the
model predict when the two oscillators have different eigenfrequencies wy and
w2 ? In human movements such a scenario can be realized by coordinating an
arm and a leg, for instance. If the eigenfrequencies are not too different the
coupling between the oscillators will force them into 1:1 frequency locking .
There are regions in parameter space where the coupled system can perform
in-phase or anti-phase oscillations at a common frequency 2. As before, start-
ing from the system of coupled oscillators that corresponds to (4) but now
with eigenfrequencies w; and wo, the dynamics of the relative phase can be de-
rived. As it turns out, the phase relation is the same as (1) with an additional
constant on the right hand side commonly called the symmetry breaking term
Aw, which can be expressed in terms of the two eigenfrequencies of the single
oscillators wi and wy and the common frequency {2 of the coupled system

. w? — w3

¢ = Aw — a sin ¢ — 2b sin 2¢ with Aw:%%wl—wg (6)
A finite value for the constant Aw in (6) leads to qualitative changes in the
dynamical behavior of the relative phase. First, the fixed points of (6) are
not at ¢ = 0 and ¢ = m anymore, but are given by the solution of the
transcendental equation

Aw —asing — 2bsin2¢ = Aw —sin¢ {a — 4b cosp} =0 (7)

For small values of Aw these fixed points are shifted proportional to Aw and
can be written as

Aw
8
a—4b ®

The different eigenfrequencies not only lead to a shift of the fixed points,
but also break the cyclic symmetry, i.e., the points ¢ = 0 and ¢ = 27 are
not the same anymore. The transitions that occur when the movement rate
exceeds its critical value now have a preferred direction towards either 0 or
27 depending on the sign of Aw.

The potential as a function of k¥ and Aw is shown in Fig. 3. The symmetry
breaking term leads to an additional slope in the HKB potential which desta-
bilizes the fixed points at smaller k£ values as compared to the symmetric case.

¢(0) — and ¢(Tr) -1 —
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Fig. 3. The potential as a function of k =b/a and § = Aw.

With decreasing k and increasing Aw first the fixed points at ¢ = +7 disap-
pear and finally also the fixed point at ¢ = 0, which corresponds to in-phase
movement, becomes unstable. At this point no fixed phase relation between
the two oscillators exists anymore and a phenomenon known as phase wrap-
ping occurs. Details of the behavior of relative phase are shown in Fig. 4 where
¢ is plotted as a function of time. Aw is kept at 1.5 and k is decreased from
an initial value of 1.5 by 0.1 at each of the vertical lines. First the systems
settles in anti-phase but with decreasing k the fixed points drift away from
¢ = +m. At a first critical value k. = 1 the anti-phase movement becomes
unstable and a switch to in-phase takes place. The new stable relative phase
has shifted away from ¢ = 0 and again shows a drift. As k decreases further
a second critical value is reached where the in-phase movement becomes un-
stable and the relative phase starts wrapping. However, reminiscence of the
in-phase fixed point can still be seen in this parameter region in form of a
shallower slope around ¢ = 0. As the movement rate increases further (with
k decreasing) the curve develops more and more towards a straight line.

4 Beyond the HKB Model

Beyond the classic bimanual rhythmic coordination paradigm, Scott Kelso and
his colleagues explored various extensions of this task. Or better: the bimanual



8 Armin Fuchs and Viktor Jirsa

" [T
i V107,

17
VA7,

Fig. 4. Fixed point drift with decreasing k for a finite value of Aw. A switch from
anti-phase to in-phase takes place at a first critical k. and beyond a second critical
value phase wrapping occurs.

coordination paradigm was used as an experimental window to address issues
in learning, sensorimotor coordination, attention, and many other areas. Here
we wish to illustrate two of these extensions.

4.1 On Sensorimotor Coordination

Experimental movement paradigms are very rarely independent of environ-
mental influences. If they are, they are referred to as ’self-paced’. In most
cases though, we deal with 'paced’ movements, i.e. an external stimulus is
delivered to the subject. This stimulus prescribes a pace at which the sub-
jects should perform the finger movements. But in reality the stimulus does
much more: it changes the stability and the variability of the relative phase
of the movement; it also changes the variability of the target point (called
anchoring ) and the variability of the movement amplitude. In short, it cou-
ples the environment to the perception-action system. Kelso and colleagues
investigated the role of environmental information in the dynamics of biman-
ual coordination. A central finding that emerged from this study was that
external information may serve to stabilize states that would otherwise have
switched to more stable modes of coordination. Jirsa et al. [8] accounted for
this effect by coupling the external information parametrically to a set of limit
cycle oscillators. The main idea elucidated by the above studies is that percep-
tion and action, environmental information and the dynamics of movement,
are inextricably linked. This linkage, or coupling, has been shown to be of
parametric nature (mathematically speaking: multiplicative coupling). In the
following, we summarize the properties of this type of coupling and point to
some of its implications.

The HKB model does not account for the presence of the metronome and
in its original form can be described as a model for the intrinsic dynamics
of the system. Recent experiments by Fink et al. [4] and Byblow et al. [3]
have established that the metronome can modify the trajectories of move-
ment. Further, Fink et al. demonstrated that the presence of the metronome
causes not only local changes in the trajectory of movement but also intro-
duces global effects to the dynamics, such as a shift of the critical frequency at
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which a phase transition from the anti-phase to the in-phase mode of coordi-
nation takes place. In light of these experiments it becomes crucial to include
the metronome into (4). The HKB model correctly reproduces a number of
experimentally observed phenomena including phase transitions and hystere-
sis [7], critical fluctuations [16] and critical slowing down [22] among others.
Hence, it is prudent to retain the HKB model at the core of other models that
include environmental influences in a description of the dynamics of uniman-
ual and bimanual coordination. For the latter, this was achieved by Schoner
et al. [21] and Jirsa et al. [8]. Schoner et al. used an additive linear driving
term to describe the effect of the metronome. The environmental information
was introduced as an additional force acting on the order parameter dynamics
attracting ¢ to the phase of the metronome. In contrast to account for the re-
sults of Fink, et al.’s recent experiments, Jirsa et al. used a parametric driving
term to describe the effect of the metronome. In the limit of negligible cou-
pling to the metronome both models reduce to the original HKB equations.
Using equations of motion proposed by Jirsa et al., the coupling functions
(right hand side of (4)) become

(i1 — @9){a + By — 12)*} + exy cos 2t ()
(iy — 1) {a+ By — 12)*} + exy cos 2t

where the first terms denote the HKB coupling, (2 is the frequency at which
the metronome is presented and € is the strength of the parametric coupling.

In contrast to a linear driving or coupling, the multiplicative coupling can
operate at multiple frequency ratios. In other words, such coupling allows for
the stabilization of movement-stimulus frequency ratios 1:1, 1:2, 3:2, and oth-
ers. Such is essential to allow for a maximum of flexibility for environment-
subject (or agent) coupling and has been followed up by various other re-
searchers [14, 2]. The multifrequency coupling regimes are illustrated in Fig. 5.
In order to see frequency and phase locking in the experiment it is necessary
that the Arnol’d tongue structures are wide enough so that the system does
not fall into a qualitatively different solution due to small perturbations that
are present in any biological system. The two broadest Arnol’d tongues corre-
spond to the 1:1 and 1:2 modes of coordination and there are no other stable
coordination modes in between.

Beyond flexibility in the frequency domain, multiplicative coupling also
provides for a differential stabilization in the time domain. Such is clearly
illustrated in Fig. 6, where phase flows obtained from computational simula-
tions of the HKB model under parametric stimulation are shown. In particular,
on the left, a situation is shown where only one stimulus per movement period
is provided (single-metronome). Here the driving frequency is at the center
of the 1:1 Arnol’d tongue (1.2 Hz). The points of peak flexion and extension
are marked in the figure. Clearly, the trajectory shows lower variability at
peak flexion in comparison to peak extension. This effect can be attributed
to the presence of a stimulus at peak flexion which is absent at the opposite
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Fig. 5. Stability regions of parametric coupling are referred to as Arnol’d tongues
and are plotted in light gray.

reversal point. On the right, the figure shows the effect of the stimulus on the
trajectories of motion for the double metronome condition at a frequency at
the center of the 1:2 Arnol’d tongue. Here, unlike in the previous case on the
left of the figure, the trajectories are symmetric in phase space. In the double
metronome condition, the environmental stimulus occurs at both peak flexion
and peak extension. Hence, the trajectories at the two reversal points show
similar variability. Figure 7 shows the corresponding situation for single- and
double-metronome for real human data. Clearly, the same differences in the
variability of the phase flows are observed, indicating differential stability in
the time domain.

Despite the effect of local stabilization in the time domain, or better, in
phase space, the following global consequence of multiplicative coupling is even
more intriguing. It turns out that bimanual coordination under the double
metronome stimulation is more stable than in the single metronome condition.
This is reflected by a larger critical transition frequency and reduced variance
of the relative phase between the left and right hand (and not between hand
and stimulus!).We consider the coordination pattern of both hands (for in-
stance, the in-phase or anti-phase pattern) as a global characteristic, since
various information on both effector movements is needed, whereas a point
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Fig. 6. Phase space trajectories when one stimulus (left) or two stimuli (right) are
provided per movement cycle. Data are obtained from simulations.
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Fig. 7. Experimentally obtained phase space trajectories when one stimulus (left)
or two stimuli (right) are provided per movement cycle.

(and its trajectory variability) in the phase space of one effector (such as maxi-
mum flexion of the left hand) does not require this information. Hence, can we
naively infer that additional information locally in the phase space stabilizes
the global coordination pattern? Probably not. However, it seems safe to say
that there exist local manipulations of phase space trajectories, which allow
to control certain aspects of the entire movement system. Since a phase space
trajectory is an entity which characterizes the dynamics of the movement, one
could rephrase the former statement such as ”if you know when and where
to stimulate the end effector, then you control the whole system”. The diffi-
cult part is the "where” and ”"when” for complex movements. For bimanual
rhythmic coordination, Kelso and colleagues answered that question.
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4.2 On Non-rhythmic Coordination

Often the question has been raised (repeatedly also by the current authors
themselves), why are bimanual rhythmic movements interesting? The answer
is that they are not, at least not from the perspective of real world applications.
Per se these movements are quite limited. However, the bimanual rhythmic
coordination paradigm has served as a beautiful entry point to probe the func-
tioning of the nervous system. Still, this point taken, what do we learn about
coordination in real world problems? In 2005, Jirsa and Kelso [12] extended
the applicability of dynamic system theory to a wider range of movements,
including discrete and continuous movements. The power of their approach
lies in the generality of phase flows. All time-continuous and deterministic dy-
namics must be captured by the phase flows in phase space. Such is not just
another model, but actually a theorem underlying the temporal evolution of
dynamical systems. Furthermore, the topology of the phase flows qualifies as a
candidate invariant as shown by various theorems in the theory of dynamical
systems!. Hence, two dynamical systems (or in this context: movement sys-
tems) are different if, and only if, their phase space topologies are different.
If the topologies are not different, then a transformation exists that allows
to map one system upon the other. Hence, the systems are not really dif-
ferent. This insight provides us with a beautiful approach to classify human
movements on the phenomenological level, i.e. without making reference to
the underlying neural substrate. However, such shall not be the focus of our
discussion here (instead, see Huys et al. (this volume) for a discussion of phase
space topologies in the context of timing and Sternad (this volume) for a dis-
cussion of the discrete vs. rhythmic movement debate). Rather we assume the
existence of phase flows (and leave it to the cited authors to dwell on these
issues) and ask the question, how does the HKB paradigm contribute to the
discrete-rhythmic movement debate? Or equivalently, does the HKB coupling
extend to non-rhythmic movements and hence coordination? Kelso and col-
leagues [11, 12] went forward and addressed this question theoretically. First
of all, thythmic movements are limited to closed (in the ideal case circular)
structures in phase space as illustrated in Fig. 8. The in-phase movement then
corresponds to a motion where the coordinates (position u and velocity v) of
both effectors (1 and 2) coincide (see lower row in Fig. 8) in phase space in-
dicated here by x and y on the axes. The anti-phase movement corresponds
to the situation when the two effectors assume the maximum distance in the
alloted space (that is the circle) as shown in the upper row of Fig. 8.

Since these two states are both stable (flows convergent to the particular
state) below a critical frequency, then, when following the line along the circle
and separating the two effectors, (u,v), there must be a point where the flow

! This statement is precise for two degrees of freedom. In higher dimensions,
one may identify cases where the situation is less clear (such as low- or high-
dimensional deterministic chaos). However, it is equally unclear and questionable
if these special cases will ever be of any relevance for human movements.
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switches its direction. This point on the circle identifies the maximum diver-
gence in the coordination of the two effectors. If the HKB coupling is removed,
the entire circle consists of neutral points only, that is the flow along the cir-
cle is zero, or put differently once again, any phase relation is allowed. Hence,
Kelso and colleagues put forward that the nature and function of a coupling
is to alter the existing flows in phase space in a meaningful manner [12]. This
may be true for cognitive systems [11], but in particular for the movement
system. If true, then such shall be true for arbitrary movements also (assum-
ing that the nervous system does not adapt its couplings when switching from
one movement type to another). Following this line of thought, Kelso and
colleagues [12] implemented the HKB coupling in numerical simulations of ar-
bitrary movements. The latter are characterized by not being constrained to
the circle as in rhythmic movements (Fig. 8), but may explore a much larger
phase space. The findings of these simulations are summarized in Fig. 9.
Essentially the convergence and divergence hypothesis translates to accel-
eration and deceleration phenomena of individual effectors in arbitrary but
coordinated movement tasks. More specifically, when two discrete movements
are executed bimanually (first with the one effector, then with the other) fol-
lowing two stimuli, then the movement time of the effectors will be influenced
by the HKB coupling. Up to a certain maximal inter-stimulus interval (ISI)
the two movement trajectories will converge in phase space. Beyond the crit-
ical ISI, the two movement trajectories will diverge. Translating this effect of
convergence and divergence to more common measures in movement sciences,
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Fig. 9. Mean time difference of the two effectors (upper graphs) and its variance
(lower graphs) are plotted as a function of the inter-stimulus interval. The time
units are in msec. The dashed lines refer to the uncoupled situation, the solid lines
to the coupled situation. The variance is not plotted on the same scale as the time
difference graphs. The maximum variance is about 800msec? at an inter-stimulus
interval of approximately 130msec.

we obtain the difference in movement time as illustrated in Fig. 9. This effect
is a clear prediction — based upon the HKB coupling — within the domain of
discrete movements and remains to be tested experimentally. In any case, the
development of the convergence-divergence hypothesis of couplings illustrates
beautifully how the HKB paradigm accomplishes in enriching other domains
within movement sciences, which are at first sight beyond its reach.

5 Neural Correlates of Coordination

Starting in the early 1990s a series of experiments have been conducted using
noninvasive brain imaging techniques to identify the regions and networks in
the brain that are activated when humans perform coordination tasks. Espe-
cially, the syncopation-synchronization paradigm (see below) has been studied
using electroencephalography (EEG), magnetoencephalography (MEG) and
functional magnetic resonance imaging (fMRI). These technologies are sensi-
tive to different quantities and provide complementary aspects about infor-
mation processing inside the brain. EEG and MEG reflect the electric neural
activity with a high temporal resolution of milliseconds, whereas fMRI is a
measure of the metabolism of cell clusters but provides true 3-dimensional
information on a spatial scale of millimeters.
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5.1 MEG

In several experiments MEG was used to record the magnetic field originating
from neural activity while subjects performed coordination tasks [5, 17]. We
will restrict ourselves here to results involving the syncopation-synchronization
paradigm [15]. In this experimental setup a single limb (finger) is moved such
that peek flexion occurs between the beats of an external metronome, i.e. in
a syncopated fashion. When the metronome frequency is increased a critical
value is reached where the subjects switch spontaneously to a movement where
peek flexion occurs on the beat, i.e. in synchronization with the metronome.

While subjects performed the task, both their finger movements and neu-
ral activity was recorded. The movement profile was detected as pressure
changes in a small air cushion connected to a transducer outside the mag-
netically shielded room that housed the MEG device. For brain recordings
a fullhead magnetometer with about 150 SQuID (Superconducting Quantum
Interference Device) sensors was used to measure the radial component of the
magnetic field originating from tiny currents reflecting neural activity inside

the brain.
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Fig. 10. Global signal power changes from a bilateral pattern at low coordination
rates to a pattern with only a single maximum over the contralateral hemisphere
at fast rates. There is no significant difference between the conditions (note that at
high rates the subjects have switched to synchronization).
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Fig. 11. Spatial distribution of activity synchronization minus syncopation in the (-
band for different movement rates. All differences are positive, indicating a stronger
(B-desynchronization during syncopation. Interestingly, even after the switch to syn-
chronization has occurred in the syncopation condition there is still a significant
difference to [-activity when the initial coordination pattern was synchronization.
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The main findings from these experiments include:

1. At low coordination rates the strongest signal power is found bilaterally
in sensors over auditory and sensorimotor cortices. At high movement
rates, where subjects can only synchronize, the activity over the ipsilateral
hemisphere with respect to the finger movements disappears (Fig. 10).

2. In channels over the contralateral sensorimotor areas the spectrum com-
ponent switches from the coordination frequency to its first harmonic [17].

3. The phase of the Fourier component corresponding to the coordination
frequency in these channels undergoes a shift by 180° at the point where
the movement undergoes its transition from anti-phase to in-phase.

4. The spatial pattern of the dominating mode from a principal component
analysis corresponds to a pattern that reflects auditory activation for syn-
copation at low movement rates, whereas after the switch to synchroniza-
tion the dominating pattern reflects sensorimotor activity.

5. The power in the S-band (15-30Hz) is significantly larger during synchro-
nization compared to syncopation, or in other words, 8-desynchronization
is larger during syncopation than synchronization (Fig. 11).

5.2 fMRI

In recent years functional MRI has become widely available and the brain
imaging technology of choice for many neuroscientists. The fMRI signal is
based on the change in the magnetic properties of the hemoglobin molecules,
the oxygen carrier in the blood. When oxygen is released to a cell oxyhe-
moglobin, which is diamagnetic, is transformed into deoxyhemoglobin, a para-
magnetic molecule. The two forms interact differently with the spins in the
regions where the oxygen release takes place, which leads to a detectable
change in the magnetic resonance signal intensity. Therefore, fMRI is a not a
direct measure of neural activity but of metabolism. Nevertheless, it provides
a spatially high resolution real volume measure of the brain regions that are
active when certain tasks are performed. This information complements the
knowledge gained from technologies with high temporal resolution like MEG
and EEG. Moreover, fMRI allows for detecting sub-cortical activity that can-
not be picked up by the electrophysiological technologies.

Straightforward comparison of brain regions that are active when subjects
performed syncopated and synchronized timing patterns revealed both simi-
larities and differences [18]. When compared to rest, both coordination types
trigged a larger fMRI signal in auditory cortices, the contralateral sensori-
motor areas, the premotor and supplemental motor areas and the (primarily
ipsilateral) cerebellum as shown in fig. 12. During syncopated movement, nev-
ertheless, not only was activity in these brain regions increased as compared
to synchronization, but also an additional network of areas including the basal
ganglia, and prefrontal and temporal association cortices became active. Inter-
estingly, there was not a single region where the activity during syncopation
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Fig. 12. Active brain areas during synchronization (13‘E row), syncopation (2nd

row) as well as the difference in activation between the two conditions (3rd row).

was smaller than in synchronization. When compared to a control condition
where the subjects performed selfpaced movements at about the same rate
activation in the cerebellum turned out to be increased for syncopation but
decreased for synchronization.

Taken together these results led to the conclusion that the synchroniza-
tion timing pattern can be carried out relatively automatically as a sequence,
whereas the syncopation pattern requires planning, initiating, monitoring and
execution of each movement cycle individually.

5.3 Modeling of Neural Activity

The experimental findings from the MEG experiments summarized above were
used by Jirsa and Haken [9, 10] to formulate a model of the underlying neural
dynamics on a mesoscopic scale of the so-called neural field. Starting from the
work of Wilson and Cowan [23, 24], and the wave equation approach by Nunez
[19, 20] both dating back to the early 1970s, they derived an integral equation
for the neural field ¢(x,t) on a cortical surface I" which reads explicitly
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[x — x|
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(10)
Here f(x,x’) represents the coupling between the locations x and x’, p is an
external input at location x’ that affects the field at location x with a delay
given by the distance |x — x| divided by the propagation velocity v. S{X}
is a sigmoidal function, and a and p are constants that represent synaptic
weights and fiber density, respectively.
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Fig. 13. Numerical simulation of (12). Top row: Space-time plot of the spatiotem-
poral activity. The dynamics undergoes a transition from a spatially homogenous
oscillation pattern to an oscillation with a pattern that has a maximum and a mini-
mum in space when the frequency of the external driving (2nd row) exceeds a critical
value. 3rd row: Temporal amplitudes of the two dominating spatial patters (shown
in the 40 row).

The form (10) is quite general in the sense that first the dimension of the
cortical surface is not set and second the connectivity function f(x,x’) is not
explicitly defined, allowing both homogeneous connections between a loca-
tion and its neighbors as well as heterogeneous connections realized as fiber
bundles in the cortical white matter connecting distant brain regions. In the
original work it was assumed that the cortical ”surface” is one-dimensional,
that there are no long-range or heterogenous connections in the system, and
that the short-range homogenous connectivity between locations falls off ex-
ponentially with distance
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The latter is a good approximation for the short-range connectivity that is
found experimentally in mammals [1].
Under these assumptions (10) can be written in form of a partial differ-
ential equation which is much easier to deal with than the retarded integral
equation (10)

2

B t) + (6 — 0 W, 2) + 200 90, )
(12)

0 .
= a(wf +wog)S{pue.t) +p(e.t)} with wo =

Results from a numerical simulation of (12) are shown in Fig. 13. The
top row represents the spatio-temporal pattern of the one-dimensional neural
sheet in a space-time plot. A qualitative change in the dynamical behavior
from an oscillation of a spatially constant pattern to a pattern that has a
maximum and minimum at each point in time is evident. The second row
shows the external signal (metronome), driving the system with a constantly
increasing frequency. The third row shows the amplitudes of a projection of the
spatio-temporal signal onto the two patterns in the bottom row, also showing
the transition in the dominating spatial pattern at the critical driving fre-
quency. This simulation demonstrates that even with such a one-dimensional
model the main experimental findings from the MEG experiments can be
reproduced. Work on more realistic models using a two-dimensional surface
and also heterogeneous long range connections between distant locations is
currently under way.

6 Conclusion

From its beginning more than a quarter century ago coordination dynamics
has come a long way. Not only has coordination behavior been modeled quan-
titatively, it is one of the few cases in the life sciences where such has been
achieved for a system as complex as the human body. But the phenomena, in
particular the transition phenomena that are studied in coordination dynam-
ics, have also been used as a probe into the most complex system known to
us, the human brain.

In this chapter we have summarized a small portion of the many contribu-
tions Scott Kelso has made to advance the science of coordination dynamics.
We have done so from our point of view, which is the perspective of two
theoretical physicists. What makes coordination dynamics fascinating to our
species is the insight that it can be put on a solid quantitative foundation
and that the same basic laws govern on all the levels covered in this volume:
behavioral, neural or social dynamics.
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In any case, the Irish man would be astounded of where Scott’s finger

wagging has led us to.
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