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Whereas bifurcations within an already active set of components are well-known in biological coordination (e.g. gait transi-
tions), less well understood is the process by which previously quiescent degrees of freedom are spontaneously activated. We
introduce a simple paradigm to explore how complex, biological systems flexibly recruit and annihilate degrees of freedom ac-
cording to parametric task requirements. A sequence of transitions within and across planes of motion is observed as a control
parameter is varied. Such transitions are invariably preceded by enhancement of fluctuations in trajectory related variables. Our
results suggest a theoretical model in which the main qualitative changes observed experimentally are a consequence of two

consecutive Hopf bifurcations.

An essential, but poorly understood feature of
complex biological systems is their ability to flexibly
assemble and disassemble patterns of coordinated
behavior according to functional demands. For ex-
ample, to reach for a cup of coffee close by may re-
quire only the coordinated extension of the clbow
and shoulder. A cup located further away, however,
may require forward lean of the trunk or even, if one
is seated, rising from the chair (a transition from a
three- to two-point stance ). Such flexible and spon-
taneous recruitment of previously quiescent bio-
mechanical degrees of freedom (d.f.) and the si-
multaneous elimination of no longer relevant d.f.
according to task or boundary conditions is accom-
plished effortlessly by human beings and animals, but
not by robotic devices.

Here we introduce a simple experimental para-
digm to explore the dynamical process of flexibly re-
cruiting and annihilating biomechanical d.f. accord-
ing to parametric task requirements. The present
work follows along the footsteps of previous research
(see e.g. refs. [1-3]) showing that coordination in
complex biological systems may be understood using
the theoretical concepts of self-organization and pat-
tern formation in nonequilibrium systems and the

language of nonlinear dynamics. Specifically, the
formation of rhythmically coordinated movement
patterns and switching among different coordinated
states has been demonstrated to arise via an insta-
bility when a control parameter is systematically var-
ied. Predicted features associated with instabilities,
such as enhancement of fluctuations in an identified
order parameter and slowing down near the transi-
tion region {2,3] have been verified in a number of
different experimental systems (see e.g. refs. [4-71).
In the foregoing cases, transitions are always of the
order — order type: the same biomechanical d.f. are
spontaneously re-ordered at a critical value of the
control parameter. Depending on the symmetry of
the system, transitions may take the form of (sub-
critical ) pitchfork (see e.g. ref. [1]) or saddle-node
bifurcations (see e.g. ref. [8]). Much less studied
(indeed, not studied at all) are situations in which
new biomechanical d.f., e.g. muscles, neuronal
groups, are recruited (and “old” ones annihilated)
under parametric influences. Such a case is reminis-
cent of one of the most fundamental processes in dis-
sipative dynamical systems, namely the creation and
destruction of orbits as a parameter is increased (see
e.g. ref. [9}]).
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Our main goal in this paper is to elucidate how
available (in the sense of potential) d.f. are recruited
and already active d.f. are annihilated when per-
forming a rhythmic task. The underlying reason is
that a system containing a set of active components
that have been self-organized for a particular move-
ment pattern is now no longer able to support that
behavior in a stable fashion when a control param-
eter (here the frequency of motion) crosses a critical
value. The new movement pattern may still be top-
ologically equivalent to the previous one (e.g. both
may be limit cycles) but additional d.f. are required
to perform the task.

The present experiment builds upon a serendipi-
tous finding briefly described some years ago by Kelso
and Scholz [10] in their studies of human bimanual
coordination. Earlier work in which motion was con-
fined to horizontal planar movements involving
flexion and extension of the index fingers had shown
that transitions from anti-symmetrical patterns (ho-
mologous muscles contracting alternately) to sym-
metrical patterns (homologous muscles contracting
together) occur as frequency of oscillation is in-
creased. In order to obtain measures of underlying
neuromuscular activity, Kelso and Scholz studied re-
petitive bimanual motion in the x-y plane. After the
anti- to in-phase transition, now involving abduction
and adduction movements in the horizontal (x)
plane, they noted that further increases in cycling
frequency produced yet another transition, this time
from the horizontal to vertical (flexion~extension)
plane of motion. Occasionally, the motion of the fin-
gers became rotary in nature before the transition to
the vertical plane. This phenomenon may be quali-
tatively understood as follows. Observed reprodu-
cible patterns correspond to stable attractive states
of coordination (described in terms, e.g. of the rel-
ative phase between oscillatory components). When
motion is restricted to the horizontal plane only the
symmetric and antisymmetric modes of coordina-
tion are stably performed over a range of frequen-
cies. For frequencies above this range, no compar-
ably stable pattern is available on the horizontal plane
of motion. In order to achieve stability, previously
quiescent d.f., i.e. in the vertical dimension are spon-
taneously recruited. With the availability of this
added d.f. the system becomes multistable and tran-
sitions among the various patterns have both a tem-
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poral and spatial character. We now identify exper-
imentally what these patterns are, the pathways
between these patterns and the nature of the tran-
sitions (abrupt or continuous) from one ordered
pattern to another *!. We propose a preliminary the-
oretical model at the individual oscillator level of de-
scription, and suggest how the collective level may
be handled.

Six normal adults volunteered for participation in
this study. The experimental task consisted of ‘bi-
manual and unimanual rhythmical coordination of
the index fingers about the metacarpophalangeal
joint. The experimental task consisted of four bi-
manual initial conditions: horizontal in-phase (ten
trials) and anti-phase (ten) (i.e., abduction-adduc-
tion) in the transverse plane and vertical in-phase
(five) and anti-phase (five) in the sagittal plane (i.e.,
flexion—-extension). In the unimanual conditions, the
subjects performed abduction-adduction move-
ments of the left and right fingers (five trials of each)
starting in the transverse plane. All trials consisted
of twelve frequency plateaus (twelve cycles per pla-
teau) starting at 1.5 Hz and increasing to 4.25 Hz in
0.25 Hz steps. The subject’s primary task was to pro-
duce one full cycle of movement with each finger, for
each beat of a metronome. The subjects were in-
structed that should they feel the pattern begin to
change, they should not intervene, but rather adopt
the pattern that was most comfortable under the cur-
rent conditions. Emphasis was placed on maintain-
ing a 1:1 relation with the metronome. Before each
condition, the required pattern was demonstrated for
the subject, who was allowed to practice a few cycles
of the pattern before the experiment proper began.

The Watsmart/Watscope image processing system
(Northern Digital Inc., Waterloo, Canada) was used
to record the x—y coordinates of light-weight infrared
emitting diodes (IREDs) attached to the fingertips
and knuckles of the subject’s index fingers. A custom

# In doing so, we provide a response to a question raised by Pro-
fessor H. Swinney concerning whether additional bifurcations
are possible in the bimanual system (see ref. [11]). The an-
swer turns out to be yes in at least two respects. One, which we
do not explore here concerns transitions among frequency-
lockings, e.g. 4:3t0 1:1, 5:2t0 2:1 etc. [12,13]. The other,
presented here, concerns spatial transitions that occur when
the experimental system affords motion in the x—y plane and
initial conditions are appropriately established.
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made apparatus consisting of two plastiform molds
and a horizontal grip bar was used to support and
restrict the movement of the subject’s forearms,
wrists, and digits III through V. Mounted on the wall
directly behind the subject was an auditory metro-
nome. The signal was simulated by a series of 50 ms
square wave pulses output through a RS232 port on
a Maclntosh personal computer. Metronome fre-
quency was controlied by a computer program and
a PC AT was used for data acquisition and on-line
monitoring.

The data were sampled at 200 Hz and a detailed
analysis of the movement trajectories was performed
off line. The two-dimensional x-y coordinate values
of the IREDs were recorded in the form of a time
series of the trajectory images projected onto the
camera plane. The two two-dimensional time series,
one from each camera, for each IRED were con-
verted into a three-dimensional time series using us-
ing a direct linear transformation. The data were
smoothed and transformed into individual angle files
which were then displayed as trajectories over time
and used to compute point estimates of relative phase
and frequency values.

The raw trajectories of the two fingers shown in
fig. 1 illustrate the variety of transitions within and
across planes of motion as the frequency of oscilla-
tion is increased. We refer to transitions between
patterns within a single plane of motion as interlimb
transitions, while transitions from one plane of mo-
tion to another are referred to as spatial transitions.
Roughly speaking, when the initial conditions spec-
ify horizontal motion and the movement rate is rel-
atively low, movement is largely confined to the x
dimension on the x-y plane. As rate increases be-
yond a certain critical value, oscillations on the y di-
mension spontaneously emerge, the superposition of
the x and y dynamics producing a rotary-like pattern
in the x—y plane. As rate is increased further, passing
another critical region, oscillations in the x dimen-
sion diminish and the observed pattern is largely
confined to the y dimension. Distortions of this sce-
nario are quite modest (see fig. 1), probably due to
the recording arrangement and the constraints of fin-
ger joint geometry (e.g. the motions of the y dimen-
sion at high movement rates contain a modest hor-
izontal component).

A total of 80/90 (88%) abrupt interlimb transi-
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Right Finger

Left Finger

1.5~ 1.75Hz

2.0 -2.25Hz

2.5-2.75Hz

3.0-3.25Hz

3.5-3.75Hz

4.0-425Hz

Fig. 1. Raw trajectories of the finger movements in the x-y plane.
In this example, the initial condition is horizontal in-phase co-
ordination and the frequency of motion increases from top to
bottom.

tions from bimanual anti-symmetrical to symmet-
rical patterns of coordination were observed (hori-
zontal anti-phase to in-phase 50/60; vertical anti-
phase to in-phase 30/30). By abrupt, we mean that
spontaneous shifts in the phasing between compo-
nents usually occurred within 2-3 cycles of motion.
Thirty-seven (76%) of the horizontal anti-phase to
in-phase transitions occurred between cycling fre-
quencies of 1.75 and 2.25 Hz. The range of critical
frequencies for vertical interlimb transitions was from
1.75 to 3.0 Hz. These results are consistent with many
other findings in the bimanual paradigm (see e.g. refs.
[1,11]).

Availability of additional d.f. resuited in two dis-
tinct spatial bifurcation routes from horizontal to
vertical motion. Histograms in figs. 2A and 2B rep-
resent the evolution of horizontal to vertical motion
as a function of cycling frequency and initial coor-
dinative pattern. Within the two bimanual horizon-
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Fig. 2. Histograms showing the number of trials displaying a particular coordination pattern as the frequency increases. HAP =horizontal
anti-phase pattern; HIP =horizontal in-phase pattern; ROTARY =rotary pattern; VIP =vertical in-phase pattern.

tal conditions, 98/120 (82%) transitions to the ver-
tical plane of motion were observed. Of these, 53 were
abrupt, occurring (like interlimb transitions) within
2-3 cycles of motion. Rotary motion was identified
in 46/120 (38%) trials across both horizontal con-
ditions. Rotary transitions were characterized by a
more gradual increase in the amplitude of vertical

oscillation. Such changes are evident in the repre-
sentative trajectories shown in fig. 1. Quantitative
analysis showed that the relative phase between
components hovered around ¢~ 0, i.e. the limbs re-
mained phase-locked throughout. In the rotary pat-
tern, within-component phasing was bounded be-
tween 45° and 135°. Across both individual finger
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conditions, spatial transitions to either rotary or ver-
tical motion were observed on a total of 50/60 (83%)
trials. Of these transitions, 30 were abrupt (HRF,
12; HLF, 18) and 20 were rotary (HRF, 12; HLF,
8).

A stability analysis of all the patterns was per-
formed by calculating the standard deviation of the
appropriate relative phasing measures on a given fre-
quency plateau before and after transitions. Due to
the range of critical frequencies, pre-transition anal-
ysis consisted of lining up plateaus from the transi-
tion point and working backwards. For horizontal
interlimb transitions, the anti-phase pattern was
consistently less stable than the in-phase pattern
(p<0.01). Vertical interlimb transitions followed
suit (p<0.01). In the latter, but not the former (per-
haps because of a higher starting frequency than ear-
lier experiments and because transitions occurred
quite quickly starting in the horizontal plane) var-
iability was significantly enhanced in the anti-phase
pattern as rate increased (p<0.01). This fluctuation
enhancement in the hypothesized order parameter,
relative phase, is fully consistent with the instability
mechanism proposed for such transitions [1-3].

For spatial transitions, analysis revealed that the
horizontal in-phase pattern was less stable than the
vertical in-phase pattern (p<0.05). Moreover, a
pattern by frequency plateau interaction was also
significant (p<0.01). This was the result of an in-
crease in variability for the horizontal in-phase pat-
tern before the transition. Such a result suggests the
possibility that the nature of the spatial bifurcation
may be dependent upon the stability of the system
before the transition. Analysis of rotary motion sup-
ports this idea: variability of rotary motion in-
creased with frequency (p<0.05) and was always less
stable (more variable about the mean relative phase)
than the vertical in-phase pattern. Likewise, for the
individual fingers there was a significant increase in
variability as frequency increased that dropped after
the spatial transition to vertical (flexion-extension )
motion.

These spatial transitions, first the recruitment of
previously quiescent d.f. in the vertical dimension
and then the annihilation of horizontal oscillation,
can be regarded as the result of two consecutive Hopf
bifurcations. Similar mechanisms have been pro-
posed to model the transition, e.g. from standing to
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walking in gait dynamics [14]. The essential differ-
ence here lies in the fact that, in our situation, such
a bifurcation is utilized as a vehicle to maximize the
stability (i.e. reduce fluctuations) of the performed
pattern while fulfilling the task requirement stipu-
lated by the environment, whereas in the case of gait
changes, bifurcations simply provide a mechanism
that converts one functional state to another. Our ex-
perimental system is rather more analogous to the
spontaneous recruitment of “back bending” in qua-
drupedal gaits such as the gallop, and goes beyond
gait changes per se. Bifurcations in coupled oscillator
models of gaits pertain to an already active set of dy-
namical variables, but do not presently accommo-
date the self-organization of previously quiscent d.f.

In what follows we illustrate the foregoing notions
with a simple oscillator model and compare the re-
sult with experimental observations. Theoretically,
the phase space for describing the kinematics of a
single end-effector, in the present case the finger tip,
is (x, X, y, »). Previous work has shown that the dy-
namics of one dimensional, planar movements can
be modelled by a nonlinear oscillator controlled by
parameters such as the movement rate [2,15]. thus
the trajectories seen in fig. 1 can be considered as the
Lissajous figures produced by the two oscillators. The
simplest system that captures the main observed
characteristics is the following pair of nonlinear
oscillators,

i'i=ri[ai(.f)'_r12]9 (ta)
6, =2nf, (1b)

where r; and ; are the polar coordinates of oscillator
i (i=x, y denotes the x and y directions respec-
tively) and a;(f) are parameters of the oscillators
which are functions of the cycling frequency f. The
solutions for eq. (1b) can be written as

6:(1)=6,(0) +2nft

where 6;(0) are the initial phases at 7=0. The rela-
tive phase between the y and x oscillators is then de-
fined as

$=0,(1) —0x(¢) =6,(0) —6x(0) .

For a,(f) <0, the origin ;=0 is a stable fixed point
attracting all initial conditions in the r~6; plane. If
a;(f) is increased above 0, the origin becomes an un-
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stable fixed point and a limit cycle attractor appears
at r,=,/a;(f) giving rise to the oscillations in the i
direction, i.e. a Hopf bifurcation. If a;(f) is de-
creased from above O, then an inverted Hopf bifur-
cation takes place eliminating the existing oscilla-
tions in the i direction.

For concreteness, we assume that the parameters
a;(f) depend on the movement rate fin the follow-
ing manner,

a.(N)=k (a1,
ay(.f) =ky(f_fl) >

where k. and k, are constants of dimension
[length?time] with numerical values of unity. The
simple expressions used in eqs. (2) may be regarded
as approximations of more realistic forms of a; near
the bifurcation points f; (the onset of rotary mo-
tion) and £, (the onset of purely vertical motion).
For numerical computations, we choose f; =2 Hz and
f>=4Hz for egs. (2), and consider f being increased
from 1.5 to 4.5 Hz.

Figure 3A shows the trajectory for a single end-
effector confined to the x direction in the x-y plane
for f=1.50 Hz <f,. For f=2.75 Hz < f;, the trajectory
forms an ellipse whose orientation in the x-y plane
is determined by the relative phase ¢. Figure 3B
shows the case where ¢=90°. For f=4.5 Hz> f,, the
oscillation in the x direction disappears due to an
inverted Hopf bifurcation at f=f, and the motion is
confined to the y direction (fig. 3C). Trajectories

(2a)
(2b)
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with noise added to the dynamical equations are
shown in fig. 4 for the same set of parameters as in
fig. 3. The addition of random noise produces effects
more like the rhythmical motions actually observed.

Obviously, if £, is close to f; one may see an abrupt
transition from horizontal to vertical motion which,
as we have observed experimentally, occurs on ap-
proximately half of the trials. Figure 5 shows the ex-
perimental time series of the x (fig. SA) and y (fig
5B) components of both index fingers. It is quite clear
that damping of horizontal motion and growth of
vertical motion occur simultaneously, exactly as the
Hopf model would predict.

Despite the good qualitative agreement between
two consecutive Hopf bifurcations and the present
observations, questions remain. For example, we
have assumed in eqs. (1) and (2) that oscillations
are generated or annihilated through supercritical
Hopf bifurcations. That is, the oscillation amplitude
increases gradually from zero or decreases gradually
toward zero. But, as we have seen experimentally (see
fig. 5), the onset of y oscillations may also be sudden
with a large amplitude, resembling that of a subcrit-
ical Hopf bifurcation. A further study using small in-
crements of movement rate as a control parameter
may elucidate this issue. A further feature that we
have not explicitly tested here concerns hysteresis.
With some certainty, however, we can assert that the
present experimental system is strongly hysteretic.
That is, once the system has switched to the most
stable vertical in-phase motion it does not switch back
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Fig. 3. Plots of an end-¢ffector trajectory computed from a simple model of the recruitment process (see text for details) using non-linear

oscillators.
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Fig. 4. Trajectories for an end-effector for the same set of parameters as in fig. 3 with added noise in the dynamical equations.

A | 3.25 Hz | 3.5 Hz 3.75 Hz
NN NN
abduction )
adduction
B
extension -
flexion

RFy (-==-)

LFy ¢ )

Fig. 5. Experimental time series of the x (A) and y (B) components of the left and right index fingers showing the damping of the
horizontal motions and subsequent recruitment of the vertical d.f. as the cycling frequency is increased. In this case, the transition is
from horizontal in-phase to vertical in-phase, bypassing rotary motion.

to a rotary or horizontal in-phase motion when the
frequency is reduced. Elsewhere we have established
and modelled this feature in planar motions along a
single dimension [2]. When we consider simulta-
neous movements of two effectors in the x—y plane
more complex dynamics arise. Again, previous work
[16,17] shows that the dynamics in this case can be
understood in terms of the relative phases between
four oscillators.

Our main point here, however, was to show that
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it is possible to observe a clear sequence of temporal
(anti-phase to in-phase) and spatial (one plane to
another) bifurcations in the present experiment. The
spatial bifurcation route seems especially interesting
because it characterizes the spontaneous creation and
annihilation of movement-relevant degrees of free-
dom. We offer the Hopf scenario as a potentially
model-independent mechanism for this essential as-
pect of flexibility in biological coordination. Else-
where [18], we have considered other dynamical
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mechanisms such as antimonotonicity [9], the si-
multaneous creation and destruction of periodic or-
bits near homoclinic tangency. Our results suggest
that such a recruitment-annihilation process is one
way biological systems achieve stability while ful-
filling the task demand imposed by the environment.

This research was supported by ONR grant
NO00014-88-J1191, NIMH (Neurosciences Research
Branch) grant MH42900 and NSF grant DBS-
9213995.
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