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Abstract. Dynamical systems have proven to be well-suited to describe
human coordination behavior such as the synchronization with auditory
stimuli. Simultaneous measurements of the spatiotemporal dynamics of
electroencephalographic (EEG) and magnetoencephalographic (MEG)
data reveals that the dynamics of the brain signals is highly ordered and
also accessible by dynamical systems theory. However, models of EEG
and MEG dynamics have typically been formulated only in terms of phe-
nomenological modelling such as �xed current dipoles or spatial current
distributions. In the present paper we wish to connect the experimentally
observable EEG and MEG dynamics with the underlying physiologically
plausible neural dynamics. To do so, we develop a methodological frame-
work, which de�nes the spatiotemporal dynamics of neural ensembles,
the neural �eld, on a sphere in three dimensions. Using magnetic reso-
nance imaging (MRI) we map the neural �eld dynamics from the sphere
onto the folded cortical surface of a hemisphere. The neural �eld repre-
sents the current 
ow perpendicular to the cortex and thus allows for
the calculation of the electric potentials on the surface of the skull and
the magnetic �elds outside the skull to be measured by EEG and MEG,
respectively. For demonstration of the dynamics, we present the propa-
gation of activation at a single cortical site resulting from a transient in-
put. Non-trivial mappings between the multiple levels of observation are
obtained which would not be predicted by inverse solution techniques.
Considering recent results mapping large-scale brain dynamics (EEG,
MEG) onto behavioral motor patterns, this paper provides a discussion
of the causal chain starting from local neural ensemble dynamics through
encephalographic data to behavior.

1 Introduction

Non-invasive techniques such as functional magnetic resonance imaging (fMRI),
electroencephalography (EEG) and magnetoencephalography (MEG) provide
entry points to human brain dynamics for clinical purposes, as well as the study
of human behavior and cognition. Each of these imaging technologies provides
spatiotemporal information about the on-going neural activity in the cortex.
Analysis techniques of experimental spatiotemporal data typically involve the
identi�cation of foci of activity such as single or multiple dipole localization
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(see [51,60] for an overview) in a three-dimensional volume. Other techniques
emphasize the pattern approach which aims at the identi�cation of distributed
sources [51] or activity patterns, of which the latter are de�ned only on the two-
dimensional surface spanned by the EEG and MEG detectors. These remain
somewhat invariant during the time course and typically minimize a postulated
norm such as the Gaussian variance (Principal Component Analysis or PCA) [15,
38,44] or non-Gaussian statistical independence (Independent Component Anal-
ysis or ICA) [48]. The latter may also be derived from a Bayesian framework[42].
Signal Source Projection or SSP provides a decomposition into patterns of activ-
ity which are physiologically or anatomically meaningful, by these means, how-
ever, restricting the possible solution space to the experimenters expectations.
More ambitious techniques wish not only to decompose the spatiotemporal dy-
namics into meaningful patterns, but also identify equations which govern the
dynamics of these patterns [6, 7, 30, 45, 46, 59]. Unfortunately, the successful ap-
plication of these techniques has been typically limited to special cases in which
the majority of the observed dynamics has already been well understood [30].
Spatiotemporal activity propagation of electro- and magnetoencephalographic
signals has been represented by discretely coupled oscillator models (see chapter
on source modeling in [60]) representing dipole sources. Spatially and temporally
continuous models, so-called neural �elds, were formulated by Wilson-Cowan [62,
63], Nunez [52] and Amari [2] in the 70s. With improving imaging techniques
and the development of MEG these types of models experienced a renaissance
[13,31, 47, 55, 64]. These models are typically based on coupled neural ensem-
bles in a spatially continuous representation using integral equations involving
a time delay via propagation. Jirsa & Haken [31] generalized and uni�ed the
earlier models by Wilson-Cowan [62,63] and Nunez [52] and demonstrated that
they describe the same system. The modeling on these di�erent levels of orga-
nization has been phenomenological, i.e. only partially taking into account the
speci�c neurobiological nature of the measured signal and its underlying mech-
anism of generation. Each level of description has been tackled separately, never
in unison with other �elds of research, and typically applying strong simpli�ca-
tions. For example, Steyn-Ross et al. [58] explain a hysteresis phenomenon called
'biphasic response' in the clinical human EEG during anesthesia. Their under-
lying neural model is based upon Liley's work [47] using a spatially uniform
activity distribution in one dimension with a connectivity distribution which
falls o� exponentially, independent of the cortical location. Similarly, Jirsa et al.
[33] also applied a one-dimensional model allowing, however, for varying spatial
structure in activity distributions. Here, by applying neural �eld equations to
a bimanual coordination situation, they predicted the spatiotemporal dynamics
observed in the MEG and con�rmed these experimentally. A set of equations,
governing human bimanual coordination [19], was derived from these neural �eld
equations. This connection between spatiotemporal brain dynamics and behav-
ioral dynamics has become possible through the notion of functional units [31,
33,16] that serve as interfaces between neural and behavioral signals. Despite
these successes, the simpli�cations made in these approaches do not take into
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consideration a more detailed physiological and anatomical interpretation of the
identi�ed mechanisms, e.g. how an active area may be identi�ed when a spa-
tially uniform activity distribution is assumed [58], resulting in an e�ectively
zero-dimensional point-like model and brain.

In the present paper we develop a framework which overcomes these simpli-
�cations and allows a quantitative comparison between experimental data and
theoretical modeling. The neural model used here is based on Jirsa & Haken [31]
which allows the connection to the behavioral dynamics through the concept of
a functional input or output unit [16]. We form a synthesis of methodologies
in order to systematically relate scales of organization from neural ensembles
through EEG and MEG to behavioral dynamics (for strategic aspects of our ap-
proach, see the trilogy [40]). The conceptual steps are the following: We de�ne
a spatiotemporal neural �eld dynamics on a spherical geometry. This dynamics
is mapped onto the folded cortical surface, thereby minimizing the spatial dis-
torsions. Importantly, it is the propagation of neural activity that generates the
forward solutions of EEG and MEG. For the simplest cortical architecture, we
choose the experimental condition of an induced stimulus on the cortical surface
and map the neural �eld dynamics on the di�erent levels of organization: 1. cor-
tex on a sphere; 2. unfolded cortex; 3. folded cortex; and 4. folded cortex in the
skull generating EEG and MEG.

Our paper is organized as follows: First, we review the dynamics of coordi-
nation behavior and its neural correlates. Second, we discuss the foundation of
neural �eld dynamics and develop a systematic treatment of functional units.
Third, we elaborate the methodologies involved in traversing scales of organi-
zation from the level of neural ensemble to EEG and MEG, and discuss the
example of neural �eld dynamics after an induced stimulus. Finally, we provide
a discussion and an outlook to future work.

2 Brain and Behavior correlates in motor coordination

Periodic movements such as rhythmic �nger tapping have developed to a paradigm
in human coordination dynamics. Nonlinear dynamics provides the mathemat-
ical tools necessary to study such periodic processes by interpreting them as
limit cycles. The motion of a single �nger, decoupled from any other e�ects, has
been modelled as a Van der Pol-Rayleigh oscillator [19] since it shows similar
dynamical properties as the experimental biological system, such as transient
behavior or amplitude dependence on movement frequency. Once the �nger mo-
tion is coupled to other signals, such as an external periodic signal, then the
relative phase � = �1 � �2 between the �nger motion with its phase �1 and the
additional signal with �2 becomes the meaningful descriptor of coordination.
Following Kuramoto's work [43], this situation may be beautifully generalized
to arbitrarily many oscillators as long as their limit cycle properties are pre-
served. However, not every relative phase � is possible anymore. The coupling
establishes a symmetry breaking by constraining the number of existing phase
states. Moreover, not every existing relative phase is actually stable, but may
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serve as an unstable state separating two stable states. When control parameters
such as movement frequency are manipulated, certain coordination states may
become unstable and the system exhibits a transition from one state to another.
These systems become low-dimensional in the vicinity of such phase transitions
as a consequence of a time-scale separation, mathematically known as the center
manifold theorem (see e.g. [23]) or the enslaving principle [18,20]. The system's
slower components, which are typically only a few, determine the macroscopic
dynamics because the faster components have already relaxed quickly to their
stationary states. The latter, however, are determined by the slow variables.
Hence it is su�cient to understand the low-dimensional dynamics of the slow
components only. For concreteness, in the example of unimanual coordination,
the relative phase � between the two oscillators is the slow variable, in fact this is
true for most coordination dynamics [39]. However, on a more critical note, coor-
dination dynamics has mainly focussed on rhythmic movements only, and hence
limit cycles, together with Kuramoto's theorem [43] apply. Since coordination
dynamics has a wider scope than rhythmic movements, the reader might want
to keep this constraint in mind. Using spatiotemporal symmetry arguments [19]
the dynamics of the relative phase � between two oscillators may be expressed
as

_� = �
@V

@�
= �a sin�� 2b sin 2� (1)

where a; b are constant parameters dependent on the movement frequency. Since
� is one-dimensional, it may always be expressed as a gradient dynamics with
a potential V (�). The dynamics of V is illustrated in �gure 1: The two poten-
tial minima correspond to the stable movement patterns in-phase, � = 0, and
anti-phase, � = �. The latter becomes unstable when the movement frequency
increases which correponds to a decrease of the ratio b=a.

What are the neuronal correlates of behavioral phenomena? What are the
neuronal correlates of behavioral laws such the one expressed in equ. (1)? The
nature of the answer will again depend on the chosen level of description. We
identify individual functionally relevant elements of neural dynamics which will
then be placed in a coordination situation, i.e. they will be coupled. The exper-
imentally accessible observables are provided by non-invasive techniques such
as electroencephalography (EEG), magnetoencephalography (MEG) and struc-
tural and functional magnetic resonance imaging (MRI, fMRI). The �rst two
techniques, EEG and MEG, are direct measures of activation of neuronal popu-
lations. EEG measures the electric potential on the skull surface, MEG measures
(typically) the gradient of the radial component of the magnetic �eld just above
the skull surface. Both signals are generated by the simultaneous neuroelectric
activity of hundred thousands of neurons located in the neocortex and can be
resolved spatially on the order of cm and temporally on the order of msec. Struc-
tural MRI provides the three-dimensional coordinates of neuronal tissue on the
scale of mm. fMRI measures metabolic activity, hence providing an indirect mea-
sure of neuronal activation on the spatial scale of mm and temporal scale of sec.
Thus EEG and MEG provide measures of neuronal correlates on the same time
scale as human behavior, but do not provide direct measures of source locations;
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Fig. 1. The V (�) = �a cos � � b cos 2� is plotted in dependence of the ratio b=a,
decreasing from 1 to 0, from left to right starting with the top left graph. The minima
represent stable stationary states of the gradient dynamics @�

@t
= � @V

@�
.

on the other hand, fMRI provides accurate measurement of neural sources, but
is an indirect measure and too slow to capture human behavioral dynamics.
Following the strategy on the behavioral level, we de�ne an isolated spatiotem-
poral event, a rhythmic �nger movement, and identify its neuronal correlate.
Particularly, sensori and motor events are well represented in EEG and MEG
dynamics, thus are well-suited for investigation of its dynamics. Let us assign
the variable r(t) to the coordinate of the �nger motion as a function of time
t. We wish to express the �nger's dynamics as a function of neuronal activity
	 (x; t) de�ned in physical space x and time t. Which neuronal activity? What
physical space? Initially, let us identify 	 with the measured variable, that is
for EEG the electric potential, and identify the physical space to be de�ned by
the EEG electrodes. Obviously, there is a relation between the spatiotemporal
pattern in the EEG and the underlying neuronal generators which is known as
the inverse problem. We, however, seek to identify the dynamics of the patterns
in the EEG and MEG, not to solve the inverse problem in the �rst place. Recent
MEG experiments ([41]) have shown that the �nger velocity is actually strongly
correlated with the MEG patterns. This correlation will be expressed mathe-
matically (see the section 3.1) and used in the following to map the brain and
behavior correlates onto each other. In particular during rhythmic movement
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tasks a linear relationship between the neuronal activation 	 (x; t) and the �nger
movement r(t) exists [15, 41, 39, 21]. Such a behavior may be safely assumed to
be a consequence of the averaging of higher order harmonics of the dominat-
ing frequency. Mathematically the averaging corresponds to the rotating wave
approximation [18, 20]. For concreteness, let us again consider the unimanual
�nger motion: Previously in the behavior, the �nger motion, r(t), has been coor-
dinated with the metronome signal s(t) resulting in an interaction and creating
the two stationary movement patterns in-phase and anti-phase ; these movement
patterns correlate strongly with spatiotemporal neuronal patterns as measured
with a 37-dimensional SQuID (superconducting quantum interference device)
array [38] and illustrated in �gure 2.

Fig. 2. Unimanual �nger movement and its MEG. A 37-dimensional SQuID array
was placed over the left hemisphere as illustrated in the bottom right graph. For six
plateaus, corresponding to stimulation frequencies 1Hz through 2.25Hz, the dominant
spatial structure is plotted in the top row, together with its power spectrum. In the
latter, the vertical red lines denote the stimulus frequency and its higher harmonics.
The phase transition in behavior occurs on plateau IV, coincident with a change in the
spatial patterns and the power spectra. An example space-time series of �ve cycles on
plateau II is plotted in the bottom left.

The MEG detectors were located centrally over the primary motor and au-
ditory areas of the left hemisphere. The subject was instructed to perform a
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right-handed �nger movement in anti-phase with an auditory metronome start-
ing at frequencies of 1Hz and increasing in steps of 0.25Hz. Intervals of constant
stimulus frequency are referred to as plateaus. Analyses [15] showed that the
�rst two spatial principal components carry about 80% of the variance of the
entire MEG signal. Later analyses [30] showed that these patterns are obtained
as projections, 	i(t) =

R
�
�i(x)	 (x; t)dx, of the neuronal activity onto the in-

dividual spatial templates �i(x) ; i = 1; 2. In contrast to PCA, these templates
may be linearly dependent. As shown in the �rst row of �gure 2, the strongest
pattern of each plateau carries about 60% of the variance of the MEG signal.
Before the transition, on plateaus I-III, the �rst pattern dominates. A transition
occurrs on plateau IV and a new pattern emerges on plateaus V and VI when
the subject actually performs an in-phase motion. This transition from one pat-
tern, 	1, to another pattern, 	2, is accompanied by a transition in the frequency
domain: On plateaus I through III, the observed MEG pattern oscillates mainly
with the movement frequency, and on plateaus V and VI mainly with twice the
movement frequency. As an example of the spatiotemporal sequence for constant
stimulus frequency, �gure 2 shows 5 cycles of the measured MEG patterns at
di�erent time instances. This sequence is taken from plateau II and clearly ex-
hibits the dominance of the pattern 	1 extracted in the earlier analysis, �gure 2
(top left). Subsequent phenomenological modelling of the MEG pattern dynam-
ics revealed that the phenomena may be understood as the nonlinear interaction
of the two patterns 	1 and 	2 under the impact of an external periodic driver,
in this case the auditory metronome s(t) [29, 30]. If one accepts this hypothe-
sis, then it actually follows that the coupling between the MEG patterns 	1; 	2
and the metronome s(t) has to be multiplicative, a so-called parametric driving
[29]. Referring back to our earlier discussion, MEG patterns correlate strongly
to the corresponding movement patterns. Hence, if we can identify the mapping
between the MEG patterns and the movement patterns, then we can also derive
the functional form of the coupling between �nger movement r(t) and stimulus
signal s(t). For unimanual coordination the parametric driving proves to be a
strong candidate for the r(t)-s(t)-coupling and signatures of parametric driving
have been found in two recent behavior experiments [3, 12, 34]. The dynamic
mechanism on both levels of description, the neuronal and behavioral levels, is
of the same generic type, a Pitchfork bifurcation.

3 Methods

3.1 Neural �eld dynamics

We choose a macroscopic level of description, the neural ensemble, which is ap-
propriate for the EEG andMEG. The structure of our model is generic and found
in most models describing neuronal activity: a �ring rate of a neuronal ensemble
at a location A is transmitted to a neuronal ensemble at a distant location B.
Most models di�er in variations of connectivity and inclusion of physiological
detail. In the present neuronal �eld model, a time delay via transmission is con-
sidered due to the large spatiotemporal scales of interest. The following three
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speci�c properties distinguish the present neuronal �eld model from most other
approaches: 1) Conversion operations [31] de�ne mathematical relations between
�ring rates and local �eld potentials. Research by Freeman [14] and others [1],
[57] showed in a variety of cortical areas that the neuronal �ring rate and the
local �eld potential are related in a well-de�ned way (the so-called conversion
operations [14]): Dendritic currents generated by active synapses cause extracel-
lular local �eld potentials that can be measured by EEG [14], and intracellular
currents measurable by MEG [61]. The conversion from local �eld potential to
�ring rate within a neuronal ensemble is sigmoidal. The inverse conversion, from
�ring rate to local �eld potential, is also sigmoidal, but constrained to a linear
small-signal range. 2) To capture the large spatial and temporal scales in EEG
and MEG, the connectivity includes both, the short range intracortical �bers
(excitatory and inhibitory), which typically have a length of 0.1 cm, and the
corticocortical (only excitatory) �bers with lengths ranging from about 1 cm to
20 cm [52]. Propagation along these long range �bers may cause time delays up to
200 msec. The distribution of the intracortical �bers, and thus the local connec-
tivity, is homogeneous [5], whereas the distribution of the corticocortical �bers
is not (estimates are that forty percent of all possible corticortical connections
are realized for the visual areas in the primate cerebral cortex [11]). For these
reasons an inhomogeneous interareal connectivity has to be allowed resulting in
a translationally variant connectivity function f(x;X) 6= f(x�X). External in-
put pj(x; t) is realized such that a�erent �bers make synaptic connections. Then
the neural �eld dynamics may be written as

 (x; t) =

Z
�

dX f(x;X) �S[ (X; t�
j x�X j

v
)+
X
j

pj(X; t�
j x�X j

v
)] ; (2)

where � represents the closed two-dimensional surface. The neural �eld equation
(2) can be transformed into a partial di�erential equation for a homogeneous con-
nectivity function f(x;X) = f(j x�X j) such as e�jx�Xj=� . Then the nonlinear
partial di�erential equation reads in one dimension

� + (!2
0 � v

24)  + 2!0 _ = (!2
0 + !0

@

@t
) � S[ (x; t) + p(x; t)] (3)

where !0 = v=�. In case of a general connectivity function, an integral represen-
tation has to be maintained. 3) Finally, functional units relate neuronal events
to external events and are discussed in detail in the following section.

3.2 Functional units

Functional units represent interfaces between the neocortex and non-cortical
(input and output)signals and include subcortical structures such as the pro-
jections of the cerebellum on the cortex or speci�c functional areas such as the
motor cortex. Until now the spatial localizations of functional units have been
identi�ed with the spatial patterns which are observed in the EEG/MEG and
generated by time dependent input signals (e.g. see [41]). This is due to the fact
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that the description and the modelling of EEG/MEG dyamics has been almost
exclusively in terms of patterns rather than cortical sources. In the case of a
�nger movement, this spatial structure corresponds to a dipolar pattern in the
EEG/MEG located over the contralateral motor cortex. Anatomically these ar-
eas are obviously de�ned via their a�erent and e�erent �bers connecting to the
cortical sheet. As such we will treat these in the spirit of this paper, a realistic
treatment of brain signals, architecture and its resulting EEG/MEG. We de�ne
the j-th functional input unit pj(x; t) (see [16] for a detailed treatment) by its lo-
cation �j(x) on the folded cortical sheet and a time dependent peripheral signal
rj(t) (such as a �nger movement)

pj(x; t) = �j(x)

Z t

t0

f(t � � )rj(� )d� (4)

where t0 is the initial time point and f(t�� ) a yet unknown convolution function.
As mentioned earlier, for rhythmic movements the peripheral signal and the
neural activity of the functional units seems to be linearly related (see [16] for
details), hence the linear term rj in (4). Along the same lines a functional output
unit may be constructed,

rj(t) =

Z
�

dx �j(x)

Z
d� g(t� � ) (x; � ) ; (5)

where �j(x) de�nes the spatial location of the output unit in the cortical sheet
and g(t�� ) an yet unknown convolution function. This read-out procedure may
be viewed as a rule for how neural currents drive the �nger movement represented
as an oscillator.

On the large spatiotemporal scale of EEG/MEG the input and output lo-
calizations can not be distinguished, hence we approximate them to be equal,
i.e.

�ij(x) � �oj (x) = �(x) (6)

and drop the index j since we will be concerned with one spatial localization
only. We de�ne the integral operators

L̂0 =

Z t

t0

g(t � � )d� ; L̂1 =

Z t

t0

f(t � � )d� ; L̂s =

Z
�

�(x)dx (7)

acting on functions in the space L2 where L̂s commuteswith L̂0, L̂1 and L̂s�(x) =
N 2 R where the latter is a projection operator under proper normalization.

We rewrite (4),(5) as

r(t) = L̂sL̂0 (x; t) = L̂0L̂s (x; t) (8)

L̂sp(x; t) = NL̂1r(t) = L̂1L̂0L̂s (x; t) (9)

where we applied L̂s in the latter. We expand r(t) in (9) around the time point
t and obtain

:::+ c2�r(t) + c1 _r(t) + c0r(t) =
1

N
L̂1L̂0L̂s (x; t) (10)
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where

cn =

Z t

t0

f(t � � )
(� � t)n

n!
d� (11)

Kelso et al. [41] found experimentally that the brain patterns v1 = (� � �v1k � � �)
and v2 = (� � �v2k � � �) can be decomposed as

 k(t) = r(t) v1k + _r(t) v2k (12)

where  k(t) is the MEG amplitude at the k-th sensor. It turns out that the
velocity is the dominant contribution, i.e. j v1 j�j v2 j. Hence we make the
identi�cation

v2 �! �(x) with v2v2 = N �! L̂s�(x) = N (13)

in the continuous limit. We multiply (12) by v2, i.e. apply L̂s, and obtain

_r(t) +
v1v2

N
r(t) =

1

N
L̂s (x; t) (14)

in the continuous representation. Comparing the experimental result (14) with
the theoretical result (10) we �nd

c0 =
v1v2

v2v2
c1 = 1 c2 = c3 = ::: = 0 (15)

and
L̂1L̂0 = Î (16)

where Î is the identity operator. There is one additional freedom, namely the
scaling of either r(t) or  (x; t) which introduces the scaling parameter �. With
(15), (16) we rewrite (10) as

_r(t) + c0 r(t) = �

Z
�

�(x)  (x; t) dx (17)

where the lhs represents the intrinsic dynamics of the �nger motion and the rhs
the excitation by the brain signals, thus we can interprete the �nger movement
as an overdamped oscillator driven by the brain signals which are projected onto
the functional output unit. The solution of (17) reads

r(t) = �

Z
�

�(x)

Z t

t0

g(t� � )  (x; � ) d� dx (18)

with the transfer function

g(t� � ) = e�c0(t��) (19)

and the initial time point far in the past, i.e. t0 � �1. Using (10),(15) the
integral operator L̂1 can be written as

L̂1 =

Z t

t0

f(t � � )d� =
@

@t
+ c0 (20)
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and its transfer function

f(t � � ) = c0�(t� � ) +
@

@t
�(t� � ) (21)

where �(t� � ) is a �-function.

Fig. 3. Functional unit of a right-handed motor movement. The spatial MEG pattern,
that is �(x), is shown on the left which represents the dominant spatial structure
present in the MEG signals obtained from a 64-sensor full-head detector. Here the
unfolded brain map is shown, that is nose on the top, left ear is left, right ear is
right. In the middle, the time series obtained from the projection onto the functional
unit,

R
�
dx�(x) (x; t), is shown. On the right, the time series showing the experimental

�nger movement r(t) is plotted in blue, and the reconstruction using the functional unit
(see equ. (18)) is plotted in red. All the time series range from -500msec to 500msec
with maximum 
exion at t = 0.

Our main results are the equations (13),(15),(18) and (19). Here (18) de-
�nes an explicit relation between on-going brain activity  (x; t) measured by
EEG/MEG and rhythmic �nger movement r(t). There is only one free scal-
ing parameter, �, all other terms are experimentally accessible and well-de�ned.
Figure 3 shows the reconstruction of the movement pro�le from neural activity
according to (18). Note the reconstructed movement pro�le �ts the experimen-
tally observed movement particularly well in the active phase represented by its
positive 
ank. The discrepancies mainly occur after peak displacement and are
probably due to the sensory feedback which is not accounted for by (18).
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3.3 Neural �eld dynamics on a sphere

The neural �eld equation (2) is de�ned in two dimensions with spherical bound-
ary conditions. For a homogeneous, exponentially decaying connectivity function
the corresponding partial di�erential equation may be determined:

(
@2

@t2
+ 2!

@

@t
+ !2

0 � v24)3=2  = (!3
0 + !2

0

@

@t
) � S[ (x; t) + p(x; t)] (22)

The details of the di�erential operators on the lhs of (22) depend on the spatial
decay of the connectivity. However, these details are not signi�cant for large
scale pattern formation as shown by Haken [22]. Each cortical hemisphere is
represented in a spherical geometry and its dynamics is de�ned by (2), or (22),
respectively. The two spheres interact by two means: through calossal path-
ways connecting the two spheres and through a�erent �bers (crossing and non-
crossing) from the periphery. Subcortical regions such as the brainstem are not
included. Should heterogeneous �ber pathways be included also, then the inte-
gral representation given by (2) is used and two types of pathways distinguished:
1. The calossal �ber system from one sphere to another is treated in a manner
equivalent to peripheral a�erents. 2. Other heterogeneous pathways are included
in the connectivity function f(x;X). Note that heterogeneous pathways con-
tribute strongly to the dynamics on all scales of organization; even local changes
of connectivity have recently been shown to result in a major reorganization of
brain activity [35, 36].

3.4 Unfolding of the cortical sheet and its spherical representation

In order to equate the distribution of neural �elds with actual cortical structure
a mapping between the spherical surface and the cortical surface is required.
Several steps are undertaken to complete this mapping. All of the described pro-
cedures were performed using the Freesurfer software package developed by Dale
and colleagues [9,10]. The �rst step is the segmentation of the brain structure
and the de�nition of the gray-white matter boundary within each hemisphere.
This step allows for the description of the cortical surface by a mesh de�ned
by a set of vertices and polygons. The second step involves the in
ation of the
cortical surface to produce a closed surface that has minimal folding but also
minimizes any distortion in the relative location between cortical locations (see
middle image of �gure 4). This step eliminates the di�culty of visualizing corti-
cal activity within sulci. The �nal step is to transform this shape onto a spherical
representation while maintaining as much of the spatial relation as possible by
preserving the metric properties of the surface while minimizing the local curva-
ture. With this procedure, any point on the folded cortex can be addressed using
any number of coordinate systems via its isometric location on the neural sphere.
Both transformations, forward and backward, are well de�ned and their product
yields the identity. Figure 4 gives an impression of this process by showing the
three surfaces with the cortical surface color coded in red and blue according to
curvature. A spherical coordinate grid is plotted in green with the line of zero
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longitude in white. The resulting meshes are extremely dense typically involving
on the order of 150,000 vertices for the representation of a single hemisphere.
For the purpose of computational frugality we decimated this tessellation to a
more manageable number of vertices and corresponding polygons, 4512 and 9022
respectively.

Fig. 4. In
ating the surface representing the gray-white matter boundary and mapping
onto a sphere. From right to left the sequence shows how a spherical coordinate grid
gets folded into the �ssures.

3.5 Representation of neural �elds on the folded cortex

In the previous section we described how each hemisphere was expanded and
warped onto a sphere. As a result of this transformation, each sampled vertex
on the folded cortical surface has a corresponding vertex located on the surface
of a sphere. In addition to this one-to-one mapping between the vertices de�ning
both the surface of the cortex and a sphere, the connectivity of the polygons (i.e.
how the vertices are connected) remains constant across this transformation. The
description of activity on the surface of the spherical hemisphere is automatically
mapped onto the surface of the cortical representation. The task, therefore, sim-
pli�es to the mapping of the activity onto the surface of an irregularly sampled
sphere. This is a simple matter, however, because the neural �eld is continuous
across the sphere on which it is generated and therefore can be sampled at any
arbitrary point. The mesh vertices of the cortical sphere are easily converted to
spherical coordinates and the value at the corresponding location of the neural
�eld sphere is assigned. However, caution has to be taken when the space-time
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structure of the neural �eld dynamics on the sphere is compared to the one on the
folded cortex. The non-conformal mapping of the Freesurfer software alters the
distances between adjacent vertex points and hence the neural �eld dynamics.
Fischl et al. [10] report an average local error of 20% between folded cortical and
spherical coordinate system. In numerical simulations of neural �elds which were
homogeneously connected we did not �nd any obvious discrepancies between the
dynamics in both systems which is probably a consequence of the integration
process in (2) resulting in a averaging of the error. Research of detailed error
calculations of the space-time structure is on-going.

For graphical presentation, the �eld distribution over the cortical surface can
be represented as a set of color values scaled between the maximum and min-
imum �eld strength. Changes in this color representation over time then give
a temporal depiction of how the �eld dynamics unfold on the actual cortical
surface. However, in order to calculate the forward solution using these current
densities we need the additional information about the direction of current 
ow
at each vertex location and each point in time. The generation of local �eld
potentials within the cortex is dominated by activity in ensembles of pyrami-
dal cells, which are oriented perpendicular to the cortical surface. It is possible
therefore to model the direction of instantaneous current 
ow in a small cortical
region as a normal vector on the mesh surface. The orientation of the vector
gives the direction of current 
ow and the length of the vector gives the current
strength. For the purpose of mapping neural activations onto the representation
of the cortical surface a vector oriented normal to the polygon surface was com-
puted for each mesh vertex. These vectors were then normalized to a length of
one and scaled by the amount of neural activation at each time point. Because
the direction of current 
ow is given by the orientation of the cellular generators,
orientation of these vectors does not change over time (see following section 3.6
for details). Instantaneous current 
ow is always represented by vectors oriented
orthogonal to the cortical surface while the propagation of current 
ow across
the cortical surface is modelled as changes in the absolute and relative strengths
of these vectors over time.

3.6 Generating EEG and MEG from the neural �eld dynamics

At this stage we have a representation of the current distribution in three-
dimensional space x 2 R3 and its evolution over time t. To make a comparison
with experimental data the forward solutions of the scalar electric potential V (x)
on the skull surface and of the magnetic �eld vector B(x) at the detector loca-
tions have to be calculated. Here it is useful to divide the current density vector
J(x) produced by neural activity into two components. The volume or return
current density, Jv(x) = �(x)E(x), is passive and results from the macroscopic
electric �elds E(x) acting on the charge carriers in the conducting medium with
the macroscopic conductivity �(x). The primary current density is the site of
the sources of brain activity and is approximately identical to the neural �eld
 (x; t), because, although the conversion of chemical gradients is due to di�u-
sion, the primary currents are determined largely by the cellular-level details
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of conductivity. In particular, cell membranes, being good electrical insulators,
guide the 
ow of both intracellular and extracellular currents and thus result
in a current 
ow perpendicular to the cortical surface due to the perpendicular
alignment and elongated shape of pyramidal neurons. In the quasistatic approx-
imation of the Maxwell equations, the electric �eld becomes E = �rV where r
is the Nabla-operator (: : : @=@x : : :)T . The current density J is

J(x) =  (x; t)n(x) + �(x)E(x) =  (x; t)n(x)� �(x)rV (x) (23)

where n(x) is the cortical surface normal vector at location x.
The forward problem of the EEG and MEG is the calculation of the electric

potential V (x) on the skull and the magnetic �eld B(x) outside the head from
a given primary current distribution  (x; t)n(x). The sources of the electric and
magnetic �elds are both, primary and return currents. The situation is compli-
cated even more by the fact that the present conductivities such as the brain
tissue and the skull di�er by the order of 100. Following the lines of H�am�al�ainen
et al. [24,25] and using the Amp�ere-Laplace law, the forward MEG solution is
obtained by the volume integral

B(x) =
�0
4�

Z
( (X; t)n(X) + V (X)r0�(X)) �

X

j X j3
dv0 (24)

where dv0 is the volume element, r0 the Nabla-operator with respect to X and
�0 the magnetic vacuum permeability. The forward EEG solution is given by
the boundary problem

r � (�(x)rV (x)) = r � ( (x; t)n(x)) (25)

which is to be solved numerically for an arbitrary head shape, typically using
boundary element techniques as presented in [24, 25]. In particular, these au-
thors showed that for the computation of neuromagnetic and neuroelectric �elds
arising from cortical sources, it is su�cient to replace the skull by a perfect insu-
lator, and, therefore, to model the head as a bounded brain-shaped homogeneous
conductor. Three surfaces S1; S2; S3 have to be considered at the scalp-air, the
skull-scalp, and the skull-brain interface, respectively, whereas the latter provides
the major contribution to the return currents. The three-dimensional geometry
of these surfaces may be obtained from MRI scans.

4 Results

To illustrate the simultaneously ongoing dynamics on the di�erent levels of or-
ganization we choose a simple example of induced wave propagation along the
cortical sheet. The connectivity is spatially homogeneous and has an exponential
fall-o�. Only one functional unit, the stimulus input, is de�ned just posterior to
the central �ssure, otherwise the neural sheet is completely homogeneous and
isotropic. For visualization purposes, only one hemisphere is shown in the fol-
lowing.
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At time t = 0 a stimulus signal r(t) is sent to the cortical sheet through
a�erent �bers via synaptic connections de�ned by �(x � x0) = e�jx�x0j. The
time course r(t) is an exponential increase until t=160ms, then followed by an
exponential decrease (plotted on the bottom of �gure 5). The stimulus excites
the neural sheet at site A, x = x0, and initiates wave propagation by means of a
circular traveling wave front undergoing attenuation in space and in time. The
time courses of the neural ensembles at site A and site B, which is more distant to
the stimulus site, are shown. For several selected time points the spatiotemporal
activity patterns on the sphere are plotted in the top row of �gure 5. Here and in
the following the color code represents -MAX to MAX as blue goes through black
to yellow. In the rows below, the same neural activity patterns are represented
on the unfolded cortex and on the folded cortex for the same time points after
being mapped from the spherical representation following sections 3.4 and 3.5.
Note that the circular travelling wave structure is preserved in both, the folded
cortical and the spherical coordinate system implying that the error caused by
the non-conformal coordinate transformation is not too signi�cant, at least for
the present case of purely homogeneous connectivity.

Fig. 5. The neural �elds evoked by a transient stimuli distributed on the sphere (top
row), in
ated cortex (second row) and folded cortex (third row) for 6 separate time
points. The bottom panel shows the time course of the stimulus (red line) and the
activation pattern for two individual sites on the spherical surface.
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For purposes of calculation of the forward EEG and MEG solutions, we use a
single layer head model (skull-brain) as de�ned in 3.6 and a spherical head shape.
The three-dimensional current distribution is de�ned on the folded cortical sur-
face located within the skull as illustrated on the bottom in �gure 6 (upper skull
surface is not shown). The color coding on the cortical surface re
ects the local
curvature at the vertices with blue and red indicating convex and concave curva-
ture, respectively. Note that the cerebellum is not part of these surfaces and has
been removed. Adjacent is plotted the three cross sections of the voxel distri-
butions showing the neural activity pattern color coded for t=200ms. The EEG
and MEG detectors are placed directly on the spherical skull surface, in�nitely
close to each other. For the MEG we assume radial gradiometers measuring the
radial component of the magnetic �eld B. We calculate the forward solutions of
the EEG and MEG measured by these detectors following (24),(25) and plot the
resulting EEG (top row) and MEG (second row) patterns for the selected times.
Note that the visualization is in the spherical system, the nose pointing to the
left, basically resembling the perspective shown in the picture on the bottom left
of �gure 6. In both patterns, EEG and MEG, a dipolar structure emerges with
a maximumactivity at around 280ms for the EEG and two maxima for MEG at
around 200ms and 360ms. From �gure 5 it is clear that the neural current dis-
tribution is damped and 
attens out as time evolves. However, the propagation
of the neural wave front along the cortical surface is such that the neuromag-
netic forward solution not only undergoes a spatial reorganization from 360ms
to 440ms, but also a temporal organization which does not map trivially on the
neural �eld activity.

Elaboration of this model will proceed not only at the neural level or even at
the macroscopic EEG and MEG level, but also at the behavioral level. That is,
the goal is not to simply reproduce observed spatiotemporal data sets by activat-
ing speci�c cortical regions, but to describe and explain behavioral phenomenona
via the dynamics within and between interconnected cortical and subcortical ar-
eas. For instance, several properties of spatiotemporal cortical activity, as mea-
sured by EEG and MEG, have been shown to accompany behavioral transitions
in coordinative states [17, 28, 38, 49]. We discussed one example, unimanual co-
ordination, in section 3. At present the link between these speci�c neural events
and the resulting behavioral dynamics is unknown in general, except for spe-
cial cases such as rhythmic coordination [16]. This is despite the fact that much
is known about the neural structures involved in producing coordinated move-
ments and how they are connected to one another. Similar phenomena have been
investigated using a one dimensional model of neural �eld dynamics [31,30, 33]
and it is expected that the application of the current model in its present and
future forms will continue to provide insight into behavioral phenomena.

It should be emphasized that the model presented here is not a form of
inverse solution that de�nes putative neural sources associated with a particular
experimental design and set of data. The mapping of neural �elds onto the folded
cortex and the calculation of the forward solution are performed for the purpose
of connecting cortical dynamics with neurophysiological and behavioral results.
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Fig. 6. The EEG (top row) and MEG (second row) forward solutions calculated at
the same 6 time points as shown in �gure 5. The activation patterns are plotted on a
spherical head model used in the forward calculation (10 cm diameter). The spherical
head model is oriented such that the nose is to the left of the page and the left side of
the head is facing the reader. The location of the left cortical hemisphere used here is
given within both the head of the subject (bottom left) and within the spherical model
of the head (three views on the bottom right).

The data that result from the model are purely a function of the dynamics of
the de�ned system, and are not constrained by observed data. It is possible
therefore, to de�ne a single dynamical model that can explain several di�erent
phenomena that may arise by changing input/output patterns. That is, the
same model may generate qualitatively di�erent data given di�erent types of
inputs or di�erent output constraints. Such a system may also explain changes
in perceptual phenomena despite the constancy of a stimulus (so-called bistable
stimuli). This model then represents a powerful tool capable of representing the
complexities that de�ne human brain and behavior.

5 Final remarks and future directions

Here we present a conceptual and methodological framework for the develop-
ment of a theoretical model of human brain function and behavior that operates
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at multiple levels of description. Interconnected neural ensembles with homoge-
neous connection represent a neural level, while a network or systems level is
de�ned by the interaction between heterogeneously connected cortical regions.
An even broader level is de�ned by the computation of the spatiotemporal dy-
namics of EEG and MEG generated by the model and the connection of these
data to behavioral dynamics. For concreteness: what is the neural substrate
of the coupling between left and right �nger within the bimanual coordination
paradigm? Heterogeneous �ber tracts that connect the cortical, subcortical and
spinal subsystems involved in coordination tasks still have to be implemented
in our platform. These pathways couple the subsystems and thus add to their
cross-talk and the resulting coordination dynamics. The heterogeneities intro-
duce additional entries in the connectivity matrix of the neural �eld [36] carry-
ing the information on distance and strength of coupling between areas. In the
near future, developing technologies, such as di�usion tensor weighted imaging
(DTI), promise to provide complete information of the white matter tracts in the
connectivity matrix of individual subjects [4], [54]. Developmental studies have
reported that mirror movements appear as normal phenomena in young children;
such mirror movements occur as mirror reversals of an intended movement on the
other side of the body and disappear after the �rst decade of life, coinciding with
the completion of myelination within the corpus callosum [8],[65] and implying
the involvement of callosal �bers in bimanual cross-talk. These �bers are known
to transmit both inhibitory and excitatory in
uences [50] and are generally to-
pographic, that is, they go to homologous points in the contralateral hemisphere.
Also, the involvement of subcortical structures and additional cortical areas dur-
ing coordination is known. For example, the cerebellum is activated ipsilaterally
during unimanual �nger movements, but sometimes bilaterally recruited during
sequential unimanual movements [26]. Supplementary motor areas (SMA) also
show increased activation (fMRI [27], positron emission tomography (PET) [56])
for bimanual than for unimanual activity.
This collection of neurophysiological and anatomical facts provides evidence on
the coupling which mediates the information transfer during coordination, i.e.
its neural basis established by matter such as callosal �bers, cerebellar contri-
butions, etc. . On the other hand, from the dynamics' perspective we provided
the descriptions and laws of coordination on selected levels of organization: the
dynamics of the behavioral patterns and the dynamics of the corresponding
neuronal patterns. A description in terms of neuronal activity patterns aids in
developing the �rst contacts between generic pattern formation mechanisms and
physiological quantities. The three-dimensional basis, developed throughout this
article, �nally sets the stage on which non-invasive brain imaging techniques,
theory and modelling, as well as spatiotemporal data analysis merge together
to address questions in behavioral neuroscience. We guided the reader through
our approach conceptually and along the speci�c example of unimanual coor-
dination. Its extensions to other domains of neuroscience, such as learning or
impairments, are numerous and left to the reader.
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