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Abstract What we know about infant learning and memory
is founded largely on systematic studies by the late Carolyn
Rovee-Collier (1942-2014) and her associates of a phenom-
enon called mobile conjugate reinforcement. Experiments
show that when a ribbon is attached from a 3-month-old
infant’s foot to a mobile suspended overhead the baby quickly
realizes it can make the mobile move. The mobile, which
offers interesting sights and sounds, responds conjugately to
the baby’s vigorous kicks which increase in rate by a factor
of 3—4. In this paper, using the concepts, methods and tools of
coordination dynamics, we present a theoretical model which
reproduces the experimental observations of Rovee-Collier
and others and predicts a number of additional features that
can be experimentally tested. The model is a dynamical sys-
tem consisting of three equations, one for the baby’s leg
movements, one for the jiggling motion of the mobile and
one for the functional coupling between the two. A key mech-
anism in the model is positive feedback which is shown to
depend sensitively on bifurcation parameters related to the
infant’s level of attention and inertial properties of the mobile.
The implications of our model for the dynamical (and devel-
opmental) origins of agency are discussed.
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1 Introduction

In 1969 Rovee and Rovee introduced a novel experimental
paradigm into the study of infant development that they called
mobile conjugate reinforcement. The paradigm was carried
out on 18 healthy and apparently normal infants ranging in
age from 9 to 12 weeks and consisted of three phases (Fig. 1).
The first and third phases were baseline conditions in which
the supine baby’s leg movements were recorded as he/she
simply observed a brightly colored mobile located directly
overhead, the main features of which were 7-10 wooden fig-
ures that if shook moved and made a noise. In the key second
testing or acquisition phase, a silk cord was looped around
the baby’s ankle and hooked without slack to an overhead bar
from which the mobile was suspended. Conjugate reinforce-
ment refers to the fact that any foot or leg movements caused
the mobile to move, the latter producing feedback to the baby
that may play a potentially reinforcing role. Although the
motion of the mobile was not measured, the idea was that
the greater the force or rate of the baby’s kicking! the more
effective should be the visual and auditory feedback from
the mobile’s movements and colliding wooden figures. In
the authors’ words: “... effectively more intense responding
produced a more intense reward” (Rovee and Rovee 1969,
p- 35). Remarkably, in the first 5 min of such conjugate rein-
forcement, the response rate of foot thrusts tripled relative to

1 Various words are used to describe the baby’s leg movements, such as
“foot thrusts,” “kicking” and so forth. In actual fact, the baby moves its
legs (quasi-)rhythmically and the usual quantities of phase, amplitude
and frequency are applicable.
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Fig. 1 Three phases of the experiment (see text for details)

control infants who were presented with identical but non-
contingent auditory, visual and kinesthetic stimulation (cord
attached).

A plethora of studies addressing a broad range of issues
followed this discovery, including many by Rovee and
her collaborators. For example, 3-month-old infants who
received visual conjugate reinforcement using movement of
the right leg exhibited complete reversal of leg dominance
when control of mobile movement was shifted to the other
leg (Rovee-Collier et al. 1978). This was an early demonstra-
tion of topographical response differentiation and functional
equivalence in young infants. Using a more refined biofeed-
back system, Angulo-Kinzler (2001) found that infants were
able to discover and produce highly specific hip and knee
movements that differed in duration and direction provided
they were accompanied by mobile movement and sound. She
interpreted the continuous information flow generated by the
movement and sound of the mobile along with proprioception
from self-generated movement as central to exploratory and
selection processes (see also Angulo-Kinzler et al. 2002). The
control that infants gain of such reinforcing consequences is
deemed to play a motivating role (Rovee-Collier and Gekoski
1979).

Similar results have emerged from other laboratories.
Chen et al. (2002) used a procedure in which intralimb kick-
ing patterns—not typically in the infant’s repertoire—were
differentiated on the basis of contact or no contact with
a touch pad that triggered mobile movement. Whether an
ankle weight was added or not, 4-month-old infants were
able to successfully learn novel intralimb movements. In
related work, Sargent et al. (2014) had 3-month-old infants
learn, through discovery, the contingency between leg action
and mobile activation. Their main goal was to study the
various strategies that infants might use to make the tran-
sition from spontaneous movement to task-specific action
(see also Thelen and Fisher 1983). Results suggested that
infants can change coordination patterns as long as they
provide a means of eliciting an interesting sensory experi-
ence, namely activation of the mobile. In short, the mobile
conjugate reinforcement paradigm has played a key role in
efforts to understand how infants discover and learn new pat-
terns of behavior. Moreover, since its introduction, MCR has
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been employed as a key paradigm to investigate the nature
of infant memory, including storage, retrieval and catego-
rization processes and their possible neural underpinnings
(Thelen and Smith 1994; Mullally and Maguire 2014).

2 Theoretical background: coordination dynamics

In the present paper, a theoretical model of mobile conju-
gate reinforcement is presented. Our model is based on the
concepts, methods and tools of coordination dynamics, a
theoretical and empirical framework aimed at understand-
ing the coordinated behavior of living things on several
levels of description (Fuchs 2013; Fuchs and Jirsa 2008;
Kelso 1995, 2009; Kelso and Haken 1995; Kelso et al.
2013). In the last 30 years or so, basic principles of coor-
dination dynamics have been shown to govern patterns of
coordination: (a) within a single moving limb and between
multiple moving limbs; (b) between the articulators during
speech production; (c) between limb movements and tactile,
visual and auditory stimuli; (d) between people interacting
with each other spontaneously or intentionally; (e) between
humans and other species such as riding a horse; and (f) even
between humans and virtual partners realized by machines
in the so-called human dynamic clamp (Dumas et al. 2014).
Since their original discovery in experiments (Kelso 1981,
1984) and consequent theoretical modeling (Haken et al.
1985; Kelso et al. 1990; Schoner et al. 1986), manifold
dynamical phenomena typical of pattern formation and self-
organization in nonlinear dynamical systems, such as low
dimensionality, multi- and meta-stable states, instabilities,
phase transitions, intermittency, symmetry breaking, have
been observed and often modeled in processes such as mul-
tifrequency coordination (e.g., DeGuzman and Kelso 1991),
parametric stabilization (e.g., Assisi et al. 2005), trajectory
formation (e.g., Buchanan et al. 1996), recruitment of new
degrees of freedom (e.g., Fink et al. 2000), postural stabiliza-
tion (e.g., Bardy et al. 1999), pattern recognition (e.g., Haken
et al. 1990), learning (e.g., Kostrubiec et al. 2012), hand-
writing (e.g., Perdikis et al. 2011) and intentional behavioral
change (e.g., DeLuca et al. 2010). Experiments and theory
have been extended to handle not only rhythmical behaviors
(e.g., Jeka et al. 1993; Schoner and Kelso 1988) but also
discrete movement generation (e.g., Fink et al. 2009; Jirsa
and Kelso 2005). Sophisticated time series measures (e.g.,
Eisenhammer et al. 1991; Chen et al. 1997) and dynamical
modeling, e.g., structured flows on manifolds (Huys et al.
2014), have been used to investigate the coordination among
multiple parts at multiple levels of description, including cel-
lular/neural, muscle-joint, EMG, kinematic, biomechanical,
brain (e.g., EEG, MEG, fMRI), hyperscanning (Kelso et al.
2013). Moreover, crucial predictions of theoretical models
connected to critical phenomena such as critical slowing
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down and critical fluctuations have been empirically tested
and validated at both behavioral/cognitive and neural/brain
levels (see Plenz and Niebur 2014).

A key focus of coordination dynamics is to identify collec-
tive or coordination variables and their (typically nonlinear)
dynamics. Collective variables are relational quantities that
are created by the cooperation or coupling among the indi-
vidual parts of a system and that in turn may govern the
behavior of the parts. Like the concept of order parameter in
physics (cf. Haken 1978, 1983), collective variables are low-
dimensional descriptions of complex systems. However, in
coordination dynamics which deals with the functional and
task-specific ordering among a system’s many parts, collec-
tive variables are not given a priori but have to be found
empirically. In numerous studies of coordination in both
laboratory and real-life settings (e.g., Howard et al. 2009),
collective variables have been shown to take the form of
relational quantities that span interactions within the body,
between the body and the environment and even between
bodies themselves. In all these cases, the coupling is not (or
not only) mechanical but rather informational; mutual infor-
mation exchange and bidirectional coupling between parts
and processes have been demonstrated to be a key aspect of
biological coordination (see, e.g., Kelso et al. 2013). The
governing dynamics may be said to correspond to emer-
gent, higher-order rules that cut across different systems,
different levels and different processes (Kelso 1995; Laugh-
lin and Pines 2000; Turvey and Carello 2012). Interestingly,
the concepts, methods and tools of self-organizing coordina-
tion dynamics were introduced as a research strategy into the
field of motor development in the 1980s (e.g., Thelen et al.
1987a) and drove the dynamical systems approach to cog-
nition and cognitive development (e.g., Chemero 2011; Port
and van Gelder 1995; Thelen and Smith 1994). As stressed by
Thelen and Smith (1994), dynamic systems have been used
as a “powerful conceptual metaphor” to understand ontoge-
netic changes that occur in development. Although Thelen
and Smith (1994, Fig. 7.3) depict the process of mobile con-
jugate reinforcement in terms of an ontogenetic landscape
containing hypothetical “attractors” for the mobile and “con-
text” and interpret this in terms of Edelman’s (1987) theory
of neuronal group selection, the difficult work of identifying
laws and mechanisms has not been done. Here, we provide
a quantitative model of the basic phenomenon of infant con-
jugate reinforcement that includes component processes and
their coupling that not only reproduces the experimentally
observed facts but suggests an underlying mechanism for the
emergence of self-motion. In this respect, we are inspired by
the work of Maxine Sheets-Johnstone (2011, p. 118) who
views spontaneous movement (the baby’s “kicking”) as the
constitutive source of agency (see also Kelso 2002). The
present work suggests a modest extension, namely that the
basis of causal agency is the “eureka effect,” viewed here as

a kind of phase transition that the baby experiences when its
kicks control an environmental event, here the jiggling of the
mobile.

3 The model

Beginning with Rovee and Rovee (1969), all the studies on
mobile conjugate reinforcement emphasize that infants, as a
result of recognizing the correspondence between their own
movements and the motion of the mobile, increase their kick
frequency to keep the mobile moving. In a first step, we intro-
duce two oscillators, one for the back and forth movements
of the baby’s leg and one for the movement of the mobile
together with a suitable dynamics for a parameter in the baby
oscillator that allows for controlling its frequency.

3.1 The baby

Human rhythmic movements in adults have been studied in
detail and shown to possess a number of basic features char-
acteristic of limit cycle oscillators (Haken et al. 1985; Kay
et al. 1987, 1991; Kelso et al. 1981; Beek et al. 1996). In
all cases, specific modeling has been informed by experi-
mental evidence. For example, Kay et al. (1987) following
the suggestion put forth in the Haken—Kelso—Bunz (HKB)
model studied experimentally the kinematic and phase por-
trait characteristics of simple rhythmical movements, finding
excellent agreement with a hybrid model that included van-
der-Pol and Rayleigh terms. Not only was a good quantitative
match between model and data obtained, essential qualitative
properties such as parametric changes in the shape of phase
plane trajectories were found too.

Stable limit cycles are isolated closed orbits in phase space
that attract nearby trajectories on the in- and outside; i.e.,
if the trajectory is perturbed it returns to its original orbit.
This is precisely what happens when rhythmic movements
in humans (or animals) are perturbed and it is one reason
why limit cycles have been used extensively in neural and
behavioral models of human and animal movements over the
last several decades (e.g., Ajallooeian et al. 2013; Beek et al.
1995, 1996; Eisenhammer et al. 1991; Ijspeertetal. 2013a,b).
Moreover, because of their stability properties, limit cycle
oscillators have been employed as dynamic movement prim-
itives in robotics applications (e.g., Raibert 1986; Ijspeert
et al. 2013b). In human experiments, Kay et al. (1991) used
transient mechanical perturbations to perturb the limb off its
limit cycle to calculate attractor strength, accompanied by
phase response analysis, Fourier spectra and calculations of
correlation dimension. No biological rhythmic movements
are perfectly periodic and all exhibit variability. Nevertheless,
the data supported the limit cycle model, though small devi-
ations were also noted which might imply a nonautonomous
component (see also Beek et al. 2002; Fuchs et al. 2000;
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Jirsa et al. 1998). Despite this caveat, Huys et al. (2014) in a
recent extensive critical review of the literature covering very
many studies up to the present time, conclude that despite
some minor modifications “the two-dimensional limit cycle
approximation accounts for most experimentally observed
phenomena, which justifies their (continued) use as building
blocks in the HKB model” (p. 306). Huys et al. (2014) go on
to illustrate their “structured flows on manifolds” (SFM) con-
cept by showing how the four-dimensional space spanned by
the HKB model may be represented by a single limit cycle,
i.e., as a phase flow in a low-dimensional subspace of a high-
dimensional dynamical system.

Although not explicitly modeled, extensive experimental
studies have been performed by Thelen and colleagues on
supine kicking in infants (see, e.g., Jensen et al. 1989; The-
len and Fisher 1983; Thelen et al. 1981, 1987b). For typical
3-month-olds, the age group used in Rovee’s experiments on
mobile conjugate reinforcement, exemplar movement kine-
matics of hip, knee and ankle joints (e.g., in Thelen and Fisher
1983) and phase plane trajectories (e.g., Jensen et al. 1989)
were found to be strongly reminiscent of limit cycle behavior.
As Thelen and Smith (1994) remark, “the high dimension-
ality of infant kicking is condensed to produce a movement
of far fewer degrees of freedom ... The cyclic trajectories
of the movement act like a stable attractor (although this
has not been rigorously tested) so that there is topographi-
cal similarity in the collective variables of kick displacement
vs. velocity” (p. 81). In the case of mobile conjugate rein-
forcement, experiments show that the amplitude of the baby’s
kicks stays relatively constant and only the kick frequency
changes. As a minimum description, this suggests a van-der-
Pol term for a stable limit cycle and a Duffing term to change
the frequency. The effects of these nonlinearities are well
known (Fuchs 2013), and they offer a constructive way to
handle mathematically what babies actually do, i.e., almost
periodic kicking with an increase in rate when the mobile
moves. Thus, for modeling the baby’s kicks, we use a van-
der-Pol oscillator with an additional Duffing term of the form

X4 iy + ax?} + x{wd +6x% =0 1)
~—— ——
v @2

where y represents a nonlinear damping term, which leads to
astable limit cycle for y < 0 and o > 0 with peak amplitude
Xm

v

with r=_|—=— 2)
o

X = 2r

The frequency is determined by wp and, due to the Duffing
term 8x2, depends on the amplitude. Explicitly, the angular
velocity w can be approximated by

o = w} + 362 = w} — 357 3)
o
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The square of the angular velocity, w?, increases linearly with
8, with o and y kept fixed.

3.2 The mobile

The mobile is a complex moving stimulus that becomes more
attractive when the infant moves it. Without the driving force
of the baby’s kicks, the mobile may be represented by a
damped harmonic oscillator

V4 ey + 25y =cx(t) 4)

Because the baby and the mobile are connected by a rib-
bon without slack, a linear coupling is the simplest and
best reflects the physics of the situation. Of course the cou-
pling here is not just mechanical. The pull of the tether is
directly sensed by the baby and likely amplifies the haptic
and kinesthetic information that arises when the baby moves.
Also several studies have shown that causal interaction can
be produced without the physical connection (cf. Sect. 1),
indicating that the coupling is essentially informational. For
present purposes, in the spirit of Occam’s razor, we stick to
the simplest (linear) form of coupling that works (see also
Sect. 6).

In the first and third phase of the experiment, the baby is
not connected to the mobile leading to c = 0. Even though the
dynamics of the mobile was not measured in any quantitative
way—to our knowledge in any of the experiments to date—
it is clear from the verbal description in Rovee and Rovee
(1969) that its amplitude increased with an increasing rate of
kicks as will be discussed in more detail later on.

A damped harmonic system like (4) oscillates at the fre-
quency of the driver (after a short transient), and its amplitude
depends on the eigenfrequency §2¢, damping €, driving fre-
quency o and amplitude x,, in a well-known way for systems
showing resonance

2 cz)c,%1 )
Im = (28 — 0?)? + 20?

The maximum amplitude for fixed coupling ¢ and driving x,,
occurs when the denominator in (5) has a minimum or

d 2 2,2 2.2
—A{(£25 —
dw{( ) — @)+ e w7}
= —40(2§ — ) + 26’0 =0

1
2% - 562 (6)

— Wy =

Moreover, there is a well-determined shift between the phase
of the driver and the driven system given by

¢ = arctan ;—w (7)
2 2

0—(1)
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i.e., for o < £ the two oscillators are in phase, whereas
for w = £2 there is a phase shift of 90°.

3.3 Conjugate reinforcement

The most important aspect of the conjugate reinforcement
paradigm is that the mobile responds in a time-locked fashion
to the baby’s leg movements. The faster the babies kick, the
more motion and sound they produce. The more motion and
sound produced, the more the babies kick. Experiments show
that when a baby is coupled to the mobile and “realizes” that it
causes mobile movement, kicking rate increases by a factor
3 to 4. In the model, this change in the kick frequency is
realized by an increase in the parameter 4 in (1) driven by the
mobile oscillator y with a dynamics described by

5= ay2 — k6 ®)

The interpretation of a and « in (8) is pretty straight-forward:
a may be viewed as a key parameter because it serves to
couple the mobile and the baby. All the studies on mobile con-
jugate reinforcement agree that in 3-month-olds the infant’s
attention is captured by the motion of the mobile itself,
with its salient visual and auditory features. The parame-
ter a reflects the tight linkage of the latter to kinesthetic
information generated by vigorous leg movements and the
haptic coupling between the tether and the mobile. x limits
the increase and leads to the decay in rate when the baby and
the mobile become decoupled. Without the driving, § decays
exponentially. This closes the circle of interactions between
the baby being coupled to the mobile and the motion of the
mobile caused by the baby changing its actions.

3.4 Quantitative simulation of conjugate reinforcement

The dynamical system to model conjugate reinforcement as
described by Rovee and Rovee (1969) and others (see Sect. 1)
consists of three equations, one for the baby’s leg movements,
one for the motion of the mobile and one for the coordination
between the two.

X4 iy + ax?} + x{wd +6x% =0 9)
J4+ey+ 25y =cx (10)
§=ay? —«s (11)

We first show that the model can reproduce the experimen-
tal findings and provide a deeper analysis of the dynamical
system in Sects. 4 and 5.

In phase 1 of the experiment, the baby and the mobile
are not coupled (¢ = 0) and the baby performs spontaneous
kicks with a rate of about 10 per minute. For the model, this
means that the baby oscillator (9) is a pure van-der-Pol that

0 . . . . ]
0 1 2 3 4 t[min]

Fig. 2 First part of phase 2: The system is in a positive feedback loop.
The driving of y leads to an increases in 6 (lower part), which increases
the frequency of x. Faster driving leads to a larger amplitude in y
and a further increase in §. Initially, the two oscillators are close to
in phase (upper left; baby dashed, mobile solid). When the steady state
is approached, their phase shift is about 90° (upper right). Parameters:
y=—-025a=1,0w=06,e=1,20=22,c=2,a=0.18

oscillates at its basic frequency wg and the mobile and § are at
their resting states y = § = 0. In the experiment, this phase
has a duration of 3 min.

For the simulation, the following parameters were used:
y = —0.25, « = 1, which leads to a stable limit cycle
representing the baby’s kicks with a peak amplitude x,, =
2r = 1. As § = 0 during this phase, the angular velocity is
given by wyp = 0.6, and due to ¢ = 0, there is no coupling
rendering the other parameters irrelevant at this point.

After a delay of 2 min during which a cord was looped
around the baby’s left ankle and hooked to the suspension
bar of the mobile, phase 2 starts where each kick of the
baby causes movement in the mobile. Even though there
are no quantitative measures of the mobile movement nor
any estimates of force produced, it is stated in Rovee and
Rovee (1969, p. 35): “... it was apparent that the variety of
figure movement increased directly with the force or rate of
response. Very rapid responding produced auditory feedback
from colliding wooden figures, such that effectively more
intense responding produced a more intense reward.” As
a consequence, during a period of about 5min the kicking
rate increased monotonically, saturating at 30—40 kicks per
minute, 3 to 4 times the uncoupled rate. We conclude from
the above statement that at this point the mobile oscillator is
close to resonance.

In the model, this part of phase 2 is shown in Fig. 2, with
the kicks, x(¢), dashed and the mobile movement, y(¢), as
solid lines in the upper half. The left part shows a time early
inphase2 (f = 0.1—0.3 min). With ¢ = 2, the two oscillators
in (9) and (10) are now coupled and y is driven by the periodic
force x. With 29 = 2.2, wp = 0.6 and € = 1, initially the
system is far from resonance and both oscillators are almost
in phase at this stage. As the mobile oscillations y? are a
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Fig. 3 Phase 3: Baby and mobile, i.e., x and y are no longer coupled
and the system returns to its initial state. Upper part: Baby (dashed)
and mobile (solid) oscillator at the beginning (/eff) and end (right) of
phase 3. Lower part: Decay of §. Parameters: Same as in Fig. 2, except
c=0

positive input (a = 0.18) to the dynamics in (11), § is driven
away from its initial fixed point toward positive values. Now
a positive feedback loop starts: The increase in § feeds into x;
i.e., the kicking rate increases. The faster frequency feeds into
the mobile y, and, as y oscillates at the driver’s frequency,
its rate also increases. This leads to a larger amplitude in y
because the mobile gets closer to resonance, which increases
8 even further. The frequency of x, the amplitude of y and
the value of § saturate when the frequencies of x and y are
close to wy,, i.e., when the system is near resonance. In addi-
tion, the bigger the value of §, the more important the decay
term, —k 4, in (11) becomes and an equilibrium is reached.
The right upper part in Fig. 2 corresponds to a time about 5
min into phase 2, the time it takes the babies in the experi-
ment to reach their maximum kick rate. The system is close
to resonance, and the phase shift between the oscillators is
about 90°.

The lower box of Fig. 2 shows the monotonic increase
in § during the first 5 min of phase 2. The second part of
phase 2, roughly 10min long, is a steady-state process. The
frequencies and amplitudes of the oscillators as well as the
value of § remain constant.

After about 15 min of the baby being connected to the
mobile, the ribbon is removed in a 2-min period after which
phase 3 starts. Now the baby can no longer trigger move-
ments of the mobile and within about 5 min the kicking rate
decreases to the initial level observed during phase 1. The
dynamics of x, y and § during phase 3 is shown in Fig. 3.

The results in Rovee and Rovee (1969) are plotted in Fig. 4
(left) as the number of kicks counted in a given minute dur-
ing the 27 min of each trial. In the model, this corresponds to
the number of maxima of the baby oscillator in a given time
interval. The result from the simulation in this representation
is shown in Fig. 4 (right) and is in good agreement with the
experiment.
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Fig. 4 LeftRovee and Rovee (1969) presented their experimental find-
ings as number of kicks in a given minute. Right Representation of the
model results in the same way. Here, the dots on the lines are the number
of maxima of the baby oscillator in that minute
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0
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Fig. 5 Model quantities over the entire trial: Amplitudes x,, and y,,,
angular velocity w, §/2 and the relative phase ¢

Figure 5 shows the dynamics of all model parameters and
quantities over an entire trial.

3.5 Parameters

Most of the parameters are determined by the experimental
findings. Three degrees of freedom, the amplitudes of the
two oscillators and time, can be chosen arbitrarily. The peak
amplitude of the baby oscillator is given by

x, =2r =2 /-Y with [”2_0‘25
o a=1

The frequencies wqy and w,, represent the lower and upper
kicking rates of about 10 and 30 kicks per minute, respec-
tively. With wy = 0.6 and w,, = 2, we find for the kicking
rates

—>xp=1 (12)

100 % 0.6 100 %2
=20 96 and vy, = ——t "

=31.8 13
2 2 (13)

Vi

kicks per minute, where our minute has 100 s, which defines
the unit of time. The frequency of the mobile oscillator £2
is then determined from (6)

1
Q0 =,/ + 562 (14)
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where wy, is the frequency we target. Eventually, the oscil- T 7
lators will not be exactly at this rate as their w also depends
on the ratio of « and a. 1 1

During phase 3 the mobile is at rest; i.e., y> vanishes and
8 falls off exponentially according to 0 0
§=—k8 — 8(t)=5ne ™ asy -
which leads to « =~ 0.01 to be in agreement with the experi- -2 -2

-1 -05 0 0.5 €T -1 -05 0 0.5 Yy

ment.
The peak amplitude for the mobile is given by

2= cx2
" (.Qg —w?)? +e2w?

(16)

For the steady state during phase 2, the system is close to
resonance and the first term in the denominator, (.Qg — a)2)2,
is much smaller than €2w? and can be neglected, which sim-
plifies the amplitude around resonance

CXm |

Yy —=1 —
€W

C = €wnpXxy = 2€ 17

The damping of the mobile oscillator, €, is an interesting
parameter because it is a physical quantity that can be easily
manipulated. The parameter a may be conceived as an atten-
tion parameter (see Sect. 7). k and a are mainly fixed by the
rise and fall times in the model (cf. Fig. 5). We postpone fur-
ther discussion of the interrelations among these parameters
until Sect. 5.

4 Further analysis of the model

To further analyze the properties of the model, we replace
the oscillating driving force y%(¢) in (11) by its mean value
over one period y2. Moreover, we assumed for the parameter
estimation in the previous section that the amplitude of the
baby oscillator is independent of its frequency (as it is the
case for a pure van-der-Pol) and that the driving of the mobile
oscillator is sinusoidal. That the latter is not exactly the case
is evident from the phase space plots in Fig. 6, which shows
strong nonlinear features for the baby oscillator.

To this end, we calculated the oscillator frequencies and
amplitudes as well as y2 ~ y,zn /2 and the relative phase ¢
as functions of § from the model analytically and from a
numerical simulation. The results are shown in Fig. 7 with
the numerical results shown as solid lines and the analytical
dependence as dashed lines.

The baby oscillator exhibits a slight dependence of its
amplitude x,, on frequency, but the difference from a con-
stant amplitude is small enough to be neglected. The angular
velocity w is expected to increase with § as

w =/} + 35r2 (18)

Fig. 6 Phase space plots of the baby (left) and mobile (right) oscillators
during the first 2 min of phase 2 and during the steady state (inner and
outer trajectories, respectively)

Fig. 7 Comparison of analytical (dashed) and numerical (solid) depen-
dence of the oscillators’ amplitudes (x,, and yy), frequency w, mean

of the square of y(¢) over one period y2 and phase shift between the
oscillators, ¢, on 6 fore = 1

but increases slower in the numerical simulation. This differ-
ence leads to a shift in the resonance curves for y,, and y2. In
addition, y,, does not reach a maximum of y,, = 1, and con-
sequently, the maximum of y? is also smaller in the numerical
simulation than expected from the idealized model. Within
the parameter range of relevance here, these discrepancies
can be compensated with two correction factors for § and
Ym, namely

§™ = 0.876@ and y,g') =0.93 y,(na) (19)

where the superscripts (n) and (a) correspond to numeri-
cal and analytical, respectively. After these corrections, the
numerical and analytical dependencies are in good agreement
as shown in Fig. 8.

5 Transitions and criticality in the model
By using the average ? in (11), the dynamics of § can be

analyzed independent of the other two equations. We find for
the fixed points
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Fig. 9 Fixed points from (22) as intersections between straight lines
with slopes k/a and the resonance curve for values of € below (left)
and above (right) a critical value €. In the first case, the system can
have one, two or three fixed points, whereas in the second case only one
intersection is possible

$=ay2—ks=0 — 8=C—ZF (20)
K
with
o 2 2.2
7= 1 2rc) _ 2rec 21
2(28 — 0)? + 202

(902 —w?)? 4+ 2w?

The fixed points are given by the intersection of a straight
line through the origin and the resonance curve

K 5 — 2r2c? 22)
a (25 — 0?)? + 202

where the right-hand side depends on § because

w® = 0} + 3617 (23)

Depending on the damping parameter €, we find two qual-
itatively different regions, where for small values of € the
system can have one, two of three fixed points depending on
a, whereas above a critical value €, only a single intersection
is possible as shown in Fig. 9.

The fixed points can be calculated from (22), which is a
cubic equation in é and reads explicitly

@ Springer

1
9rts® — 6r2(28 — w} — 562}52

2ar?c?

+ {(93 — )2+ ezwg} 5 — ) (24)

For (24) to have three real solutions, it is necessary (but not
sufficient) that its derivative

1
27r*8% — 1217 [93 — Wi — 562] 8
(25 — w))? + 225 =0 (25)

has two real solutions corresponding to a maximum and min-
imum given by

1 1
d12= 92 lZ(Qg - a)% - 562)

+/(922 — 0} + 2@} — 42D + € (26)

For the critical €, the discriminant in (26) has to vanish so
that there is only a single real solution, i.e., the minimum
and maximum collide, leading to an inflection point with a
horizontal tangent. The critical € as a function of Qg and a)(z)
is therefore given by

1
€, = 5 [493 — W) /12828 — 3wg] (27)

In our model, the frequency of the mobile oscillator £2¢
depends on €

1
28 =2 + 562 (28)

Inserting (27) into (28) and solving for € leads to one mean-
ingful, i.e., positive value for the critical parameter

2V3
€2 = 2w, + T\/4wfn + wf — 202,08
— €.~ 1.0183 29)

as a function of wg and w,, and the numerical values used
before.

The dynamics of (20) for the damping parameter € below,
at and above its critical value €, is summarized in Figs. 10,
11 and 12. On the left are phase space plots with the func-
tion (24), where intersections with the horizontal line with a
negative slope indicate § values that are stable fixed points
(attractors), whereas intersections with a positive slope rep-
resent unstable fixed points (repellers). In the middle the
resonance curves and their intersections with the lines x§/a
are shown, and on the right are the temporal dynamics of §
during the first 10 min of phase 2.
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Fig. 10 Dynamical properties for € = 0.75 < €. for the critical value
of a (dashed) as well as 0.02 and 0.04 above and below a, (solid). Left
Phase space plots § as a function of 8. There is a critical value a. where
the system has two fixed points, separating parameter regions with three
and a single fixed point. Middle Fixed points as intersections of straight
lines with slope « /a with the resonance curve. Right Temporal dynamics
of 6 during the first 10 min of phase 2

003l €=1.0183

Y a.=0.1217 /-

2 4 6 5 [} 2 4 6 8 ¢

Fig. 12 Same as Fig. 10 for € = 1.25 > ¢,. In this case, there is no
critical a and a, indicates the value for which the intersection occurs at
resonance

For values of € < €, there is a critical value a. that sepa-
rates parameter regions where one or three fixed points exist.
For values of a < a,, the system reaches a stationary state
below the inflection point of the resonance curve. This means
that when a is low, § is small and the kick rate does not
increase much. Only for a > a, does the system enter a
state close to resonance where kicking rates can triple. The
dynamics of § during the transient part of phase 2 speeds up
considerably before the steady state is reached.

For damping parameters at or above €., there is only one
fixed point in the system but remnants of the other two are
still visible in the phase space plot and the §-dynamics for
damping values close to €.

The dynamics of § described by (20) can be derived from
a potential function

dv(s)

§ = —— -’

b=ay? - ds

(30)

0.18
0.16

014f.. -

0.12

0.1

€=0.75
0o 2 4 6 50 2 4 6 50 2 4 6 §

€=1.0183 e=1.25

Fig. 13 Potential functions V(8) from (32) for € below (left) at (middle)
and above (right) the critical value. Functions are shown for a, (dashed)
and 0.02 and 0.04 above and below this value. Dotted lines are used to
make it easier to follow them through the common intersection

o
6 /

\€e= 0.75 €=1.0183
4 Se

0.1 0.12 0.14 0.16 4 0.1 0.12 0.14 0.16 @ 0.1 0.12 0.14 0.16 @
Fig. 14 Bifurcation diagrams: The fixed points for § as a function of a
for € below (left) at (middle) and above (right) the critical value. Stable
fixed points (attractors) are indicated by solid lines, and dashed lines
correspond to unstable points (repellers). For € < €., the system shows
hysteresis

with

2ar?c?
V(8)=—/[ —K5Id3
n(s)

1
n(8) = 9r*s? — 6r? [93 — Wi — 562] 8

+(28 — 0} + 31)
Explicitly, the potential takes the form
2ac?
V() = ———
3e,/28 — iez
3r28 — (2% — o} — L2 1
X arctan ($2% 0= 2¢) + 5/{82
€)% - iez
(32)

The potential functions (32) are shown in Fig. 13 for € below,
at and above ¢, for five values at and around a.

In Fig. 14, bifurcation diagrams for § as functions of the
parameter a are shown. For € < €., the system exhibits hys-
teresis. For e < €., there is a threshold for a: When a is below
that threshold only small kicking rates can be reached and
only above a, can the large kicking rates seen experimentally
occur. This is the discontinuity that leads to hysteresis in the
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model. Above €. (Fig. 14, right) there is a continuum with
larger a meaning faster kicks.

6 Model predictions

As mentioned above, a critical value for the damping constant
of the mobile, €., separates two parameter régimes where the
dynamics is monostable or bistable. As Fig. 14 (left) shows,
for small damping a critical value a, of the attention parame-
ter must be reached for the baby to realize it is causing the
motion of the mobile. If a single kick already sets the mobile
in motion there is no need to kick beyond the spontaneous
rate to keep it going. Moreover, it is probably crucial for the
“eureka effect” that every kick leads to a substantial change
in the mobile that the baby can detect as causing its motion.
A manipulation of the damping characteristic of the mobile
is therefore an important test for the model. Another quantity
that can be manipulated experimentally is the resonant fre-
quency of the mobile in relation to the baby’s kick rate. Does
the baby adjust its kick rate to the resonant frequency of the
mobile? If so, since fast kicks produce a smaller response, a
low resonant frequency should trigger a slower kicking rate.
Our model, basically a three-dimensional dynamical system
for the key components with a single bifurcation parameter, €,
reproduces the MCR phenomenon. Although more detailed
data on individual trials on individual babies would be of con-
siderable interest to compare with predictions of our model
(cf. Fig. 5 and Sect. 5), the overall picture on infant kick rate
is captured quite nicely (cf. Fig. 4).

How the coupling between baby and mobile affects the
baby’s behavior and sense of agency is an open issue. Instead
of aribbon or tether, Chen et al. (2002) used a touch pad that
when contacted by the baby’s foot triggered mobile move-
ment. Recent work by Sargent et al. (2014) used a “virtual
threshold,” individualized to each baby’s spontaneous kick-
ing action, that when crossed activated the mobile. Although
the baby’s sense of its own movement is crucial to produce
MCR, enhanced tactile and kinesthetic information through
the tension on the tether does not appear to be mandatory. As
long as the baby detects that through his or her own move-
ments he or she is causing the mobile to move, it does not
appear to matter how the baby is coupled to the mobile. It
may well be, however, that certain forms of coupling are
more effective than others. As of now, our model predicts that
bidirectional coupling between baby and mobile movement
is crucial; the form that coupling takes, e.g., in terms of cre-
ating an optimal infant/environment interface needs further
study. Finally, it is clear that after baby and mobile motion are
decoupled, the baby’s movements take some time to return
to their baseline rate. This suggests that as a result of making
the mobile move, expectations are created in an if/then mode;
i.e., if I continue to kick then this will cause the mobile to
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move. The conditions under which such expectations are cre-
ated and the time scales of their demise, i.e., the ¥ parameter
are worth exploring.

7 Discussion

Conjugate reinforcement is a term that stems from the tra-
dition of operant conditioning: It has been dubbed the most
“fundamental schedule” in that field because it parallels our
perceptions and interactions with nature. A remarkable fea-
ture of mobile conjugate reinforcement (MCR) is that within
minutes, infants recognize the correspondence between their
own movements and the motion of the mobile. This robust
behavioral phenomenon has been used not only as a win-
dow into the processes of infant learning, remembering and
forgetting (for review Rovee-Collier et al. 1980; Mullally
and Maguire 2014) but also as a means to understand basic
aspects of motor development (Kelso and Clark 1982; Thelen
and Smith 1994) including topographical response differ-
entiation (Angulo-Kinzler 2001; Rovee-Collier et al. 1978)
and the transition from spontaneous to instrumental behav-
ior (Sargent et al. 2014; Thelen and Fisher 1983). Although
the infant-mobile interaction is clearly co-regulated, all the
studies to date have focused analysis on the baby and may
be said to be “organism-centric”’: The only aspects mea-
sured are the number of kicks or “motor units” (Thelen
1994) produced over a given interval of time in response
to the stimulus. Theoretically, the coordination between
neuromuscular and perceptual activities is deemed to be
crucial for development (Lewis 2000; Thelen and Smith
1994), but the relationship between baby movement and
mobile motion is never quantified. Here, using the con-
cepts, methods and tools of coordination dynamics we
provide a model that accounts for not just what babies do
(such as increase the rate of kicking or alter leg movement
patterns), but offers an underlying dynamical mechanism
based on the role the mobile plays and the joint pattern
of interaction or functional coupling between baby and
mobile.

A most remarkable aspect of MCR is that the baby—
capable of producing spontaneous leg movements—rapidly
realizes that it, not some outside force, is moving the mobile.
A switching or kind of “eureka effect” occurs between spon-
taneous and intentional movement. The faster the baby kicks,
the more vigorously the mobile will move. This conjugate
arrangement leads to a high and stable rate of leg move-
ment, which subsides only when the ribbon is detached. Such
contingent control of the mobile appears to be highly rein-
forcing (of high “value” in modern parlance) and appears to
depend on both response rate and amplitude. Rovee-Collier
and Gekoski (1979) report that depending on response rate,
the inertial properties, essentially the damping of the mobile,
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permit recurrent kicks to drive the intensity of mobile move-
ments up to some (unmeasured) point of activation.

The key mechanism in the model underlying the eureka-
like phase transition is positive feedback: A spontaneous
“kick” moves the mobile, the perceptual consequences of
which lead to more forceful kicks and a (tripling) increase
in the kick rate. In this respect, evidence suggests that the
baby’s attention to self-generated movements and the kines-
thetic, visual and auditory consequences they produce is a
crucial factor. In our model, if this parameter is below a criti-
cal threshold, kick rate does not increase much. Only above a
critical value of a does the kick rate increase to around triple
the baseline level. This feature of the model at the level of
individual trials is obviously open to testing. High arousal
and sustained visual attention accompanied by open arm up
and down motions along with fast leg movements is known
to peak in infants around 9—12 weeks. Interestingly, in other
contexts that involve mutual coupling, this kind of “excited
attention” on the part of the infant affects the occurrence
of maternal affectionate talking which is also bidirectionally
linked to infant smiling (Lavelli and Fogel 2013). Although
not modeled as such, positive feedback appears to be an
essential mechanism not just for MCR but also for normal
communication patterns and the secure attachment of mother
and infant. Our model is reminiscent of theories of pat-
tern formation in development (Gierer and Meinhardt 1972;
Meinhardt 1982) that stress the joint factors of positive feed-
back (autocatalysis or “self-enhancement”) and inhibition
(here represented by «, which limits the increase in kicking).
Likewise, our model is compatible with the “feed-forward
loop” network motif, so ubiquitous in biological circuits
(Alon 2007). It is intriguing to think that the same principles
shown here to govern an essential aspect of infant behav-
ior may apply also to biological development in general.
Detailed modeling of recurrent networks composed of exci-
tatory and inhibitory neuron layers in primary visual cortex
suggests that both highly structured visual input and intrinsic
spontaneous activity drive the learning of synapses to pro-
duce direction selective neurons. Interestingly, Wenisch et al.
(2005) demonstrate that spatiotemporal tuning of synapses
via an asymmetric coupling structure is capable of produc-
ing maps of direction preference much like those found in
optical imaging studies. Their principle of direction selective
neuronal responses based on asymmetric coupling of inputs
within a neuron’s integration field provides a promising basis
for learning by spike-timing-dependent plasticity: Coupling
strengths within the integration field may be modified when
learning is driven by an activity wave such as would be pro-
duced by a moving mobile.

The fact that MCR involves complex coordinated behavior
in which highly complex “stimuli” are linked to time-locked
movement suggests a transition from quasi-random to more
periodic movements, a kind of “disorder” to “order” transi-

tion. That the leg drives the mobile and that mobile and leg
movements become synchronized may relate to other exam-
ples in nature ranging from fireflies, to “pacemaker” neurons
and locust flight pattern generators (see Kelso et al. 1990).
Thus, MCR may fall under the more general principles of
coordination and entrainment. Once the infant realizes it is
causing the mobile to jiggle, information from various modal-
ities must be integrated for the task at hand. Although the
ribbon is a physical connection, the coordination observed
in MCR is clearly informational and presumably relies on an
intact nervous system. In this regard, although we know quite
a lot about the neural circuitry (DeLuca et al. 2010; Jantzen
et al. 2004) and dynamics (Kelso et al. 1998; Mayville et al.
2002) involved in simple synchronization and syncopation
tasks, developmental research using fMRI is at a very early
stage (Mullally and Maguire 2014). Combining MCR with
modern brain imaging methods is thus highly desirable. As in
the case of modeling the brain dynamics of bimanual and sen-
sorimotor coordination (Jirsa et al. 1998; Fuchs et al. 2000;
Kelso et al. 2013; see also Rabinovich et al. 2012), this opens
up the possibility to make direct connections between our
theoretical model of MCR and its neurophysiological coun-
terparts.

Finally, we note that whereas MCR has been recognized as
an impressive example of the infant’s ability to control, learn
and remember, we draw attention to the deeper issue of the
origins of self-motion?. On first blush, the present model sug-
gests an interpretation of mobile conjugate reinforcement in
which synergetic self-organization, the spontaneous forma-
tion and change of patterns in open, nonequilibrium systems
(Haken 1978, 1983)—here instantiated in the spontaneous
kicking movements of prelinguistic infants—gives rise to
agency (Kelso 2002). While recognizing the significance of
spontaneous self-organizing processes, the present analysis
goes a step further. It says that the sense of self emerges
as an explicitly collective effect spanning baby and mobile
movement, a meaningful context-specific relation between
the organism and its environment. In more exacting terms,
the sense of agency amounts to the “eureka” experience of
making something happen in the world, a near magical com-
bination of animate and inanimate movement.
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