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Abstract Multilevel crosstalk as a neural basis for
motor control has been widely discussed in the liter-
ature. Since no natural process is instantaneous, any
crosstalk model should incorporate time delays, which
are known to induce temporal coupling between func-
tional elements and stabilize or destabilize a particular
mode of coordination. In this article, we systematically
study the dynamics of rhythmic bimanual coordination
under the influence of varying connection topology as
realized by callosal fibers, cortico-thalamic projections,
and crossing peripheral fibers. Such connectivity con-
tributes to various degrees of neural crosstalk between
the effectors which we continuously parameterize in a
mathematical model. We identify the stability regimes
of bimanual coordination as a function of the degree
of neural crosstalk, movement amplitude and the time
delays involved due to signal processing. Prominent
examples include explanations of the decreased stabil-
ity of the antiphase mode of coordination in split brain
patients and the role of coupling in mediating bimanual
coordination.
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1 Introduction

The literature on the neural basis of bimanual coordina-
tion has mainly been dominated by three concepts. The
generalized motor program (GMP) (Bernstein 1967;
Schmidt 1975) hypothesis states the existence of a single
unified motor plan for limb movements, which is exe-
cuted by the central nervous system. A second hypoth-
esis on intermanual crosstalk (Swinnen 2002; Cardoso
de Oliveira 2002) assumes that two independent motor
plans exist and that the coordination dynamics between
the two end-effectors (limbs) is controlled by their cros-
stalk, which is defined as the interaction between differ-
ent functional elements (Gerloff and Andres 2002) at
multiple levels of organization. Functional elements are
characterized by state variables such as finger move-
ment position or electrochemical activity in muscles
and brain tissues and play a functional role. Finally,
the dynamic systems approach (Kelso 1995) aims to
identify general laws of pattern formation in human
movements rather than searching for a locus of move-
ment pattern generation. Such laws are expressed by a
low-dimensional dynamics of so-called order parame-
ters (Haken 1983), also sometimes referred to as collec-
tive variables (Kelso 1995), inspired by ideas seeded in
the theory of self-organization and Synergetics (Haken
1983; Kelso 1995). The order parameter dynamics can be
rigorously obtained by a bottom-up construction from
its high-dimensional microscopic equations using time-
scale hierarchies (Haken 1983). The top-down approach
takes the opposite route and assumes the existence of a
low-dimensional order parameter dynamics. It aims to
identify the order parameter dynamics phenomenolog-
ically without knowledge of the underlying microscopic
dynamics. The identification of the order parameters is
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guided by characteristics displayed close to transition
points such as a slow characteristic time scale, critical
fluctuations and critical slowing down. A classic exam-
ple is the task of rhythmic bimanual coordination (Kelso
1981) in movement sciences: under instructions to
increase the frequency of bimanual movements, the
antiphase motion involving simultaneous flexor and
extensor muscle activities, the subject’s finger move-
ments shift abruptly to an inphase mode that involves
simultaneous activation of homologous muscle groups
(Kelso 1981). The relative phase between the two fin-
gers has been interpreted as an order parameter of
the system and its dynamics have been mathematically
modelled using nonlinearly and instantaneously coupled
ordinary differential equations (Haken et al. 1985).
Subsequent research promulgated a plethora of mod-
els to explain the neural control of bimanual coordi-
nation (Haken et al. 1985; Nagashino and Kelso 1992;
Grossberg et al. 1997; Jirsa et al. 1998; Rokni et al. 2003;
Daffertshofer et al. 2005). However, the role of time
delays is overlooked in most of these crosstalk mod-
els of motor behavior without rigorous justification, de-
spite the fact that time delay is well-known to influence
the stability properties of dynamical systems in biology
(MacDonald 1989). Liepmann (1920) proposed time de-
lays in inter-hemispheric transfer time of motor signals
as a perpetuator of temporal coupling. As no natural sig-
nal transfer is instantaneous, the question arises: do the
time delays in the interlimb coupling affect the qualita-
tive dynamics of the order parameter, and consequently
influence the stability of bimanual coordination? To ad-
dress the aforementioned question in this article, we for-
mulate a representative framework for neural crosstalk
incorporating the concepts of dynamical systems theory
under consideration of connectivity and time delay.

The idea of multilevel crosstalk (Swinnen 2002;
Cardoso de Oliveira 2002) between functional elements
as a model for the neural basis of motor control dates
back to 1920 (Liepmann 1920). The interaction of func-
tional elements in the nervous system is considered
the basis of emergent cognitive functions (Bressler and
Kelso 2001; Varela et al. 2001). Such interaction involves
the integration of distributed information, for instance,
sensory input of multiple modalities throughout the cor-
tex resulting in a coherent percept and globally coher-
ent brain states (Bressler and Kelso 2001; Varela et al.
2001; Jirsa and Kelso 2003), which have been experimen-
tally observed by non-invasive large scale brain imaging.
Neural field models (Nunez 1974; Wright and Liley 1995;
Jirsa and Haken 1996, 1997; Robinson et al. 1997) pro-
vide a possible way to formalize such large scale brain
activity during cognitive and motor tasks and allow the
computation of the resulting electromagnetic fields on

the scalp surface (Jirsa et al. 2002) for comparison with
experimental data. The spatiotemporal dynamics of the
electromagnetic patterns can be recorded by electro-
encephalography (EEG) and magnetoencephalography
(MEG) and has been shown to be functionally meaning-
ful. For instance, the phase transitions in bimanual finger
movements find a neural correlate in phase transitions of
the spatiotemporal modes from MEG recordings (Jirsa
et al. 1998; Daffertshofer et al. 2005). Both neural and
behavioral signals have been shown to exhibit a lin-
ear dependence (Kelso et al. 1998; Fuchs et al. 2000;
Jirsa 2004). The interaction between these two levels
is naturally characterized by signal transfer with finite
conduction speeds and, inadvertently, any information
exchange between functional elements must undergo a
finite time delay. The effective resulting time delay will
be a function of the path, or even multiple paths, a signal
takes to propagate; in particular it will depend on the
connectivity between two effectors and the number of
processing units involved.

To answer the title question, we will take the follow-
ing approach. In Sect. 2 we will summarize some known
facts on anatomical and functional connectivity that
result in crosstalk, as well as time delays involved in neu-
ral signal propagation. Then we will develop a mathe-
matical framework in Sect. 3 which will allow us to study
systematically the coordination stability of two effectors
as a function of connectivity and time delays. In Sect. 4
we discuss the implications of our model for bimanual
coordination and draw our conclusions in Sect. 5.

2 Background on connectivity and time delays

Functional connectivity is defined as the statistical inter-
dependence between two functional elements without
explicit reference to causal effects (Sporns et al. 2004),
whereas anatomical connectivity refers to the existence
of pathways. In a recent article McIntosh (2004)
argued that the functional connectivity of a specific brain
area is causally related to certain behavioral and cogni-
tive states and concomitantly related to its anatomical
connectivity. The experimental data gathered over the
years (Brinkman and Kuypers 1972; Tuller and Kelso
1989; Franz et al. 1996; Baraldi et al. 1999; Cattaert
et al. 1999; Kennerley et al. 2002) suggest the follow-
ing functional and anatomical connectivity to be rele-
vant for bimanual coordination: for both unimanual and
bimanual tasks, there is a contribution from the contra-
lateral and the ipsilateral motor cortices (Cardoso de
Oliveira et al. 2001; Rokni et al. 2003). The contribu-
tions of contralateral and ipsilateral projections appear
to be weighted (80%: contralateral, 20%: ipsilateral)
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Fig. 1 The anatomical pathways responsible for neural crosstalk
underlying bimanual coordination. The solid lines show periph-
eral fibers, the dotted lines between the two hemispheres repre-
sent callosal fibers, and the dotted lines via the thalamus represent
cortico-thalamic projections

for bimanual tasks (Cattaert et al. 1999; Cardoso de
Oliveira 2002). However, these projections may con-
form to a small number of connectivity schemes. A gen-
eral scheme based on the neuroanatomy involved in
motor control is shown in Fig. 1. In a recent review
paper Carson (2005) draws a composite picture of the
connectivity associated with the neural control of limb
movement.

Callosal fibers facilitate interhemispheric crosstalk
between the left and the right hemispheres. Evidence in
the literature (Brinkman and Kuypers 1972; Tuller and
Kelso 1989; Franz et al. 1996; Kennerley et al. 2002) elu-
cidates their role in temporal coupling. Kennerley et al.
(2002) showed split brain patients (patients suffering
from epilepsy who had their corpus callosum sectioned)
undergo a loss of temporal coupling between the two
effectors during a bimanual coordination task. Evidence
of ipsilateral inhibition via the corpus callosum has been
shown recently (Rokni et al. 2003). The peripheral fibers
(not crossed at the thalamus, e.g., cortico-spinal path-

ways) also contribute to the contralateral and ipsilat-
eral crosstalk (Cattaert et al. 1999; Cardoso de Oliveira
2002). In addition to this, the distributed networks which
run via the thalamocortical loop are thought to be
responsible for considerable amounts of crosstalk
(Rouiller et al. 1999; Debaere et al. 2001; Jantzen et al.
2004). Jantzen et al. (2004) showed in a functional
magnetic resonance imaging (fMRI) study that the acti-
vation of supplementary motor area (SMA), the cer-
ebellum and other subcortical areas is correlated with
the performance of a unimanual task in both continu-
ation and synchronization/syncopation paradigms. Sub-
sequently, Daffertshofer et al. (2005) showed that the
activation of ipsilateral and contralateral cortical areas
in a MEG study were phase locked for a multifrequency
bimanual task. The time delays associated with
these pathways and their signal processing are
deduced from a variety of data: interhemispheric trans-
fer time has been estimated to be about 5 ms (Halgren
2004) based on behavioral (Clarke and Zaidel 1989;
Marzi et al. 1991) and physiological studies (Brown
et al. 1999), including intracranial recordings in humans
(Clarke et al. 1999), whereas the maximum possible de-
lay for the cortico-thalamocortical loop has been
estimated at about 20 ms (Halgren 2004). In most cir-
cumstances, transmission delay in the brain does not
exceed 100 ms (Tass 1999). However, for the visual sys-
tem it exceeds up to 150 ms (Thorpe et al. 1996).

3 The dynamic crosstalk model

To develop a theoretical framework for rhythmic biman-
ual coordination dynamics as a function of connectivity
and time delay, we present the following line of thought:
for rhythmic movements it has been shown repeatedly
that the effector dynamics and neural dynamics are line-
arly related (Georgopoulos et al. 1989; Fuchs et al. 2000;
Jirsa 2004; Daffertshofer et al. 2005), which is equiva-
lent to a phase shift operation for periodic signals. In
other words, the neural oscillations are phase locked to
the frequency of bimanual finger movement. Hence, it
is evident that most processes involved in this crosstalk
average out all non-resonant contributions of the signal,
that is, all contributions which do not oscillate with or are
not modulated by the basic movement frequency. Con-
sequently, despite that every signal which is sent from
effector 1 to effector 2 will be a non-trivial function of
the number of processing units and propagation times
involved, the signal arriving at effector 2 can be approx-
imated as the effector signal 1 itself, but shifted by an
effective time delay τ12. The same reasoning holds for
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signals sent to the cortex by effector 1 and returned
back to effector 1 as feedback with time delay τ11. More
generally, if we normalize all outgoing signals of effec-
tor 1 to be the ratio r of outgoing signal sent to effector
2 over the total outgoing signal, then it follows natu-
rally that 1 − r is the ratio of outgoing signal returned
to the effector over the total outgoing signal. For sym-
metry reasons, the same coupling scheme and quanti-
fication will hold for the other effector and as a result,
τ11 = τ22 = τ1 and τ12 = τ21 = τ2. The ratio r is naturally
a measure for the degree of crosstalk. An illustration of
this signal weighting and connectivity is given in Fig. 2.
Two simplifications are in order: First, as multiple pro-
cesses on various levels will be involved in the bimanual
crosstalk, it is most likely that the signal arriving at the
receiving effector will be dispersed in time. Dispersed
time delays have been shown to be less destabilizing
than a single discrete time delay (Jirsa and Ding 2004),
hence the dynamic system with a single discrete time
delay will provide us with a lower bound for the stability
of bimanual coordination. Second, the r weighted outgo-

r,  τ2 r,  τ2

1-r      τ1 1-r       τ1

1                2

Fig. 2 The simplified connection topology incorporating the key
functional elements addressed by the crosstalk model. r is the
strength of mutual coupling which undergoes a time delay τ2 and
1 − r is the strength of self coupling which also undergoes a time
delay τ1

ing pathways and 1 − r weighted feedback pathways do
not necessarily have the same time delay τ1 = τ2 = τ as
indicated in Fig. 2. It is not unreasonable to assume that
the delays τ1 and τ2 are at least of similar order of mag-
nitude due to the short interhemispheric delay (Halgren
2004) and the fact that all other processes are likely to
involve both outgoing and feedback pathways. Still, we
keep this approximation in mind as a potential source for
errors, but make for the current article the assumption
τ1 = τ2 = τ .

The connectivity scheme illustrated in Fig. 2 may be
interpreted as follows: if only peripheral ipsilateral path-
ways exist, then r = 0. If only the peripheral fibers
exist and split into 80% contralateral and 20% ipsi-
lateral contribution, then r = 0.8. If in addition callo-
sal fibers are added, then r will increase towards 1. If
equally weighted thalamic projections were the domi-
nating connection topology, then r would be close to 0.5.
Naturally, it is not possible to unambiguously identify
the underlying connection topology from the knowl-
edge of the degree of crosstalk quantified by r. How-
ever, it will be possible to obtain a quantitative sense
about the degree of mutual interaction. It is notable
that ongoing discussion in the neuroscientific literature
addresses temporal changes in functional connectivity
as a neural mechanism to implement attentional effects,
as well as general task conditions for cognitive tasks
(Friston et al. 2003; Penny et al. 2005). If future research
shows temporal changes in functional connectivity to
be relevant for bimanual coordination, then such will
find its implementation in a time dependent crosstalk
parameter r.

3.1 Oscillator level

In a recent article Jirsa and Kelso (2005) showed that
discrete and rhythmic movement dynamics can be mod-
elled with a class of dynamic systems called “excita-
tors”. Each excitator represents an effector and can
realize various task conditions by creating patterns of
dynamic flow in their respective state space. Task con-
ditions include discrete and periodic movements and
are captured in general by the topology of the dynamic
flows, for instance using single or multiple fixed points
or limit cycles. The details of the flow determine the
details of the effector dynamics, including transient
behavior, and have recently become empirically accessi-
ble through novel methods of experimental data analysis
(van Mourik et al. 2006). The dynamic flow of an effector
with no coupling is referred to as the intrinsic dynamics
and written as follows:
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ẋ = c(x + y − g1(x) + I)
ẏ = −(x − a + g2(x, y))/c

(1)

where x is the finger position and y is related to the
velocity of movement (see Jirsa and Kelso 2005 for
details). The dot indicates the time derivative. a and
c are constant parameters and define the position of the
equilibrium point and the time scale respectively. I is an
external input and the functions g1(x), g2(x, y) define the
dynamic flow in the state space dependent on task. For
the current study of a purely rhythmic task, we specify
the flow in Eq. (1) such that the excitator becomes equiv-
alent to a Van der Pol oscillator via g1(x) = R−2

0 x3/3
and g2(x, y) = 0 where R0 controls the amplitude of the
oscillation. Note that other oscillators with sufficiently
similar properties, e.g. a fifth order polynomial in g1
or a Rayleigh oscillator, do not qualitatively change the
results of our present study. The introduction of coupling
through the input I of an end-effector results in the
convergence or divergence of the flow in the state space
(assuming weak coupling). Such convergence/diver-
gence may be quantified by the Euclidean distance
between the two trajectories and, relevant for the pres-
ent study, reduces to a description of the relative phase
between two coupled limit cycle oscillators (Jirsa and
Kelso 2005).

To motivate the coupling function between two end-
effectors via I, as illustrated in Fig. 2, we employ the
following line of thought: large scale networks commu-
nicate via firing rates of the neural populations
involved. The resulting synaptic input into a neural pop-
ulation can be split into (1) instantaneous input of local
on-going population activity and (2) an external remote
input which will be typically delayed. The sign of the
synaptic inputs is determined by the neurotransmitters
and receptors at a given synapse. The synaptic inputs
linearly sum up along the dendritic trees and give rise to
local field potentials (LFP) (see for instance Wilson and
Cowan 1972; Jirsa and Haken 1996; Roxin et al. 2005).
Equivalently, so-called electric coupling for gap junc-
tions or axo-axonal coupling (see for instance Schmitz
et al. 2001) give rise to a similar functional form, though
synaptic coupling is by far the more prevalent. For the
bimanual coordination task described here, this cou-
pling has been used previously to capture the neural
dynamics observed in MEG recordings (Jirsa et al. 1998).
Another form of coupling in the firing rate modeling lit-
erature is the so-called shunting coupling established by
Grossberg (1977) and also used by other authors for
studies in bimanual rhythmic coordination (Grossberg
et al. 1997) and polyrhythmic movement coordination
(Daffertshofer et al. 2005), the latter also in conjunction
with MEG studies. In our current study we use a linear

difference coupling in terms of the end-effector vari-
ables which nicely recovers the original equations of
Haken et al. (1985) as a limit case for no delay and a
particular degree of crosstalk r. We write the
coupling as follows with the indices j, k = 1, 2
and j �= k

p(r, xj, xjτ , xkτ ) = xj − (1 − r)xjτ − rxkτ (2)

where xj ≡ xj(t) denotes the instantaneous position of
an effector and xjτ ≡ xj(t − τ) the position at a previous
time point t − τ . The pathways as illustrated in Fig. 2 are
implemented through feedback as a self delay (xjτ ) and
mutual delay (xkτ ) terms. The contribution of the self
coupling is weighted by 1 − r and the mutual coupling
is weighted by r. The coupling function p in (2) is linear
and does not allow for multistability in this form. Hence
we extend the final coupling function to include a cubic
term in p and obtain

I = ε

(
p − p3

3

)
(3)

where ε is a constant parameter. Now the coupling I has
the property that if the difference term in p becomes
large, then I will switch its sign and hence provides
the possibility for multistable solutions by introducing
convergent and divergent flows in the state space. In
this sense the specific form of the nonlinear term in p
plays a secondary role and a different nonlinear term of
the same symmetry with regard to the exchange p →
−p, for instance a fifth order term p5/5, yields quali-
tatively the same results as the cubic term. However,
we rigorously presume an odd symmetry of the cou-
pling function I. Note that in this form the coupling
I in (3) reduces to the coupling used in Haken et al.
(1985) for the limit case τ = 0 and r = 1 and the
self coupling vanishes, i.e. the crosstalk is completely
mediated via the mutual coupling. In the other limit,
r = 0, the oscillators are completely disconnected, and
hence, there is no crosstalk via the mutual coupling. Our
final equations then read with the indices j, k = 1, 2
and j �= k

ẋj = c

[
yj + xj − R−2

0

x3
j

3
+ ε

(
p − p3

3

)]
(4)

ẏj = −(xj − a)/c (5)

It is tempting to interpret a negative ε as an excitatory
coupling and a positive ε as inhibitory (similar to neural
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oscillators), because for ε < 0 the linear contribution
−(1 − r)xjτ − rxkτ of incoming signals increases the rate
of change ẋj and, equivalently, decreases for ε > 0. How-
ever, the total expression for the coupling I in (3) is not
always positive as is the case for firing rates in neural
field models, hence a clear discrimination of the nature
of coupling is not possible on this level of description of
end effectors. For the following sections, we will use the
notation of positive coupling for ε > 0 and negative for
ε < 0.

Our objective is to investigate the inphase and
antiphase solutions of this system (Eqs. (4), (5)) and
the parameter regimes of their stability. Comparison of
the stability regimes for certain parameter values and
hence, network structures provide us with a window to
infer the nature of the crosstalk at the neural level. The
relative phase between the two oscillators is the collec-
tive variable of the system. At the neural level, relative
phase between two oscillatory time series can be a mac-
roscopic observable, which characterizes the synergy be-
tween the functional elements (Gray et al. 1997; Varela
et al. 2001). In the next section we show how to derive a
phase level description for such a system.

3.2 Phase level

We choose the parameter values such that the system’s
(Eqs. (4), (5)) intrinsic dynamics is in the limit cycle
regime with a = 0 and c = 3. Then the system can be
solved by the ansatz,

xj = Ajeiωt + A�
j e−iωt (6)

where the complex amplitude Aj can be time depen-
dent, but is much slower than that of eiωt and ω is the
mutual frequency. The asterisk indicates the complex
conjugate. We then perform two approximations well
known in the theory of nonlinear oscillators (Haken
1983). The “slowly varying amplitude approximation”
means that we may neglect the Ȧ terms compared to
terms ωA. The “rotating wave approximation” means
that we may neglect terms containing e3iωt and e−3iωt

compared to eiωt and e−iωt. The complex amplitude A
has a real and imaginary part,

Aj = Rjeiφj (7)

where φj represents the time dependent phase and Rj the
real amplitude. The real amplitude can be adiabatically
eliminated (see Appendix A) and expressed as

R1 ≈ R2 = R0 (8)

We obtain the phase equation

φ̇j = 1 − ω2

2ω
+ ε

2

⎡
⎣ 2∑

l,m=1

Alm sin(2φlτ − φmτ − φj)

+
2∑

l,m=1

Blm sin(φlτ −φmτ −2φj) + C sin(φkτ −φjτ )

+
2∑

l,m=1

Dlm sin(φlτ +φmτ −2φj)+E sin(φjτ +φj)

⎤
⎦
(9)

where φjτ = φj(t − τ) and Alm, Blm and C are nonlinear
functions of r and R0 (for detailed expressions, please see
Appendix A). The fixed point solutions of these equa-
tions always include multiples of π in addition to the zero
solution. Other stationary solutions may exist, but will
not be investigated here. The relative phase, φ = φ1−φ2,
defines the inphase solutions by φ = 0 or even multiples
of π , and the antiphase solutions by φ = π or odd multi-
ples of π . In the following, we first numerically generate
the boundaries of the stability regimes for inphase and
antiphase solutions and then analytically compute these
regimes via linear stability analysis.

3.3 Numerical methods

We solved the system of Eq. (9) by the MATLAB solver
dde23 (Shampine and Thompson 2001) for discrete val-
ues of r, R0 ∈ [0, 1] and τ ∈ [0, 20]. The solver imple-
ments a continuous extension of explicit Runge–Kutta,
second and third order formulas. It interpolates the inte-
grand function at the locations introduced by time delay
between two declared grid points using a cubic Hermite
polynomial (Shampine and Thompson 2001). As φ1 and
φ2 evolve in time and reach a stationary value, the rel-
ative phase φ = nπ ± δ (n = 0, 1, 2 . . .) is identified
as stable if it remains sufficiently long within a small
interval δ < 0.001.

The resulting boundary at which the stability changes
occur is approximated and plotted as a surface within the
three dimensional space (r, R0, τ ) in Fig. 3 for antiphase
and in Fig. 4 for inphase. Some representative sparse
points illustrate the precise location of the numerically
obtained boundary. Both figures distinguish negative,
ε = −0.2, and positive, ε = 0.2, couplings.

3.4 Linear stability analysis and results

We perform a linear stability analysis around the anti-
phase and inphase fixed points. In general, the linearized
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Fig. 3 Boundaries of stability regimes for antiphase obtained
numerically where a ε = −0.2, negative coupling, b ε = 0.2, posi-
tive coupling strength. The dots indicate selected points obtained
from the numerical simulation

equations are represented as follows,

�̇ = L1� + L2�τ (10)

where � =
(

φ1
φ2

)
, �τ =

(
φ1τ

φ2τ

)
, and L1, L2 are matri-

ces whose elements are functions of r and R0. Due to
symmetry properties of the matrices L1 and L2 we show
in Appendix B that it is always possible to obtain an
independent relative phase equation

φ̇ = Lφ + Lτ φτ (11)

where φτ = φ(t − τ) and L, Lτ are nonlinear functions
of r and R0. In Appendix B, L and Lτ are computed
explicitly and show a smooth dependence on r and R0.
The stability of the delay differential equation (11) is
determined by the characteristic polynomial (Hale and
Lunel 1993)

H(z) = z − L − Lτ e−zτ = 0 (12)
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Fig. 4 Boundaries of stability regimes for inphase obtained
numerically a ε = −0.2, negative coupling, b ε = 0.2, positive
coupling strength. The dots indicate selected points obtained from
the numerical simulation

where φ(t) = ezt, z ∈ C and L, Lτ ∈ R. If all the roots
satisfy Re(z) < 0 then the solution is stable. It is easy to
see that Re(z) = 0 is the critical value where the system
destabilizes. The possibility of a change in the sign of
Re(z) by way of Re(z) −→ ∞ is excluded by a theo-
rem of Datko (1978). Hence all other sign changes of
Re(z) must occur at purely imaginary z = i�, � ∈ R+

0 .
Substituting these values in (12) we obtain the following
expressions,

� = L tan(�τ) (13)

�2 = L2
τ − L2 (14)

Using Eqs. (13) and (14), we obtain an expression for
the critical stability surface,

τ � = 1√
L2

τ − L2
tan−1

(
�

L

)
(15)

where τ � is the minimal delay required to destabilize
the fixed point (antiphase or inphase). Jirsa and Ding
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Fig. 5 Critical stability surfaces for antiphase. The region above
the surface represents instability and the region under the surface
represents stability. a ε = −0.2, for negative coupling strength,
b ε = 0.2, for positive coupling strength

(2004) proved that the roots of (12) always describe
instabilities. Hence there is no possibility that the sys-
tem stabilizes again for large τ . The critical surfaces, at
which the instabilities occur, are plotted in Figs. 5 and
6. The white areas in the surface plots represent stable
regions for either the antiphase or the inphase mode.
The dark areas represent the critical surface above which
that particular mode destabilizes. Our analytical results
in Figs. 5 and 6 compare favorably with the fully numer-
ical results in Figs. 3 and 4. Here, we use a small value
of coupling strength |ε| = 0.2 as did previous authors
(Haken et al. 1985; Jirsa et al. 1998). Note that the
magnitude of the coupling strength plays only a minor
role because it can be mostly absorbed by a rescaling
of time.
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Fig. 6 Critical stability surfaces for inphase. Here, the same
situation is presented as in Fig. 5

4 Discussion

4.1 Antiphase

For negative coupling, ε = −0.2, Fig. 5a shows that the
antiphase mode of coordination is always stable inde-
pendent of time delay until the degree of crosstalk, r,
reaches a critical value. The antiphase solution is always
unstable at low amplitude, R0 < 0.5, or equivalently,
high frequency for large degrees of crosstalk r > 0.5
and independent of time delay. In the following we use
large values of R0 interchangably as an indicator of large
amplitude or low frequency (and vice versa). In Fig. 5, at
low frequencies where R0 > 0.5, the antiphase solution
is stable for most values of r and small time delays. In
this regime, where r ≥ 0.5, the antiphase solution can
be destabilized by increasing the time delay. From the
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critical surface shown in Fig. 5a we obtain that the critical
time delay value increases when the crosstalk parameter
r and movement amplitude R0 are close to the bound-
ary values of zero delay. Hence, we can argue that stable
antiphase solutions exist at low frequencies (R0 > 0.5)
and the system destabilizes at higher frequencies (R0 <

0.5) for values of crosstalk r > 0.5. This result is sup-
ported by the numerical solutions of the complete sys-
tem as seen in Fig. 3. When r = 0, the oscillators are
mutually uncoupled, however, the self delayed coupling
exists. In this case, antiphase mode is always unstable
irrespective of the value of time delay. In the regime
r ∈ [0, 1] and R0 ∈ [0, 0.5] antiphase is always unsta-
ble. Hence in principle, destabilization of the antiphase
mode at lower frequencies can also be understood as
being due to the lower degree of crosstalk. When r is
continuously decreased from r = 1 to r = 0 the mutual
interaction between the effectors decreases and results
in an instability. We observe a decrease in the stabil-
ity of the antiphase mode in this region for all values
of R0 ∈ [0, 1]. A smaller degree of crosstalk is to be
expected for lesions of neural pathways, for instance, as
in a split brain patient whose corpus callosum has been
surgically sectioned. This is reflected in the experimental
data of Tuller and Kelso (1989), where decreased stabil-
ity of the antiphase mode of coordination are observed
in bimanual coordination for split brain patients. It was
shown earlier by Cattaert et al. (1999) that contralateral
and ipsilateral pathways contribute to bimanual tasks
with the estimates, 80% for contralateral and 20% for
ipsilateral pathways. The existence of only such periph-
eral pathways for neural crosstalk will be characterized
by a crosstalk parameter r = 0.8. Based on these con-
siderations, we argue that a probable degree of cros-
stalk will be in the interval r ∈ [0.5, 1] for a negative
coupling scheme. As noted earlier, the HKB scenario
(Haken et al. 1985) is a special case in this regime at
r = 1 and τ = 0. A feature not considered within
the HKB scenario is the effect of time delays, which
is evident from Fig. 5a to be relevant for destabiliz-
ing antiphase solutions. This prediction of time delay
destabilizing coordination will be an entry point for
us to address the question raised in the title of this
article.

For positive coupling ε = 0.2, the critical delay sur-
face is plotted in Fig. 5b. The surface illustrates that the
antiphase mode of coordination is unstable at higher
values of crosstalk parameter r ∈ [0.85, 1] and low fre-
quency R0 > 0.6. For lower amount of crosstalk r <

0.4 and high frequencies R0 < 0.3 antiphase can only
be destabilized by increasing the time delay. Unless
frequency changes are somewhat linked to time delay
changes, we conclude that the overall effect of neural

crosstalk must be effectively negative. The critical sta-
bility surface also suggests that the positive coupling
in general is more favorable to the stabilization of the
antiphase mode of coordination whereas negative cou-
pling can be associated with destabilization of antiphase.
Such a conclusion is consistent with recent experimen-
tal results (Cardoso de Oliveira et al. 2001; Rokni et al.
2003).

4.2 Inphase

For negative coupling ε = −0.2 , we obtain that inphase
solutions are always stable for r < 0.1 and all frequen-
cies as illustrated in Fig. 6a. However, they can be desta-
bilized at low frequencies (R0 > 0.4) with increasing
degrees of crosstalk r > 0.1 and time delay τ > 12.
Comparing Figs. 5a and 6a it is evident that the stability
of antiphase requires a higher amount of crosstalk than
the inphase solutions. This might be a possible explana-
tion for the decreased stability of the antiphase mode
in split brain patients who have a tendency to switch
into inphase mode even if they are instructed to main-
tain some other specific phase relationship (Tuller and
Kelso 1989). For large degrees of crosstalk, r ∈ [0.5, 1],
and for high frequencies, R0 < 0.5, antiphase is unsta-
ble and inphase stable. For the same degree of crosstalk
but small frequency R0 > 0.4, there is a region where
inphase remains stable and antiphase becomes stable,
which causes the system to be bistable, allows for hys-
teresis and closely resembles the experimental results
(see Kelso 1995).

For positive coupling ε = 0.2, we obtain critical sta-
bility surfaces as shown in Fig. 6b. Here, an HKB like
coupling scheme, r = 1, can lead to a destabilization
of inphase at high frequencies, R0 < 0.35. On the other
hand, inphase can be stabilized by decreasing the degree
of crosstalk, r. However, for lower values of crosstalk
inphase can be destabilized via high values of time delay.
Hence, it can be highlighted that inphase stabilization
can occur for smaller degrees of neural crosstalk, even
in a positive coupling scheme.

4.3 Parameter estimates

We estimate the relation between the computational
units and the corresponding physical units of time
delay in seconds following the line of thought devel-
oped by Jirsa and Kelso (2005). The time unit estimate
was based on the choice for the computational angular
eigenfrequency ω = 2π f = 1/T = 1 of the oscillators
(Eq. (9)) used in numerical solutions; where f is the fre-
quency and T the period of a cycle. Experimentally, pre-
ferred finger movement frequencies range from around
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1.1 to 3.0 Hz following instructions to move the finger
at a comfortable pace and through a comfortable range
of motion (Jirsa and Kelso 2005). If we identify the pre-
ferred frequency with the eigenfrequency and estimate
it as 2 Hz, then one computational time unit will corre-
spond to 80 ms or, equivalently, 12.5 computational time
units will correspond to 1 s. We have studied a parameter
space of τ ∈ [0, 20] which corresponds to [0, 1,600] ms.
Under these conditions, the critical delay values for
antiphase solutions lie in the interval [160, 800] ms in
a negative coupling scheme. For positive coupling, the
equivalent estimate falls in [800, 1,600] ms. A similar
analysis on inphase solutions, yield the interval [1,120,
1,600] ms for the critical delay values in a negative cou-
pling scheme. For positive coupling, the critical delay
interval is [800, 1,600] ms.

5 Conclusion and summary

Pioneered by Scott Kelso and Michael Turvey (Kugler
et al. 1980; Kelso et al. 1980, 1981), the approach of coor-
dination dynamics is deeply connected with the biman-
ual rhythmic coordination paradigm, which has been
used to investigate many levels of motor behavior and
cognition including learning (Zanone and Kelso 1992),
attention (Temprado et al. 1999), intention (Schöner and
Kelso 1988), social coordination (Schmidt et al. 1990)
and many more. In this article, we ask the question about
the nature of the underlying substrate of bimanual coor-
dination with its realizations in connectivity and time
delays in crosstalk. Our reasoning rests heavily on the
fact that neural and behavioral effects seem to be line-
arly related, at least for rhythmic movements. The lin-
ear dependence has been confirmed in various tasks by
different researchers using a wide range of brain imaging
modalities, which provides confidence in its reality. The
second foundation of our reasoning rests upon the nor-
malized ratio r of the outgoing signals from one effector
to the other. By construction, r quantifies the degree of
crosstalk between both effectors. We illustrated along
anatomically existing pathways, such as thalamic pro-
jections or callosal fibers, that our mathematical rep-
resentation indeed captures the underlying connectivity
schemes and inferred that multiple connecting pathways
must be represented somewhere along the continuous
interval [0, 1] of r. Armed with these tools, we system-
atically studied the stability of coordination, which we
visualized by critical surfaces as functions of the degree
of crosstalk r, the time delay τ involved in the crosstalk
between two effectors, and the movement frequency or,
equivalently, the movement amplitude R0 [assuming the

interdependence of these two quantities following Kay
et al. (1987)].

Our discussion of the stability surfaces allows us to
identify mechanisms which the nervous system poten-
tially uses to change stability of a movement behavior
and hence switch from one pattern of coordination to
another. In accordance with the classic line of thought,
the volume element defined by r ∈ [0.5, 1], τ < 800 ms
and R0 ∈ [0, 1] with negative overall coupling strength
qualifies as a biologically realistic regime, which repro-
duces the established behavioral results of bistability,
hysteresis and transitions from antiphase to inphase
mediated by decreasing amplitude/increasing movement
frequency. Within this parameter regime, the reduced
degree of crosstalk r offers an attractive explanation for
the decreased stability of the antiphase mode in split
brain patients. Another interesting feature of split brain
patients is that they spontaneously switch to inphase
mode from any other relative phase relation (Tuller and
Kelso 1989). Our study indicates that a stable inphase
mode of coordination requires a lesser amount of neural
crosstalk and thus it can be maintained comfortably even
under pathological conditions. We propose alternative
approaches to regain the stability of the antiphase mode
for split brain patients: the crosstalk between the effec-
tors can be increased by either enhancing the contribu-
tion of the mutual coupling between the effectors or,
equivalently, by reducing the contributions of the feed-
back loop for each effector. In both cases, the overall
effect will be an increase in the relative degree of cros-
stalk r. A completely different mechanism to achieve
instability and changes in coordination behavior is by
varying functional connectivity, which is proposed by
research in functional brain imaging (Friston et al. 2003).
In the current framework, functional connectivity is
operationalized as a manipulation of the parameter r
as well as by varying the time delay τ . For instance,
if the decrease in movement amplitude is not causally
related to the change in stability and the subsequent
transition from antiphase to inphase, then an alternate
route can be taken along the r axis towards smaller
values of r. Under these circumstances, transitions for
constant movement amplitude can be accomplished, a
phenomenon which has been observed by Peper and
Beek (1999). An additional discussion of the roles of
antiphase and inphase and their stability is found in the
literature with regard to the manipulation of symme-
tries (Byblow et al. 1994; Carson et al. 2000; Lee et al.
2002). These authors manipulated the symmetry in the
experimental system such that antiphase and inphase
exchanged their roles. For instance, Carson et al. (2000)
systematically changed the position of the axis of a
manipulandum and induced transitions from antiphase
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to inphase, but not in the reverse. Our discussion of
the stability surfaces show that such an exchange of sta-
bility can never be accomplished by changing the cou-
pling from negative to positive, despite the fact that this
mechanism appears to be attractive, because a change
from negative to positive coupling favors the stabiliza-
tion of antiphase and destabilization of inphase. As evi-
dent from the comparison of the stability surfaces in
Figs. 5a and 6b, such a change in the nature of cou-
pling does not result in a fully symmetric exchange of
the roles of antiphase and inphase, and hence is not
consistent with the experimental observations. For this
reason, we conclude that the approach by Fuchs and
Jirsa (2000) still holds, who used a symmetry-based tech-
nique, which actually postulates a change of the cou-
pling function rather than just the coupling strength.
Finally, the discussion of the time delay provides us
with an entry point toward an understanding of the
effects induced by signal processing times in the ner-
vous system. We have shown here that the introduc-
tion of a time delay into the afferent signals between
coupled end-effectors does not change the form of the
stationary solutions, but does affect their stability. The
necessary mathematical assumptions of our study are
two limit cycle oscillators which are weakly coupled
via a difference coupling. The difference coupling must
be of the form that it switches its sign for increasing
values of the difference term and such yields the possibil-
ity for multistability. Under these conditions we
provided a systematic stability analysis addressing the
effects of time delay in the afferent signals as a function
of the sign of ε and the total coupling. Our study shows
that the time delays required to destabilize stationary
bimanual coordination are in realistic parameter ranges,
that is [160, 800] ms for the antiphase mode and [1,120,
1,600] ms for the inphase mode, assuming negative cou-
pling. This supports the fact that the inphase mode of
coordination is generally more stable than antiphase
(see Kelso 1995) and hence, requires higher values of
time delay to destabilize. Beyond the conceptual contri-
bution of this study, experimental support of our results
may be provided by temperature-controlled changes
realized in the transmission speed of peripheral fibres.
Cheyne et al. (1997) conducted studies of this nature and
showed evidence of generated time delays up to 100 ms
quantified by the event-related fields in MEG. The time
delay aspect of the stability of individual modes has
implications for development, in which bimanual coor-
dination should stabilize with increasing myelination of
cortical pathways in the first years of infancy
(Sampaio and Truwit 2001) and, hence, results in re-
duced time delay. On the other hand, we expect that
degradation of the degree of myelination, as observed

in ageing or diseases such as schizophrenia (Lim et al.
1999), should always result in reduced stability of biman-
ual coordination.
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Appendix A: Nonlinear phase equations

Rewriting Eqs. (4) and (5) as a second order ordinary
differential equation we get

ẍj = −xj + a + cẋj − c
x2

j

R2
0

ẋj + cεṗ(1 − p2) (16)

Furthermore, inserting (6) and applying the “slowly
varying amplitude” and “rotating wave” approxima-
tions, we obtain

eiωt

[
(1 − ω2)Aj + 2iωȦj − ciωAj + ciω

|Aj|2
R2

0

Aj

= cεiωf (r, Aj, Ajτ , A�
j , A�

jτ , Akτ , A�
kτ )

]
(17)

where f represents a nonlinear complex-valued func-
tion. Separating real and imaginary parts yields the
phase equation (9) and the amplitude equation

1
c

Ṙ = 1
2

(
R − R3

R2
0

)
+ ε

2

⎡
⎣ 2∑

l,m=1

Alm cos(2φlτ − φmτ − φj)

+
2∑

l,m=1

Blm cos(φlτ − φmτ − 2φj)

+ C cos(φkτ − φjτ )

+
2∑

l,m=1

Dlm cos(φlτ + φmτ − 2φj)

+ E cos(φjτ + φj)

⎤
⎦ (18)

Following the lines of Haken et al. (1985), the amplitude
R can be adiabatically eliminated in the neighborhood
of the phase instability, Ṙ ≈ 0, and yields R1 ≈ R2 = R0
for negligible influence of coupling. For completeness,
we present the coefficients Alm, Blm, C, Dlm and E for
Eqs. (9) and (18)
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A11 = −1 + 4rR2
0 + r + 5r2R2

0 − 3r3R2
0 (19)

A12 = r(r − 1)2R2
0 (20)

A21 = r2(1 − r)R2
0 (21)

A22 = (3r3R2
0 − 4r2R2

0 + 5rR2
0 − r)R2

0 (22)

B11 = B22 = (1 − r)2R2
0 (23)

B12 = 0 (24)

B21 = 2r(r − 1)R2
0 (25)

C = r(4r − 3)R2
0 (26)

D11 = (1 − r)2R2
0 (27)

D12 = D21 = r(1 − r)R2
0 (28)

D22 = r2R2
0 (29)

E = 2R2
0(r − 1) (30)

Appendix B: Linear phase equation

B.1 Derivation of linear relative phase equations from
the nonlinear individual phase equations

Equation (9) can be written as,(
φ̇1
φ̇2

)
=

(
f1(φ1, φ1τ , φ2τ )

f2(φ2, φ2τ , φ1τ )

)
(31)

The linearized system around fixed points is given by
Eq. (10), where L1 and L2 are the Jacobian matrices.
Since there is no dependence of φk terms in Eq. (9) one

can immediately see that L1 is a diagonal matrix. The
symmetry of the coupling is reflected in L2 via a sym-
metric matrix. Hence, for both antiphase φ1 − φ2 = π

and inphase φ1 − φ2 = 0 the matrices L1 and L2 can be
written as

L1 =
(

L 0
0 L

)
(32)

and

L2 =
(

L1τ L2τ

L2τ L1τ

)
(33)

where L, L1τ and L2τ are functions of r and R0. Intro-
ducing the relative phase variable φ = φ1 − φ2 and
φτ = φ1τ − φ2τ and using Eqs. (10), (32), (33) we obtain
Eq. (11) for the relative phase where Lτ = L1τ − L2τ

and Lτ is a function of r and R0. In the following sec-
tions, expressions for L and Lτ are derived for antiphase
and inphase solutions.

B.2 Coefficients L and Lτ for antiphase

We obtain

L = ε

2
(1 − 2r − 8R2

0 + 16rR2
0 − 20r2R2

0 + 8r3R2
0) (34)

and

Lτ = ε

2
(−1 − 6rR2

0 + 16r2R2
0) (35)

Fig. 7 Nonlinearities of the
coefficients L and Lτ for
antiphase initial condition.
a L as a function of r and R0,
b Lτ as a function of r and R0.
Both functions are plotted for
ε = 0.2

Fig. 8 Nonlinearities of the
coefficients L and Lτ for
inphase initial condition.
a L as a function of r and R0,
b Lτ as a function of r and R0.
Both functions are plotted for
ε = 0.2
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For both cases (φ1, φ2)= (π , 0) and (0, π) the above
expressions remain the same. We plot L and Lτ as func-
tions of r and R0 in Fig. 7.

B.3 Coefficients L and Lτ for inphase

Here, we present the coefficients L, Lτ for inphase
solutions.

L = ε

2
(1 − 8R2

0 + 4rR2
0 − 8r2R2

0) (36)

Lτ = ε

2
(−1 + 2r + 10rR2

0 − 12r2R2
0) (37)

We plot L and Lτ as functions of r and R0 in Fig. 8 for
ε = 0.2.
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