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Abstract

We identify a class of excitable two-dimensional model systems, the Excitators, which

provide an entry point to the understanding of the mechanisms of discrete and rhythmic

movement generation, and a variety of related phenomena such as false starts and the ge-

ometry of phase space trajectories. The starting point of our analysis is the topological

properties of the phase flow. In particular, the existence of the phenomenon of false starts

provides a characteristic structural condition, the separatrix, for the phase flow, which par-

titions the phase space. We discuss the existence of threshold phenomena, which are char-

acteristic of excitable systems, as well as the existence of stable and unstable fixed points

and periodic orbits. Our analysis predicts the existence of stable manifolds in the proximity

of fixed points resulting in an overshoot and a slow return phase after movement execution.

To investigate coordination phenomena, we discuss the effects of two types of couplings, the

sigmoidal coupling and a truncated version thereof, known as the HKB-coupling. We show

analytically and numerically that the sigmoidal coupling leads to convergence phenomena in
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phase space, whereas the HKB-coupling displays convergent, as well as divergent behavior.

A specific representation of the Excitator is suggested and allows the quantification of our

predictions.
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1 Introduction

How limb movements are controlled under the conditions of a changing environment may be

described causally by a variety of approaches, each emphasizing different facets of the problem.

Biomechanically based models approach the dynamics of limb motion utilizing the idea that mus-

cles can behave like complex springs [Feldman, 1980a, Feldman, 1980b, Balasubramaniam & Feldman, 2004].

The flexor and extensor muscles are idealized by springs that exert forces on masses, primar-

ily the bone of the limb. If these forces are in equilibrium, then the limb is at rest. Move-

ment control is accomplished by changing the parameters of the mass-spring system such that

the equilibrium point shifts and the now destabilized system seeks to move towards the new

equilibrium point. This and closely related principles are known in the literature as equilib-

rium controls, in particular the α models [Polit & Bizzi, 1978, Polit & Bizzi, 1979] and the λ

models [Feldman, 1980a, Feldman, 1980b, Balasubramaniam & Feldman, 2004]. It is fairly well

accepted that the equilibrium models provide a good account of how a joint or limb achieves

its terminal position (see [Kelso, 1977, Kelso et al., 1979, Schmidt & Mc Gown, 1980]) and they

are well-suited to describe discrete movement tasks. Rhythmic tasks involving the periodic joint

motion between two positions would have to be described by providing a periodic equilibrium

point control and hence result in an externally driven system. Another type of models, often

referred to as the Dynamical Systems approach, emphasizes the importance of structures and

symmetries within the dynamics of the observable and is less concerned with the identification of

the material elements (muscles, tendons, etc.) underlying the observed dynamics. Examples are

the Haken-Kelso-Bunz (HKB) model [Haken, Kelso, & Bunz, 1985] describing bimanual rhyth-

mic movement coordination, the model by Schöner [Schöner , 1990], which extends the HKB

model to discrete movements, and Sternad et al.’s model [Sternad et al., 2000], which is also

capable of describing discrete and rhythmic movement generation. The HKB model is a system

of two nonlinearly coupled limit cycle oscillators, which are realized by Van der Pol-Rayleigh os-

cillators. The relative phase between the two limit cycles exhibits stable in-phase and anti-phase

coordination of which the latter is destabilized through a pitchfork bifurcation as the movement

frequency is increased. Schöner [Schöner , 1990] suggested a modification of the intrinsic dy-

namics of this set of oscillators, but did not alter the coupling. The modified dynamics is based

on a model by Gonzalez and Piro [Gonzalez & Piro, 1987], which displays two stable fixed points

for one parameter setting, and the existence of a stable periodic orbit for another parameter set-

ting. Movement control is achieved by changing the model parameters for specific time windows
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and thus stabilizing/destabilizing the stationary solutions appropriately. Sternad et al.’s model

[Sternad et al., 2000] consists of two units - one limit cycle (rhythmic) and one point attractor

(discrete) unit - that are coupled by mutually inhibitory connections. Due to the coupling, step

changes to the discrete unit shift the center of oscillation in a phase-dependent manner which

captures the observed pattern in experimental data. From neuroscience, in particular recent

fMRI studies, evidence shows that different cortical subsystems contribute to the generation of

synchronized and syncopated movement [Mayville et al., 2002] in addition to a common corti-

cal control. In particular, syncopation has been interpreted as ”executed individually on each

perception-action cycle” [Mayville et al., 2002], implying the character of a discrete movement.

Several attempts have been made to attribute neuroscientific meaning to the model equations of

the Dynamical System’s approach. Grossberg and colleagues [Grossberg, Pribe, & Cohen, 1997;

Pribe, Grossberg, & Cohen, 1997], as well as Nagashino & Kelso [Nagashino & Kelso, 1992], used

neural oscillator equations to reproduce stabilization/destabilization phenomena of the relative

phase found in bimanual coordination. Similarly, Beek and colleagues postulated the existence

of an interplay between neural fields and the behavioral effectors [Beek, Peper, & Daffertshofer,

2002] to understand lag-one correlation effects as known from the continuation paradigm em-

ployed by Wing and Kristofferson [Wing & Kristofferson, 1973]. Such neural fields have been

developed by Jirsa and Haken [Jirsa & Haken, 1996, Jirsa & Haken, 1997] in the context of MEG

studies of sensorimotor coordination and control [Fuchs, Kelso, & Haken, 1992; Kelso, Bressler,

Buchanan, DeGuzman, Ding, Fuchs, & Holroyd, 1992; Jirsa, Friedrich, Haken, & Kelso, 1994].

More general treatments of neural fields have been discussed extensively in the literature[Amari,

1977; Wilson & Cowan, 1972;Wilson & Cowan, 1973; Nunez, 1974; Nunez, 1995; Jirsa & Haken,

1996; Jirsa & Kelso, 2000; Jirsa, 2003; Wright & Liley, 1996; Robinson, Rennie, & Wright, 1997;

Haken, 1996; Haken, 2002]. Following the introduction of the bimanual rhythmic coordination

paradigm [Kelso, 1981], several brain imaging studies have successfully mapped the underly-

ing spatiotemporal brain activity onto movement and coordination variables[Fuchs et al., 1992;

Kelso et al., 1992; Jirsa, Friedrich, & Haken, 1995; Kelso, Fuchs, Lancaster, Holroyd, Cheyne,

& Weinberg, 1998; Fuchs, Jirsa, & Kelso, 2000; Fuchs, Mayville, Cheyne, Weinberg, Deecke,

& Kelso, 2000; Jirsa, 2003; Meyer-Lindenberg, Ziemann, Hajak, Cohen, & Berman, 2002]. In

particular, the behavioral HKB equations were successfully derived from neural field equations

[Jirsa et al., 1998, Daffertshofer et al., 2004] allowing for an interpretation of the phenomeno-

logical coupling terms.
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In the present paper we wish to identify a minimal model of discrete and rhythmic movement

generation, which encapsulates all the dynamic features discussed above. Phenomena such as

false starts and trajectory shapes may be understood on the basis of our proposed model.

We discuss the dynamics analytically and provide theoretical proof that the HKB-coupling,

and generalized forms thereof, always results in a convergence or divergence of the movement

patterns, in dependence of the initial limb positions only. The proof is given independent of the

specific type of coordination, thus is true for both discrete and rhythmic movement patterns.

Our approach emphasizes symmetry and topological arguments. However, there are several

implications that hint at connections to an underlying neural basis, based primarily on the

similarity between the model developed here and a variety of equations describing neuronal

dynamics, such as the Fitzhugh-Nagumo system [FitzHugh, 1961]. In section 2 we discuss the

intrinsic dynamics of the proposed model, followed by a discussion of the coupled dynamics of

two such model systems in section 3. Section 4 summarizes and concludes this paper.

2 Intrinsic dynamics of the Excitator

2.1 Trajectory formation in phase space: Theory

A false start is the act of beginning a behavior at an inappropriate moment in time. The

behavior may be fully or only partially executed. In language production, a false start is the act

of beginning an utterance and typically aborting it prior to completion. False start errors occur

most often when a conversation becomes intense and are used in the quantitative study of speech

impairment [Croot, Hodges, Xuereb & Patterson, 2000]. In sports and movement sciences, a false

start, e.g. in sprinting [Collet, 1999], is the initiation of a movement prior to the signal of the

starter1. Many theoretical questions arise on error production and the underlying mechanisms

involved in error production, detection and correction (see [Postma, 2000] for a review). For

instance, Schmidt and Gordon (1977) studied the cost and benefit for anticipated movement

initiation. In the present paper, we wish to focus on the mechanism for movement initiation

itself and discuss various alternatives for error production, that is false movement initiation,

and their implementation in terms of dynamical systems currently discussed in the literature.
1Note that Olympic standards allow a minimum of 100ms reaction time only. Anything faster than that is

considered a false start according to Olympic regulations.
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To do so, we have to formalize our definition of a false movement initiation (false start): ”A

system shall have the ability to perform a movement cycle as a consequence of a stimulus for a

fixed set of parameters. If the system performs the same movement cycle, or partially executed

forms thereof, in the absence of the external signal, then we call the movement cycle a false

start.” This definition of a false start implies its probabilistic character and hence is dependent

on the presence and strength of fluctuations which are always present in real dissipative systems

[Haken, 1983]. The notion of ”intention” does not explicitly occur in our definition, but it is

implicitly present as a variable that changes the likelihood of a false start. Our definition provides

a minimal basis, which enables us to study some characteristic properties of false starts, but

certainly is not intended to capture all aspects of a false start present in the literature.

Given the above formalization of a false start, what are possible realizations thereof in

dynamic systems? In Schöner’s two-dimensional model [Schöner , 1990] a discrete movement is

initiated by ”turning on” a ”behavioral information”, just long enough to get a joint or limb

from a given position A to another position B in phase space. The phase space is spanned by

two variables x and y. Here x may be interpreted as the position of an effector and y as a

variable which is related to the velocity. The behavioral information changes the phase flow

topology temporarily from a structure with two stable fixed points A and B (see figure 1 a) to

a limit cycle (see figure 1 c). Figure 1 shows a graphical representation of such trajectories with

varying phase flow topologies. If the behavioral information does not remain ”on” long enough,

the system will return to point A, if it stays ”on” too long, then the system actually passes point

B and also returns to point A, but performs a large amplitude flexion-extension cycle first (see

figure 1 b). It appears that most of the complexity of the formation of movement trajectories

has been shifted into the creation of behavioral information. In particular, the occurrence of

false starts raises the question of how a whole movement cycle is initiated, even though there

is no intent to do so. Given the present formal definition, it seems reasonable to interpret the

initiation of a false start as a stochastic process that operates close to a threshold: If the system

crosses the threshold, for instance due to a larger fluctuation, then the formation of the resulting

trajectory will be dominated by its deterministic features. However, the onset of a false start

will have a probabilistic character that will be a function of expectation and attentional factors,

which should be directly correlated with the distance of the fixed point to the threshold in

phase space for a fixed noise level. On the other hand, notice that the introduction of noise

and variability into the concept of behavioral information, which is the cause for the movement
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initiation in the Schöner model [Schöner , 1990], would result in a whole range of behaviors from

simple deviations around position A through half-cycles (AB), full cycles (ABA) and 3/2 cycles

(ABAB). To narrow the range of behaviors to partial movement cycles, such as simple deviations

around the fixed point, and complete movement cycles only (ABA), it would be necessary to

postulate that behavioral information occurs in a quantized manner, such that it may fluctuate

only within specified time windows. Not only does such a requirement seem artificial, but also it

just shifts the initial question of why either no movement or a complete movement is initiated to

the alternative question of why either no behavioral information is generated or only behavioral

information is generated that lasts for a specific time window.

FIGURE 1 HERE

For these reasons, we choose to remain in the original two-dimensional phase space spanned

by the variables x and y and discuss which elements must be present in order to observe the above

phenomena of false starts, rhythmic and discrete movements and shape of phase space trajecto-

ries. Additional degrees of freedom may exist as has been shown by Beek et al. [Beek et al., 2002]

to capture lag-one correlation effects [Wing & Kristofferson, 1973]. Such dynamics may still be

captured satisfactorily by lower dimensional systems as long as the dynamics is not chaotic,

since deterministic chaos requires at least three degrees of freedom [Strogatz, 1994]. This can be

accomplished by identifying the two-dimensional phase space in x and y with a two-dimensional

attractive surface in a higher dimensional space. As a consequence, any deviation from this

surface will result in a dynamics back to the surface satisfying the criteria of Beek et al.

[Beek et al., 2002]. However, the dynamics is reducible to a two-dimensional dynamics (for

instance using techniques such as the order parameter concept of synergetics [Haken, 1983]).

We choose to focus primarily on the existence of topological structures (layout of fixed points,

limit cycles, etc.) rather than on details of phase space trajectories. Examples of topological

structures are separatrices, which partition the phase space locally into separate regimes. A

well-known example in a one-dimensional phase space is the unstable fixed point of the HKB-

potential in bimanual coordination [Haken et al., 1985] separating the two stable fixed points,

in-phase and anti-phase. Homeomorphisms are smooth continuous transformations from one set

of variables to another that preserve the topology of the flow in phase space. Hence, to achieve a

classification of dynamic systems, it is sufficient to discuss the properties of one specific system

only if we are able to find a homeomorphism that maps the particular system onto a class of

other systems. In fact, the class of systems will actually be defined by the specific system and
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the homeomorphism. We will present examples thereof later.

Our starting point of modelling is the following: We need at least one stable fixed point in

phase space, which will represent our rest position A as shown in figure 2. Second, we need

some kind of barrier or threshold near this fixed point such that on one side of this barrier the

flow in phase space is directed towards the fixed point, on the other side away from it. This is

accomplished by means of a separatrix, which divides the local neighborhood into two distinct

areas with opposite horizontal flows (see figure 2).

FIGURE TWO HERE

The separatrix introduces naturally the threshold-like properties of a false start. The exis-

tence of a separatrix is the basis of the current model. More generally, a nullcline is the graphical

representation of the set of points for which either the horizontal or the vertical flow is zero.

The intersection of two nullclines identifies fixed points, i.e. points with zero horizontal and

vertical flow in phase space. Without loss of generality we choose the separatrix as y = −x

which is identical to the nullcline of the horizontal flow. The sign of the flow must be chosen to

be repelling, that is

ẋ = x + y − g1(x) (1)

where g1(x) is a purely nonlinear function, ∂xg1 = 0 for x = 0, which guarantees that the

trajectories remain bounded horizontally, if g1(x → ±∞) → ±∞. A slightly stronger condition

is the requirement of point symmetry, g1(−x) x→±∞−→ −g1(x) which also guarantees boundedness.

Note that the previous condition is sufficient, however, since a point-symmetric function g1 is

often used in applications, we will use this constraint unless stated otherwise. The nullcline of

the vertical flow ẏ must generate at least one fixed point (x0, y0) at position A in phase space,

ẏ = f(x0, y0) = 0, which is given by the intersection of the nullclines of horizontal and vertical

flow. To guarantee linear stability of the fixed point, we require for the vertical flow

ẏ = f(x, y) = f(x0, y0)︸ ︷︷ ︸
=0

+ ∂xf(x0, y0)︸ ︷︷ ︸
≤0

(x− x0) + ∂yf(x0, y0)︸ ︷︷ ︸
≤0

(y − y0) + higher orders. (2)

We identify ∂xf(x0, y0) = −1, x0 = a and g2(x, y) = −∂yf(x0, y0)(y − y0) + O(x2, y2) where

O(x2, y2) is the Landau symbol, which means that the term O(x2, y2) contains polynomials of at

least the second (or higher) order. With these considerations we obtain the following ordinary
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differential equation
ẋ = (x + y − g1(x))τ

ẏ = −(x− a + g2(x, y)− I)/τ
(3)

where τ is a time constant and external input I is introduced via the vertical flow. The model

system in equation (3) falls into the class of excitable systems, that is systems which exhibit

threshold properties and return, when having crossed the threshold, to the initial position after

a long transient for an appropriate choice of g1(x) and g2(x, y). Excitable systems2 systems have

been studied in various fields of science dealing with threshold elements [Strogatz, 1994], but in

particular in biology as a model for neuronal functioning [Murray, 1993]. In the following we

wish to refer to the model system described by equation (3) as the Excitator. To ensure the

excitable properties of the Excitator in equation (3), the following constraints, which are derived

in appendix A, have to be satisfied:

Existence of separatrix: ∂xg1(0) = 0

Stability of fixed point (x0, y0) : ∂xg1 > 1 ∂yg2(∂xg1 − 1) + ∂xg2 + 1 > 0

Boundedness (x, y À 1) : g1(−x) x→±∞−→ −g1(x) G(−y)
y→±∞−→ −G(y)

G(y) = g−1
1 (y)− a + g2(g−1

1 (y), y)
(4)

where the partial differentials in the constraint for the stability of the fixed point (x0, y0) have

to be evaluated at the fixed point. The time constant τ should be chosen to be large, τ À 1,

to guarantee sufficiently fast horizontal flow away from the separatrix. Actually, in practice,

it turns out that τ ≥ 1 is fully sufficient. Under these conditions x becomes a fast variable

and y a slow variable resulting in a sequentially occurring time scale hierarchy. Such systems

are referred to in the literature as relaxation oscillators, e.g. the FitzHugh-Nagumo system

[FitzHugh, 1961], the Hodgkin-Huxley equations [Hodgkin & Huxley, 1952], the Hindmarsh-

Rose oscillator [Hindmarsh & Rose, 1982] and the Van-der-Pol oscillator (see e.g. [Perko, 1991]).

These dynamic systems typically have a parameter regime in which limit cycle behavior exists.

This can be easily shown by applying the Poincaré-Bendixson theorem (e.g. [Haken, 1983]),

which states that a stable limit cycle exists if a closed region may be found in the phase space,

such that the flow at the boundaries of the region points inside and the region does not contain

any fixed points. The boundedness criterion of equation (4) guarantees an outer boundary with

inwards flow. An inner boundary, its flow and the fixed points will depend on the details of
2Excitable systems are not to be confused with excited or self-excited systems. The former refer to systems

with an external driver, the latter refer to systems with a self-excitation term, typically negative damping.
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the functions g1(x), g2(x, y). The primary purpose of g1(x) is to guarantee the boundedness of

the system dynamics along the x-direction, whereas g2(x, y) identifies the task conditions. In

particular, the expression −a+g2(x, y) will be used to implement the task constraints (see below

for explicit examples) reflected in the topology of the phase flow.

A notable feature of the phase plane trajectories is that the sequential time scale hierarchy,

x being a faster variable compared to y, creates an attractive manifold in phase space, if the

system is sufficiently far away from the separatrix. In this region, the different time scales allow

one to eliminate the fast variable x by means of adiabatic elimination [Haken, 1983], ẋ = 0. We

thereby obtain a reduced description of the dynamics,

y ≈ g1(x) (5)

and

ẏ = −(g−1
1 (y)− a + g2(g−1

1 (y), y)− I)/τ (6)

as long as the system dwells in this region of phase space. Along this ”return manifold” the

trajectory returns from an overshoot and moves toward a stable fixed point or just defines a

segment on the left and right hand side of the limit cycle in phase space (see section 2.2 for

illustrations thereof). The inverse of g1(x) must exist only locally in phase space, that is in the

region of interest. Experimental and theoretical examples are presented in section 2.2.

A simple realization of the Excitator, which satisfies all conditions in equation (4), is given

by g1(x) = x3/3 and results in the following dynamic system

ẋ = (x + y − 1/3x3)τ

ẏ = −(x− a + by − I)/τ
(7)

where the three task conditions are defined by the parameters a and b: (I) bistable (a = 0, b = 2);

(II) monostable (a = 1.05, b = 0); (III) limit cycle (a = 0, b = 0). The nullclines of the two-

dimensional flow, y = −x + (1/3)x3 for the horizontal flow and x = a− g2(x, y) for the vertical

flow, are plotted in figure 3 for the three different conditions. The intersections of the nullclines

define the stable and unstable fixed points.

FIGURE THREE HERE

The monostable condition displays exactly one fixed point (a,−a + a3/3). A linear stability

analysis shows immediately that the fixed point is stable for | a |> 1, else unstable. As a
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consequence there will be a stable limit cycle for | a |< 1, because there are no other fixed points

and the Poincaré-Bendixson theorem applies. The results of the stability analysis are illustrated

in figure 4 by means of a bifurcation diagram. The Excitator undergoes a supercritical Hopf-

bifurcation at | a |= 1.

FIGURE FOUR HERE

Note the difference to the previously discussed equilibrium point notions [Feldman, 1980a,

Feldman, 1980b, Kelso, 1977, Polit & Bizzi, 1978, Polit & Bizzi, 1979]: Equilibrium point mod-

els accomplish movement control by changing the location of an unambiguous fixed point within

the location of the phase plane. As a consequence, they do not describe phenomena such as

limit cycle phenomena or existence of multiple stable fixed points. In this sense, the equilibrium

models may be viewed as a special case of the Excitator system. Obviously, it is acknowledged

that the equilibrium point models have the benefit of making the connection to the underlying

biomechanical aspects of movement control.

2.2 Trajectory formation in phase space: Experiment and Computation

The set of variables x and y provides a complete description of the dynamics of a two-dimensional

excitable system. Here we use a convention most often used in the context of excitable systems

[Murray, 1993, Strogatz, 1994]. This convention separates the time scales present in the dynam-

ics, that is a fast time scale on the order 1/τ associated with the x variable, and a slow time

scale on the order of τ associated with the variable y. This clear time scale separation enables

us to formulate an unambiguous criterion for the separatrix, that is sufficiently fast horizontal

flow away from the separatix with τ À 1. The fixed points are obtained from the intersections

of the nullclines and may be located anywhere in phase space. On the other hand, it is exper-

imental practice to identify the second variable with the effector velocity, y = ẋ = ∂tx. As a

consequence, all fixed points are located along the horizontal x-axis. From equation (3), it is

evident though that the second variable y is not the effector velocity ẋ, but rather a nonlinear

function of x and ẋ, that is y = ẋ/τ−x+g1(x). To perform a comparison between experimental

and theoretical results, we have to identify a mapping between the two coordinate systems used

in experiment and theory. In particular, we map the theoretical set of variables x, y onto a new

set of variables, u, v. The new set of variables is required to satisfy the condition v = u̇. If the
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mapping is a homeomorphism, the dynamics will remain the same in both coordinate systems,

that is the topology of the phase flow is not altered by the mapping. In general, x, y will be

used for discussing the intrinsic dynamics of the Excitator in equation (3), and u, v will be used

for comparison with the experimental system.

We seek a mapping h1(x), h2(x, y) such that

u = h1(x) = x

v = h2(x, y)
(8)

where the new variables u, v satisfy with equation (3)

u̇ = v = h2(x, y) = (∂xh1)ẋ = (x + y − g1(x))τ and ∂xh1 = 1 (9)

Here h1 and h2 are differentiable and smooth over x, y and hence will not alter the topology of

the phase flow in the new coordinates u, v. Then the mapping from (x, y) to (u, v) coordinates

and its inverse are given by

u = x x = u

v = (x + y − g1(x))τ y = v/τ − u + g1(u)
(10)

The dynamics of u, v may be readily written as

u̇ = v

v̇ = (∂xh2) ẋ + (∂yh2) ẏ

= (1− ∂xg1(x) |x=u︸ ︷︷ ︸
γ1(u)

)τv − u− g2(u, v) + a + I
(11)

where g2(u, v) = g2(u, y(u, v)). It is fully equivalent to either solve equation (3) and then map

x, y onto u, v, or, alternatively, perform the numerical solution directly in equation (11). The

specific realization of the Excitator given in equation (7) reads in u-v-coordinates as follows

u̇ = v

v̇ = (1− u2)τv − u− b(v/τ − u + 1/3u3) + a + I
(12)

It is evident that the time scales of evolution are mixed in equation (12), whereas they are

unmixed in equation (7).

2.2.1 Methods

We present briefly experimental data whose primary purpose here is to illustrate characteristic

features of phase plane trajectories; its secondary purpose is to identify space and time scales
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which will allow us to identify parameters in specific realizations of Excitator models (see below).

Ten right handed (self-reported) male subjects took part in this experiment. All procedures were

cleared by the local Human Subjects Committee and participants signed consent forms before

taking part in the experiment. Participants placed the index finger of their dominant hand in a

custom built manipulandum which restricted motion of the metacarpophalangeal joint to a single

plane (see [Kelso & Holt, 1980] for more details about the apparatus). Unnecessary vertical and

horizontal movements were restricted by a padding placed against the sides of the hand. An

angle calibrated potentiometer measured the position of the index finger. Finger movement

was sampled at 128Hz using an ODAU analog-digital converter connected to an Optotrak 3010

system. The external metronome, consisting of a sequence of beeps, was sent to the ODAU unit

and a pair of headphones. Three experimental conditions were tested, the bistable condition (I),

in which two fixed points exist, the monostable condition exhibiting only one fixed point (II) and

the limit cycle condition (III). In the first two conditions, subjects were exposed to a sequence of

auditory stimuli of 30ms duration and variable inter-stimulus interval (4000ms±1000ms). The

subjects were instructed to react to the stimuli as quickly as possible. In condition (I), the

subjects’ task was to alternate between the execution of flexion and extension. In condition (II),

the subjects’ task was to perform a complete flexion-extension cycle and return to the initial

starting point. In the last condition (III), periodic stimuli of 30ms duration were presented with

an inter-stimulus interval of 1000ms. The subjects’ task was to perform continuous periodic

movements, coinciding peak flexion with stimulus onset.

For the computational implementation of all simulations in section 2, we choose the following

specific realization of the Excitator system:

ẋ = (x + y − (1
3x3 + 1

5x5))τ

ẏ = −(x− a + by − I)/τ
(13)

with τ = 1, g1(x) = (1/3)x3 + (1/5)x5 and g2(x, y) = by. The function g1(x) has been obtained

from a fit of the nullcline y = −x + g1(x) = −x + (c1/3)x3 + (c2/5)x5 to the experimental

data in the neighborhood of the two fixed points of the bistable condition (I). The data set of

a single characteristic subject was used for the parameter fit. The other conditions (II) and

(III) (monostable and limit cycle) and data sets of other subjects provided similar results. The

parameters c1 ≈ c2 ≈ 1 have been determined as to minimize the square error of the curvature of

the stable manifolds, but also to provide computationally stable solutions for all task conditions

(I)-(III) discussed in the current section 2. The task conditions are implemented in the term
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−a + g2(x, y) = −a + by with a, b varying between 0 and 2. The parameters a and b have been

chosen to mimic the location of the fixed points in the experimental data set of the corresponding

task condition. Input strength was I = 1 for the on-periods of the stimuli, I = 0 else. For the

monostable condition, the input I is defined to be positive for each stimulus. For the bistable

condition, the sign of I alternates between plus and minus. For the limit cycle condition, no

input is provided, that is I = 0 throughout. The duration of the rectangular stimulus I was

one computational time unit. All simulations are performed using a fourth-order Runge-Kutta

method. We also added Gaussian white noise ξ(t) to the evolution equations , where

< ξ(t) >= 0 < ξ(t)ξ(τ) >= Q2δ(t− τ) Q = 0.01 (14)

The triangular brackets denote time averages. We estimate the relation between the compu-

tational units and the corresponding physical units in m and sec. One computational space

unit corresponds to 2cm, estimated from the radius of the limit cycle in phase space and put

in correspondence with average experimental limit cycle data. This estimate also provides a

good comparison between experiment and theory for the distance of the positions of the two

fixed points in the bistable condition. The time unit estimate is based on the choice for the

computational angular eigenfrequency ω = 2πf = 1/T = 1 of the Excitators (see equation

(12)), where f is the frequency and T the period of a cycle. Experimentally, preferred finger

movement frequencies range from around 1.1 Hz to 3 Hz following instructions to move the finger

at a comfortable pace and through a comfortable range of motion [Fink, 2002]. If we identify

the preferred frequency with the eigenfrequency and estimate it as 2Hz, then one computational

time unit will correspond to 80ms, or equivalently 12.5 computational time units will correspond

to 1s. In the following, all theoretical predictions will be based on these estimates.

2.2.2 Results

We compare representative examples of time series and phase space trajectories of experimental

and simulated data. The first condition is the ”bistable” condition, in which a subject has to

move the index finger from a position A to a position B coincident with a metronome beat.

Figure 5 displays both data, experimental (left column) and simulated (right column). In the

top panel, the time series of the end-effectors are shown for a few repetitions, together with

the corresponding stimulus sequence. Below the phase space trajectories are plotted in u-v-

coordinates (middle panel) and x-y-coordinates (bottom panel). More repetitions have been
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plotted in the bottom panel than in the top panel for reasons of clarity. In both data sets, the

fixed points are identified on the horizontal axis (v = 0) as clustering points. Note that both

time series, experimental and simulated, display an overshoot when approaching the fixed point

and stabilizing there. The overshoot corresponds to the movement along the return manifold

discussed earlier in section 2.1. In the u-v-system (middle panel), this motion evolves along

v = 0 by construction, whereas in the x-y-system (lower panel) the motion follows a concave

curve leading to the fixed points. The mapping from u-v-coordinates to x-y-coordinates is defined

by equation (10) with τ = 1 and g1(x) = x3/3. In the following we will use the u-v-coordinates

which may be identified with the commonly used variables position and velocity.

FIGURE FIVE HERE

The monostable condition displays one fixed point and displays a flexion-extension cycle when

the fixed point is destabilized. The experimental data (left column) and simulated data (right

column) are plotted in figure 6 using u, v-coordinates. The phase space trajectories display the

fixed point on the right side of the trajectories as clear clustering points. Two of the movement

cycles are plotted in the top panel. Here we note again the overshoot occurring after the

execution of a flexion-extension cycle.

FIGURE SIX HERE

The overshoot and the slow fall-off towards the rest state correspond to the motion along

the return manifold. The arrows in figure 6 point towards the attractive manifolds around

v = 0. In analogy to refractory times of neurons [FitzHugh, 1961, Hodgkin & Huxley, 1952,

Hindmarsh & Rose, 1982], the return phase of the movement cycle along the manifold corre-

sponds to the refractory part of the dynamics, in which the system is more difficult to excite,

and lasts until the fixed point is reached. Using the parameter identification in section 2.2.1

we estimate the movement time to be on the order of 400ms, defined from movement onset to

the maximum value of extension (that is maximum positive u). At this latter point, the return

phase of the movement cycle starts and also lasts for about 400ms in both, experimental and

theoretical, data sets. However, the movement onset of the theoretical data is instantaneous at

stimulus onset. The experimental data set shows the well-known delay between stimulus and

movement onset which is sensory-modality dependent and is attributed to perceptual processes

[Hackley & Valle-Inclán, 1998].
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The experimental data (left column) and simulated data (right column) of the limit cycle

condition are displayed in figure 7 in u, v-coordinates. The simulated trajectories appear to be

more symmetric than the experimental trajectories with respect to point symmetry. Both data

sets show structures that are reminiscent of the return manifolds in the neighborhood of | u |≈ 1,

such that the deviations from the circular structure of the trajectories are more pronounced in

these regions and a higher clustering of data points occurs.

FIGURE SEVEN HERE

3 Coupled dynamics of two Excitators

The phenomenon of in-phase and anti-phase behavior of two coupled oscillating systems is om-

nipresent in nature. It has received particular attention in movement science (see [Kelso, 1995,

Jirsa & Kelso, 2004] for reviews), because of its simplistic nature, that is the reduction of its

degrees of freedom: By forcing the effectors of the human movement system onto limit cycles,

which is typically done by providing adequate task conditions, the phases of the effectors become

the collective variables carrying the relevant movement information. Kelso provides a general

discussion of the dynamics observable in a system described by a phase equation [Kelso, 2002].

In particular, he points out that there are coexisting integrative (converging) and segregative

(diverging) tendencies in the proximity of fixed points. Kuramoto has shown that any two

weakly coupled oscillators, whose limit cycle properties are preserved despite the coupling, may

be reduced to a system of coupled phase equations [Kuramoto, 1984]. The stationary solutions

of the phases are always the in-phase and anti-phase solutions. The stability of these solutions

is determined by the details of the coupling. The constraint of limit cycle oscillators enabled

Kuramoto to draw conclusions about a variety of oscillators. Here we drop this constraint of

limit cycle behavior and allow arbitrary trajectories in a two-dimensional phase space, but con-

strain the nature of the coupling instead. Sigmoidal nonlinearities represent the most natural

form of coupling in biological systems for the following reason: A population of cells without

any afferent input displays only background rest activity. When the input to the cell population

is increased, there is typically an initial linear increase of cell activity. At some point the cell

population will reach its maximal activity possible and the response function saturates resulting

in a sigmoidal response curve. Multi-modal response curves for increasing input, such that the
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response of the cell population decreases and increases again, will be unlikely if they are borne

by individual cell properties, since these are subject to averaging out in a cell population. How-

ever, non-monotonic behavior of neuronal firing rates has also been observed for large input to

the neuron reflecting properties of fatigue and adaptation [Freeman, 1992]. In the movement

sciences the HKB-coupling [Haken et al., 1985] has been successful in understanding a number

of coordination phenomena on the limit cycle. This coupling function exists of a linear poly-

nomial with a positive coefficient and a cubic polynomial with a negative coefficient. The sign

and magnitude of the coefficients are determined by the stability properties observed in biman-

ual rhythmic coordination behavior [Haken et al., 1985, Schöner et al., 1986]. It turns out that

these coefficients are the same as for the low order approximation of the sigmoid function [ Jirsa,

Fuchs, & Kelso, 1998], suggesting an interpretation of the HKB coupling as a truncated sigmoid

function. If the latter is true, then the well-known dependence of the neural response functions

on fatigue and attention [Freeman, 1992] may be transferred to the HKB-coupling and to the

movement sciences. In the following we assume a sigmoidal coupling S between two Excitator

units and discuss the effects of the coupling on a variety of movement types, including rhythmic

and discrete movements produced by the Excitators. Whenever appropriate, we note the effects

of the truncation resulting from the HKB-coupling.

As a starting point we choose two Excitators described by the two sets of variables u1, v1 and

u2, v2 with the intrinsic dynamics given by equation (11). We will keep the analytical discussion

more general in the sense that our following results will be valid also for intrinsic dynamics other

than the Excitators. When appropriate, we will note that the results are specific for Excitators.

The sigmoidal coupling S as a function of ui, vi i = 1, 2 is well known to represent effects of

synaptic coupling of cell populations. The coupled system of two Excitators then reads

u̇1 = v1

v̇1 = −u1 + f1(u1, v1)− ∂tS(u1 − u2)

u̇2 = v2

v̇2 = −u2 + f2(u2, v2)− ∂tS(u2 − u1)

(15)

where f1 and f2 denote the intrinsic dynamics of the dynamic systems involved, e.g. an Excitator

dynamics. For the time being we wish to keep the specific realization of the intrinsic dynamics

open. The HKB-coupling is obtained as a truncation of the expansion of the sigmoid after its

second term

∂tS(u1−u2) = (u̇1−u̇2)∂uS(u) = (v1−v2)(α+β(u1−u2)2+. . .) ≈ (v1−v2)(α+β(u1−u2)2) (16)
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with α, β as constant parameters. To investigate the behavior of the Excitators with respect

to each other, we study the evolution of their relative distance in phase space. The Euclidean

distance of two Excitators in phase space is given by d =
√

(u1 − u2)2 + (v1 − v2)2 and it evolves

in time as

∂td = (v1 − v2)[(u1 − u2) + (v̇1 − v̇2)]/d

= (v1 − v2)/d[f1(u1, v1)− f2(u2, v2)︸ ︷︷ ︸
∆

−∂tS(u1 − u2) + ∂tS(u2 − u1)]

= (v1 − v2)/d×∆− 2 (v1 − v2)2/d︸ ︷︷ ︸
>0

× ∂uS(u1 − u2)︸ ︷︷ ︸
<0 or >0

(17)

The behavior of the trajectories in phase space is then given by

convergence ←→ ∂td < 0

divergence ←→ ∂td > 0
(18)

Let us assume for a moment that the difference in the individual dynamics is ∆ = 0. Then

convergence is obtained if and only if

convergence : ∂td < 0 ←→ ∂uS(u1 − u2) > 0 (19)

which is always satisfied for a uni-modal sigmoid function. Hence, two sufficiently similar tra-

jectories will always converge. In contrast, the partial derivative of the truncated sigmoidal

function, ∂uS(u1 − u2) ≈ α + β(u1 − u2)2, allows also for divergence, that is

convergence : ∂td < 0 ←→ α + β(u1 − u2)2 > 0 (20)

and

divergence : ∂td > 0 ←→ α + β(u1 − u2)2 < 0 (21)

FIGURE EIGHT HERE

The conditions in equations (20) and (21) contain the special case of the coupled limit cycle

oscillators discussed in [Haken et al., 1985]. When constraining the dynamics of two oscillators

to a one-dimensional closed loop in phase space, the limit cycle, then the greatest distance

between these two oscillators becomes half of the length of the closed loop, which is identical

to anti-phase motion and is stable as long as the condition in equation (21) is satisfied. This

is illustrated qualitatively in figure 9. As the amplitudes u1, u2 of the oscillators decrease with

increasing movement frequency [Haken et al., 1985, Kay et al., 1987], the divergence condition
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cannot be satisfied anymore and the oscillators bifurcate into in-phase motion, which is the

smallest distance between two limit cycle oscillators and is always stable for α > 0.

FIGURE NINE HERE

Another special case of the equation (17) has been first observed numerically by Schöner

[Schöner , 1990] for discrete movement trajectories. Here the simulation of two Gonzalez-Piro

oscillators [Gonzalez & Piro, 1987], which were coupled by means of the HKB coupling, revealed

the tendency to synchronize two movements when the movement onsets were sufficiently close.

Otherwise the tendency to sequentialize the movements was observed. We now may be more

specific. It actually is not the movement onset times, but rather the difference in positions

between the oscillators in equations (20), (21), which provides the critical value for conver-

gence/divergence of trajectories.

The general case, ∆ 6= 0, introduces considerations on symmetry and similarity between the

two movement trajectories. When two identical systems display the same trajectory formation,

stationary or transient, then the resulting dynamics is determined solely by their mutual cou-

pling and the earlier special case, ∆ = 0, is present. If the symmetry between the systems is

broken, e.g. they have slightly different eigenfrequencies, then this will be reflected in ∆ (for the

special case of weakly coupled limit cycle oscillators see [Kuramoto, 1984, Kelso et al., 1990]).

Equivalently, if two identical systems take different paths in phase space, e.g. slightly different

positions, this will also be reflected in ∆. We wish to identify now the intrinsic dynamics of the

two coupled systems with the Excitators in equations (11) and write for the difference ∆ of the

intrinsic Excitator dynamics

∆ = a1 − a2 + (1− γ1(u1))τv1 − (1− γ1(u2))τv2 − g2(u1, v1) + g2(u2, v2) (22)

where γ1(ui) = ∂xg1(x) |x=ui . For a moment, we wish to refer back to the Excitator system in

equation (3) in the x, y-coordinates and use the convenient property of unmixing of the time

scales in this coordinate system. In particular, there are two sequentially occurring separate

time scales, that is a fast horizontal flow and a slow dynamics around the outer branches (that

is x > a) of the nullcline y = −x + g1(x) (see e.g. [Campbell & Wang, 1998] for a technical

review). Using equation (10), the slow manifold reads v = 0 in (u, v)-coordinates. Most of

the time during a stationary or transient dynamics will be spent on this slow manifold in the

phase space. Hence we can make the following argument: Because γ1(u) is symmetric, that
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is γ1(−u) = γ1(u) for u = u1, u2, there will be a lower bound for the expression γ1 for both

Excitators and both slow manifolds such as

γ1(u) ≥ γ1(a), u = u1, u2; a = max (a1, a2) (23)

This argument may be made for γ1(u1), γ1(u2) because of its symmetry property, but not for the

coupling S(u1 − u2), which depends on the difference of u1, u2. Then ∆ may be approximated

(for sufficiently large τ and thus time scale separation) as

∆ ≈ a1 − a2 + (1− γ1(a1))τ(v1 − v2) (24)

and the time evolution of the trajectories’ distance reads

∂td = (v1 − v2)/d× (a1 − a2)− 2 (v1 − v2)2/d︸ ︷︷ ︸
>0

× ((γ1(a1))− 1)τ/2 + ∂uS(u1 − u2)︸ ︷︷ ︸
<0 or >0

(25)

In particular, if the fixed points (ui, vi) = (ai, 0), i = 1, 2 are stable and the symmetry breaking

is small, | a1−a2 |¿ 1, then equation (25) is a first good approximation of the time evolution of

the distance of two nearby trajectories. The sign of the last term will be the relevant criterion

deciding about convergence or divergence. The critical trajectory distance is then given by

dc =| u1 − u2 |=
√

[γ1(a1)− 1]τ/2 + α

−β
(26)

If d > dc, then the trajectories will diverge, else they will converge. In the following we will test

these predictions numerically.

The following simulations of the coupled Excitators are based on the Excitator model in

equation (13) and its space and time scales as established in section 2.2.1. The coupling is

the HKB-coupling as determined in [Haken et al., 1985, Schöner et al., 1986] and discussed in

the context of neural response functions in [Jirsa et al., 1998]. The explicit equations read in

(u, v)-coordinates:

u̇1 = v1

v̇1 = (1− u2
1 − u4

1)τv1 − u1 + a1 + I1 − (v1 − v2)(α + β(u1 − u2)2)

u̇2 = v2

v̇2 = (1− u2
2 − u4

2)τv2 − u2 + a2 + I2 − (v2 − v1)(α + β(u1 − u2)2)

(27)

The parameters are a1 = a2 = 1.05, τ = 3, α = 0.2, β = −0.2. The choice of parameters

resembles the monostable task condition with a single fixed point. The amplitude of the input
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stimulus is I = −3.5 and its duration is 80msec. As described in section 2.2.1, a fourth order

Runge-Kutta method including a linear noise term is used for the numerical implementation.

With these parameters, the critical trajectory distance in equation (26) is estimated to be

dc = 3.3 in computational space units, which corresponds to about 6.5cm, and thus suggests the

spatial scale of the convergence/divergence phenomena to be of the order of magnitude which is

experimentally observable. Figure 10 shows the numerical simulations of the dynamics of two

coupled Excitators (solid lines) following two input signals with a short inter-stimulus interval

(ISI) of 80msec. Here the first stimulus is delivered to the first Excitator unit, and the second

stimulus to the second Excitator unit. A comparison is made to the uncoupled trajectories

(dotted lines). It can be clearly seen that the first system is delayed due to the coupling in order

to achieve a more simultaneous coordination dynamics, that is convergence. Both couplings, the

fully sigmoidal and its truncated form, the HKB-coupling, accomplish this phenomenon.

FIGURE TEN HERE

Figure 11 shows the same situation as before, only the ISI of the two consecutive stimuli has

been increased to 160msec. Again the trajectories converge initially, such that the first Excitator

is delayed as in the previous case. But upon reaching a critical value of the trajectory distance,

d =| x1 − x2 |≈ 2.6 computational space units around time point 1000msec, the trajectories

start diverging. As a consequence, both Excitators are delayed with respect to the uncoupled

system and also with respect to each other. Such acceleration phenomena have been observed

experimentally [Kelso et al., 1979, Kelso et al., 1983]. The divergence cannot be observed when

using a sigmoidal coupling, because the divergence condition in equation (18) cannot be satisfied.

FIGURE ELEVEN HERE

To illustrate the quantitative degree of convergence and divergence we calculate the mean

time delay between coupled and uncoupled Excitator units. Figure 12 displays the mean time

difference (upper graphs) and its variance (lower graphs) as a function of the ISI. As a measure

we choose the time difference between the positions of two Excitators when they cross x = 1 after

a flexion-extension cycle (just before they enter the return phase). The mean time difference

was computed from 11 trials as a function of the ISI. With a dynamics as defined in equation

(27), the coupled Excitator units show convergence times of coordinated action up to 50msec for

ISIs from 0 to 130ms. For ISIs greater than 130msec, the coupled system displays divergence,
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though to a smaller extent (up to 30msec). For ISIs between 100msec and 150msec, the variance

of the time difference of the coupled system (solid line) is greatly enhanced. Since the variance

of the uncoupled system (dashed line) is also enhanced in a similar range of ISIs, it is implied

that an increased sensitivity of the intrinsic Excitator dynamics rather than the coupling is the

cause of the increased variance.

FIGURE TWELVE HERE

4 Conclusions

What have we accomplished by developing a ”minimal model” that we have named here as

the ”Excitator”? First, the Excitator summarizes the mathematical properties, that a two-

dimensional dynamic system based on ordinary differential equations must have to produce a

set of behaviors, the most striking ones being discrete and rhythmic movements, and false starts.

Among other models, the HKB-model [Haken et al., 1985], Schöner’s model [Schöner , 1990] and

many neuronal models, such as the FitzHugh-Nagumo system [FitzHugh, 1961], the Hodgkin-

Huxley equations [Hodgkin & Huxley, 1952] and the Hindmarsh-Rose oscillator [Hindmarsh & Rose, 1982],

are specific realizations of the Excitator for special parameter settings, in the sense that all

of the prior models produce only a subset of behaviors. The virtue of the current descrip-

tion is its generality which is based on the discussion of topological elements of the flow in

phase space such as separatrices and stability of fixed points. The existence of these struc-

tural features is invariant under homeomorphisms (see the Hartmann-Grobmann theorem, e.g.

[Guckenheimer & Holmes, 1983, Perko, 1991]) and arguments on the actual implementation of

the dynamics of the system become superfluous [Peper & Beek, 1998]. However, admittedly,

the specifics of implementation become relevant when addressing the dynamics and its under-

lying neuronal substrate, because here the material realization will provide us with additional

information on the shape of the mathematical terms present in the Excitator. As an example,

neuronal response functions are typically understood to be sigmoidal and their slope and height

vary with the degree of attention [Freeman, 1992]. Such identification of the sigmoidal response

function with the Excitator couplings provides us with an entry point to attentional, or more

generally, cognitive influences on the behavioral system and constrains the vast space of possible

modelling. We propose a specific realization of the Excitator which is not unique, but allows for
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explicit quantitative predictions. For example, we predict the existence of an attractive manifold

in the phase space (the return phase after the overshoot) along which the system evolves for

a duration on the order of 400msec. The manifold constrains the flow in the phase space to a

limited region and hence constrains the movement dynamics. The motion along the manifold

has refractory properties, such that perturbations or additional stimuli will excite the movement

system less effectively until the final rest state is reached. Further, we postulated the existence

of a separatrix in phase space and predict that the probability of the occurence of false starts

increases with decreasing distance to the separatrix. More specifically, shifts of the location of

the equilibrium point in phase space towards the separatrix are predicted to cause more false

starts. The probability of the occurrence of a false start will be a function of three factors: 1.

the distance between the fixed point and the separatrix; 2. the strength of the flow away from

the separatrix; 3. the noise strength. All three components are experimentally accessible and

allow the calculation of a mean escape time which is directly related to the probability of the

occurrence of a false start (see [Schöner et al., 1986, Fuchs & Jirsa, 2000] for stochastic treat-

ments of rhythmic movements). An experimental demonstration of the existence of a separatrix

(the backbone of the Excitator) involves to show a correlation between the probability of a false

start and the three components above. Finally, a general discussion of coupled Excitators leads

us to the prediction that the timing of coordinated multilimb movements primarily depends on

the difference in the positions of the effectors, a phenomenon first noted in slightly different form

[Schöner , 1990]. Our analysis shows that for inter-stimulus intervals of less than 130msec, two

movements tend to be executed synchronously; conversely, for inter-stimulus intervals of more

than 130msec, two movements tend to be executed sequentially. Both effects are on the order

of 30msec to 50msec.
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A Appendix

Here we shall derive the constraints given in equation (4) for the system defined in equation (3).

A.1 Existence of separatrix

The horizontal flow shall be given by ẋ = x + y − g1(x). In a neighborhood U of the origin

(x, y) = (0, 0), the smooth function g1(x) shall have the following Taylor expansion

g1(x) =
1
2!

∂2
xg1(0)x2 +

1
3!

∂3
xg1(0)x3 + . . . (28)

which means g1(0) = 0 and ∂xg1(0) = 0. Then the horizontal flow in U is given by y = −x

sufficiently close to the origin and is repelling.

A.2 Existence of fixed point (x0, y0)

There will be n fixed points, if and only if the nullclines of equation (3) intersect in n points in

the phase space.

A.3 Stability of fixed point (x0, y0)

The stability of the fixed point is determined by the eigenvalues of the Jacobian L defined as

L =


 (1− ∂xg1)τ τ

−(1 + ∂xg2)/τ −∂yg2/τ


 (29)

where the partial derivatives are to be evaluated at (x0, y0). The eigenvalues are obtained from

the characteristic polynomial det(L− λI) = 0, with I as the identity matrix, and read

λ =
1
2
(−∂yg2/τ − τ(∂xg1 − 1)±

√
root) (30)

with

root = (∂yg2/τ + τ(∂xg1 − 1))2 − 4(∂yg2(∂xg1 − 1) + 1 + ∂xg2) (31)
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To simplify this ugly term we use the sequential time scale hierarchy present in relaxation

oscillators, that is τ À 1, neglect ∂yg2/τ and write

λ =
1
2
(−τ(∂xg1 − 1)±

√
τ2(∂xg1 − 1)2 − 4[∂yg2(∂xg1 − 1) + 1 + ∂xg2]) (32)

If Re[λ] < 0, then the fixed point (x0, y0) is stable. This results in the stability conditions

∂xg1 > 1 and ∂yg2(∂xg1 − 1) + 1 + ∂xg2 > 0 (33)

A.4 Boundedness

The condition for sequential time scale hierarchy, τ À 1, shall be satisfied. Then the center

manifold theorem applies [Perko, 1991] and the fast variable, x, may be adiabatically eliminated

[Haken, 1983], ẋ = 0, such that all the horizontal flow is contracted to y = −x + g1(x) ≈ g1(x),

sufficiently far away from the origin. We require that the inverse of g−1
1 exists at least locally in

phase space, x = g−1
1 (y). Then the vertical phase flow may be expressed as

ẏ = −1
τ
(g−1

1 (y)− a + g2(g−1
1 (y), y)︸ ︷︷ ︸

G(y)

) (34)

and will be directed towards the origin for large y, if and only if

G(y) = G(y → ±∞) → ±∞ (35)

As a consequence, if the nonlinear function g1(x) satisfies g1(x → ±∞) → ±∞ also, then it

follows that the horizontal flow is always directed towards the origin for large x. A slightly

stronger constraint for the boundedness of horizontal and vertical flow is obtained by requiring

point symmetry: g1(−x) x→±∞−→ −g1(x) and G(−y)
y→±∞−→ −G(y).
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Figure 1: Topological features of phase flow: a) two stable fixed points A and B;

b) one stable fixed point A displaying either small amplitude deviations or large

amplitude orbits; c) stable limit cycle. x and y are variables (such as position and

velocity) in the two-dimensional phase space.
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Figure 2: A separatrix divides the phase flow locally into two separate regimes located

to its left and right, thereby creating a threshold element and thus the propensity

to false starts. The direction of flow is indicated by arrows.
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Figure 3: The nullclines for the three conditions bistable, monostable and limit cycle,

are plotted together with arrows indicating the direction of the flow in the phase

space. The cubic curve is the nullcline for ẋ = 0 and remains unchanged, only the

(ẏ = 0) - nullcline is altered to define the task conditions by adjusting the flow and

topology in phase space.
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Figure 4: The real parts (solid line) and the imaginary parts (dotted line) of the

eigenvalue of the linear stability analysis around the fixed point A are plotted in

this bifurcation diagram. A supercritical Hopf-bifurcation occurs at | a |= 1.
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Figure 5: Two fixed points A and B were created in phase space. The left column

shows experimental data, the right column numerical simulations. The time units

are in seconds, the space units are dimensionless. The phase space trajectories are

represented in the u-v-coordinate system (middle panel), which ensures that the

fixed points are located along the horizontal axis in phase space, as well as in the

x-y-coordinate system (lower panel). The mapping given in equation (10) has been

used with τ = 1 and g1(x) = x3/3.



REFERENCES 35

12 14 16
−1

−0.5

0

0.5

1

1.5

Time (s)

u

Excitator With Noise: Monostable

−1 0 1 2
−1

0

1

2

u

v
38 40 42 44 46 48

−1

−0.5

0

0.5

1

Time (s)

u

Experimental Data: Monostable

−1 0 1 2
−2

−1

0

1

2

u

v

Flex. ext. Flex. ext.

Figure 6: One fixed point A is created in phase space. The left column shows ex-

perimental data, the right column displays the results of the numerical simulations.

The time units are in seconds, the space units are dimensionless. Both data sets

are represented in the u-v-coordinate system. The dynamics along the attractive

return manifolds, v ≈ 0, is indicated by arrows in the time series and the phase

spaces.
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Figure 7: A limit cycle is created in phase space. The left column shows experimen-

tal data, the right column displays the results of the numerical simulations. The

time units are in seconds, the space units are dimensionless. Both data sets are

represented in the u-v-coordinate system.
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Figure 8: Two phase space trajectories are shown. The instantaneous Euclidean

distance d(t) in phase space is a measure of the similarity of two on-going dynamics.
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Figure 10: Convergence. The time series of two coupled Excitators (solid lines) and

two uncoupled Excitators (dotted lines) following two consecutive stimuli are shown

in the top panel. The inter-stimulus interval is 80msec. Each input signal excites

only one of the Excitator units. The effect of the coupling is a convergence of

the trajectories. The phase space trajectories in x-y-coordinates are plotted in the

bottom panel. The dashed lines indicate the nullclines used in the simulation.
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Figure 11: Divergence. The same situation is shown as in figure 10, only the inter

stimulus interval between the two inputs is increased to 160msec. The time series

in the top panel of the coupled Excitators (solid lines) display a delay compared to

the uncoupled Excitators (dotted lines).
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Figure 12: The mean time difference (upper graphs) and its variance (lower graphs)

are plotted as a function of the inter-stimulus interval. The time units are in msec.

The dashed lines refer to the uncoupled situation, the solid lines to the coupled

situation. The variance is not plotted on the same scale as the time difference

graphs. The maximum variance is about 800msec2 at an ISI of approximately

130msec.


