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Abstract

We present a new method for separating multiple task-related events from other physiological
and physical events revealed by functional magnetic resonance imaging (fMRI) signals. The
method separates fMRI signals into di4erent events by minimizing the spatial and temporal
correlations between events. The method was used to analyze fMRI data sets from subjects
performing real and imagined motor tasks. The method successfully separated task-related events
(e.g, the activation in primary motor cortex during real motion and in supplementary motor area
during imagined motion) from unrelated events (e.g., an activation in auditory area and slow
changes probably associated with head drifts). c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Spatial–temporal decorrelation; Blind signal separation (BSS); Independent component analysis
(ICA); Functional magnetic resonance imaging (FMRI)

1. Introduction

Functional magnetic resonance imaging (fMRI) data have many di4erent signal
sources, including task-related signals and signals that are not directly related to the task
but correlate with head movement, breathing, etc. In the past, people have used various
statistical methods to determine task-related activation in fMRI data. One of the popu-
lar methods is a Student’s test, comparing the activities of an individual voxel during
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task and non-task blocks. Unfortunately, this test ignores the strong spatiotemporal sta-
tistical relationships in data [5]. To obtain a better signal-to-noise ratio and to separate
di4erent events, in recent developments, decomposition methods such as principal com-
ponent analysis have been used to project data onto eigenvectors—decorrelated spatial
maps [6]. This is justiIed if one assumes that di4erent events are decorrelated in space
and time. However, there is no guarantee that the task-related event will dominate the
signal nor be one of the eigenvectors. In fact, the number of possible sets of decor-
related spatial maps is inInite. To Ind the correct set requires more constraints. One
very interesting idea is to explore the non-Gaussian statistics of the data to separate
independent signals [7,8,10]. We recently proposed a method [3] very closely related
to that idea. The essential assumption is very similar: di4erent events are unrelated or
independent. However, instead of using probability distributions or higher-order spatial
correlations as criteria for choosing the correct set and thus separating di4erent events,
we require that di4erent events are spatially as well as temporally decorrelated.
The assumption is that di4erent spatial activity patterns (events) have completely

independent temporal courses. The previous method [10] assumes that the activity dis-
tribution of each event is a non-Gaussian probability density distribution. We make
the assumption that the activities of di4erent events are decorrelated and that the
time-delayed activities of di4erent events are also decorrelated [11,14], i.e., the as-
sumption of spatio-temporal decorrelation. Here, we derive a closed-form solution that
does not assume any spatial or temporal structure of an event, and works well for
Gaussian and non-Gaussian distributions of di4erent event signal sources. We show
this Irst in a more generic fashion which uses a toy problem to illustrate the point.
The method is then applied to a typical “alternate-block” paradigm used in fMRI stud-
ies in which task and rest periods alternate with each other. The method automatically
separates the spatial pattern and temporal trace, activated by the main task, from other
sources.

2. Method

The problem is commonly known as the mixture of sources problem. Fig. 1 shows
the problem and the task of blind signal separation [1,2,9]. Independent components
I1 and I2 are the original inputs (top two time courses on the left). S1 and S2 are

Fig. 1. Mixture of sources and blind separation.
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sensor responses to the mixture of these two inputs (bottom two time courses on the
left). There is a connection matrix or sensor mixture matrix which we do not know
(top middle). The task is to separate the sensor responses S1 and S2 into the outputs
O1 and O2 through a linear transform, so that the O1 and O2 are independent (bottom
middle).
This is further illustrated on the right of Fig. 1 in which s1 and s2 are the two

unit vectors (sensors) along which the response time courses S1 and S2 are measured,
respectively. The problem is that these two sensors respond to all kinds of events.
Suppose, in this example, we have two independent events—denoted by vectors m1

and m2—with time courses I1 and I2. S1 and S2 are combinations of I1 and I2 through

S =MI: (1)

The mixture matrix M or the pattern of connections, with column vectors equal to
m1; m2, and etc., is unknown to start with. The temporal traces, plotted in top two rows
as I1 and I2, are generated, in this example, as independent Gaussian signals. They have
di4erent temporal correlation scales within themselves and there is no cross-correlation
between them. Yet the responses S1 and S2, with some random mixture, have a common
component which, in this case, resembles the inverse of I2 because the magnitude of I2
is 10 times larger than I1. In other words, the mixture matrix has this speciIc signature
because both S1 and S2 are dominated by I2. The task is to Ind a linear transform of
S1 and S2 that produces outputs O1 and O2 which are independent from each other,
just as the original inputs I1 and I2 were independent from each other. This transform,
denoted by PT, gives

O = PTS; (2)

which will equal the original input I , if PT =M−1. Here PT is the matrix transpose of
P that is introduced for convenience since each column vector of P is then a projection
vector for an independent component.
On the top right of Fig. 1, neither m1 nor m2 is perpendicular to the base vectors

s1 and s2, so both I1 and I2 give rise to some component response in both S1 and S2.
The joint probability density distribution of S1 and S2 has an elliptic shape and there
are correlations between responses S1 and S2. Our task is to separate the output into
independent components O1 and O2 along vectors p1 and p2, which are perpendicular
to m2 and m1, respectively, with a possible permutation, where p1 is perpendicular to
m1. It is easy to see, from the diagram on the bottom right of Fig. 1, that a solution
exists.

2.1. Spatial decorrelation

In order for O1 and O2 to be independent they must at least be spatially decorrelated,
meaning that the correlation, or covariance between O1 and O2 equals zero. This is
the basic assumption of the second order decorrelation: in order to be independent all
the correlations have to be zero. In addition, we normalize the magnitude of O1 and
O2 so that the variance of each response equals 1. The spatial decorrelation can be



230 D.W. Dong et al. / Neurocomputing 49 (2002) 227–239

Fig. 2. Spatial and temporal decorrelation.

easily done by calculating the correlation matrix of S1 and S2 and then solving the
eigenvectors of the correlation matrix. The decorrelation is achieved simply by

O = KTA−1=2ETS (3)

in which K is any orthonormal matrix, and A and E are the eigenvalue matrix and the
eigenvector (column vector) matrix of the covariance matrix, i.e.,

〈SST〉
in which S is a column vector, 〈 〉 denotes the average over time, and each row element
of S has zero mean. This is a very standard technique that we call spatial decorrelation;
it guarantees that the output is orthonormalized, i.e.,

〈O1(t)O2(t)〉= 0;

〈O1(t)O1(t)〉= 1;

〈O2(t)O2(t)〉= 1: (4)

One obvious choice of K is the identity matrix. Then the transformed signals are

R= A−1=2ETS:

Fig. 2 (top right) shows that after the spatial decorrelation (with K=1) the distribution
of the output is rotationally symmetric (a sphere) when there is no correlation between
the two outputs. The transform itself guarantees that. However, this decorrelation alone
cannot remove all the dependence between the signals because the spatial decorrelation
alone cannot uniquely determine the transform to give the independent components.
As shown on Fig. 2 (top left), R1 and R2 traces are NOT what the original signals
were (Fig. 1, top left). As one can see from the illustration in Fig. 2, one can rotate
R1 and R2 by any angle (i.e. choose any orthonormal K) and still have the spherical
distribution, which means that R1 and R2 are spatially decorrelated. The question then
is how to determine the particular rotation that gives independent outputs. To this end,
the temporal decorrelation comes into play.
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2.2. Temporal decorrelation

Truly independent signals are not only decorrelated when measured at the same
time, they are also decorrelated when measured with time delays. That is, the signal
are not only spatially but also temporally decorrelated. The mathematical equivalence
for this statement is if O2 leads or lags O1 by any amount of time �, the correlation
(covariance) between these 2 variables equals zero,

〈O1(t)O2(t + �)〉= 0 (5)

for a proper choice of the rotation matrix K .
Because temporal correlation exists, the joint probability density distribution C� is

still non-spherical for O1(t) and the time delayed O2(t + �) signals, as shown on the
bottom center of Fig. 2. The proper choice of K is when one Inds the speciIc axis
which points to the maximum and minimum axes. Rotating by that amount one can
have p1 and p2 perpendicular to m2 and m1, respectively, or its permutation. In this
way we can determine or Ix the angle of rotation and obtain independent components,
i.e., choose K to be the eigenvector (column vector) matrix of the delayed correlation,

〈R(t)RT(t + �)〉; (6)

where, again, 〈 〉 denotes average over time. The Inal transform that decorrelates the
signal in both space and time is

PT = KTA−1=2ET:

It is then straightforward to show that the original mixture matrix is

M = EA1=2K:

Although E and K are both orthonormal matrices, the column vectors m1; m2; : : : ; of the
found mixture matrix EA1=2K (i.e., the spatial activation patterns) are not orthogonal
with each other unless A is an identity matrix multiplied by a constant.
The above solution is equivalent to what was found earlier [11], although there is

a major problem in real world applications, namely, how to choose the temporal scale
[14]. Initially, we do not know how the signals got mixed and we do not know the time
correlation scale. Ideally, if there is no noise and we have a system with two purely
independent components, any chosen delay � will give the correct rotation. Thus, with
any � we can obtain the temporal decorrelation rotation K and we can determine the
Inal transform, KTA−1=2ET. In reality, however, when we deal with data for which
the temporal scale is unknown and noise is potentially involved, we may not Ind the
same answer when we try di4erent time delays. The temporal scale here actually plays
an important role. A procedure is needed that can automatically handle this scenario.
As shown in Fig. 3 there are two possibilities. Ideally, if we choose two di4erent time
delays, � and �, the procedure should give two time delay distributions with the same
rotation angle—maximum and minimum axes (Fig. 3, left). In reality, however, these
two di4erent time delay distributions are often not entirely coincident with each other;
their maximum and minimum axes are not always the same, possibly, due to noise and
non-linearity (Fig. 3, right).
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Fig. 3. Temporal scale.

In what follows, we present an analytical procedure that integrates over all possible
time scales, so that we do not have to choose any particular time scale.

2.3. Temporal scale

First, let us see this problem in a more mathematical scenario. For any given time
scale we have a time-delayed correlation matrix. We can represent this time-delayed
correlation matrix by an eigenvector matrix multiplied by the eigenvalue matrix mul-
tiplied by the transpose of the eigenvector matrix, i.e.

C� = K���KT
� ; (7)

which is guaranteed to have everything in real numbers since we can prove straightfor-
wardly and easily that the time-delayed correlation matrix is going to be symmetrical.
On the other hand, the eigenvalues corresponding to these eigenvectors are not always
positive, zero, or negative. That means we cannot just simply integrate together all those
correlation matrixes corresponding to di4erent time delays, since the negative=positive
eigenvalues could cancel each other out. On the other hand, it is possible to take ab-
solute eigenvalues individually, each to the nth power. Then we solve the eigenvector
matrix of the average of those matrices, i.e.,

∑

�

K�|��|nKT
� : (8)

As a matter of fact, the absolute value of �� raised to the power of n can be any
positive deInite operation. By doing this, the solution becomes straightforward.
K—the rotation—is just the eigenvector matrix of the averaged correlation matrix. This
average matrix can be calculated very straightforwardly in this equation, in particular
when n = 2, it simply equals to

∑
� C�C�. We tried other monotonically increasing,

non-negative functions and all worked very well.
Now the question is how well the algorithm actually performs. Let us go back to

Fig. 2. The bottom left of Fig. 2 shows that after the spatial decorrelation and the
rotation by the temporal decorrelation matrix the two traces O1 and O2 now resemble
I1 and I2, shown in Fig. 1: one can see that O1 has the same temporal trace as I1 and
O2 has the same temporal trace as I2. Note that a permutation is possible in that O1

and O2 can correspond to I1 and I2, but can also correspond to I2 and I1. There is
also another degree of freedom besides permutation, the scale. O1 and O2 can be on
di4erent scales from I1 and I2. But the important point is the successful separation of
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the output into two channels which are, after permutation and scale, the same as the
two input channels.

3. Experiment

Now let us examine what happens when we apply this algorithm to real data from
a realistic problem. In this case we use brain image data collected using fMRI.

3.1. fMRI experimental setup

Anatomical and functional magnetic resonance images were acquired using a 1:5 T
G.E. Signa NV=i MR scanner (General Electric Medical Systems, Milwaukee, WI). At
the beginning of each experimental session, anatomical images of 256 × 256 spatial
resolution were collected for 20 axial slices, using a 2D gradient echo SPGR pulse
sequence with the parameters TE = in phase (4:6 ms), TR = 325 ms; Qip angle = 90◦,
bandwidth 15:63 KHz. The Ield of view was 240 mm. The axial slices were 4:0 mm
thick with 2:0 mm gap. These images were later used to overlay fMRI activations on
the anatomical structure. During the experiment, functional images of 64 × 64 spatial
resolution were acquired at the same 20 slice locations, using a gradient echo EPI
sequence with the parameters TE=60 ms; TR=3000 ms; Qip angle=90◦; bandwidth=
62:5 KHz. Thus each functional scan has 64×64×20 voxels of dimension 3:75 mm×
3:75 mm × 6:0 mm.
A typical “alternate-block” task was used. In the Irst block the subject was asked to

perform a certain task, in this particular case—to tap his=her Inger for 30 s. In the next
block the subject rests without moving. Subsequent blocks alternate Inger tapping and
resting, for a total of 10 blocks of 30 s each. Since the whole brain image was scanned
every 3 s, there are a total of 100 samples in time. Fig. 4 (top left) illustrates the time
series of this task lasting 300 s, with 5 on and 5 o4 periods (blocks). Three di4erent
ways of Inger tapping are used: (1) simple Qexion performed with index Inger of one
hand Qexing and extending, (2) sensorimotor sequences with thumb touching other

Fig. 4. Spatial decorrelation. Shown in the Igure are the top 20 temporal traces which are decorrelated
spatially. The zero of vertical axis is at the middle of each plot. The scale of the vertical axis is not marked,
since only the relative amplitude and the relative sign are meaningful.
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Fig. 5. Temporal decorrelation. Shown in the Igure are the top 20 temporal traces which are decorrelated
spatially and temporally. The zero of vertical axis is at the middle of each plot with upward for positive
and downward for negative (see the text for the sign convention). For the top three temporal traces O1; O2,
and O3, the corresponding activity patterns are shown in Fig. 6.

Ingers of the same hand in given sequences, (3) imagining sensorimotor sequences as
in (2) without actually moving any Inger.

3.2. Decorrelated time series

In this experiment, we have a sensor array of 64 × 64 × 20 voxels. We can cal-
culate correlations between those voxels during task performance. Then we can solve
the correlation matrix and look at the di4erent eigenvector responses, i.e., temporal
responses of spatially decorrelated channels. Fig. 4 shows the 20 eigenvectors (time
series) with the largest eigenvalues (i.e., the greatest signal powers). The eigenvectors
and eigenvalues are solved using the singular value decomposition method [12]. The
eigenvector in the top left graph (R1) has the largest eigenvalue and the eigenvalues
decrease from left to right and top to bottom. In fact, the top 20 traces account for
70% of the signal variance. The lowest traces are mostly experimental noise. The noise
variance is estimated to be equal to the lowest non-zero eigenvalue. After the singular
value decomposition, we keep only the top 20 eigenvectors, which are the ones with
eigenvalues at least two times larger than the estimated noise variance, i.e., with a
signal-to-noise ratio larger than one.
The task time series is superimposed on the top left eigenvector. As one can see,

none of the 20 temporal traces are related to the task in an obvious way. The next step,
then, is to apply the described temporal decorrelation to eliminate the arbitrariness in
the rotation and Ix the real transformation which will result in independent components.
The result is shown in Fig. 5. As one can see the third temporal trace (the top trace
in the third column, O3) closely resembles the task block, with on and o4 periods that
correspond well with the task timing.

3.3. Activity patterns

In Fig. 6 the brain activity patterns of the top three components are superimposed
on the gray-scale high resolution anatomical images. In each plot, only ten cortical
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Fig. 6. fMRI activity patterns during simple Qexion performed with the left hand of a subject. Shown on
the top are the leading three activity patterns m1; m2, and m3, for which the corresponding temporal traces
O1; O2, and O3 are shown at the bottom (the same as the leading ones in Fig. 5). They account for 17.7%,
4.7%, and 4.4% of the signal variance.

slices are shown. When plotting each slice, the radiology convention is followed, i.e.,
anterior—top, posterior—bottom, left ear—right, and right ear—left. For each spatial–
temporal component, the signal variance for each voxel is calculated. A voxel is plotted
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in white for positive and black for negative, 1 only when the calculated variance is at
least nine times larger than the estimated noise variance.
We observe a task-related pattern (Fig. 6, m3) for which the main activation is in

the motor cortex with some activation in the supplementary motor area (SMA) and
in the primary auditory area. The corresponding temporal trace is shown in Figs. 5
and 6, O3.
There is another task-related pattern (Fig. 6, m2) but the activation in this case is at

the onset and o4set of each task block (Figs. 5 and 6, O2). In this case, we see bilat-
eral auditory area activation and activation in other brain areas. The bilateral auditory
activation may stem from the oral instructions given at the beginning of each block:
“start to tap your Ingers” or “stop tapping your Ingers”. Also, the subject probably
anticipates the task for the upcoming 30 s, reQected by activity in other brain areas.
There is also a slow varying component (Figs. 5 and 6, O1), probably corresponding

to the change of position in the head, likely because we did not restrain the subject
with any Ixational device, like a bite-bar, so the subject’s head during a trial of 300 s
may have moved from one position to another. Its particular spatial pattern (Fig. 6, m1)
is consistent with movements along the ear-to-ear axis. There are other slow varying
components, possibly corresponding to movements along di4erent axes. Of course, this
is our interpretation of these activations but it has been similarly interpreted by other
groups [10]. The rest of the components are much harder to interpret and most likely
contain more noise.
In summary, by applying this method we are able to separate the task related event

in a variety of di4erent Inger movement conditions. For simple Qexion, the method
showed activation in contralateral motor=somatosensory cortexes and bilateral SMA. For
sensorimotor sequences, it showed the activation in contralateral motor=somatosensory
cortexes and bilateral SMA, premotor, prefrontal, and parietal cortexes. For imagining
sensorimotor sequences, the method revealed activation in bilateral SMA, premotor, and
prefrontal cortexes. Our results (Fig. 7 shows three of the trials) are consistent with
studies using other methods (see for example [13]). Although, we demonstrated how
the method can separate the signals due to head movements, we are not necessarily
advocating that one relies on it. In fact, the head should be stabilized mechanically
whenever possible and the proven method of registering serial 3D fMRI should be used
[4]. But after all these are done, the method may be still needed to separate di4erent
sources of signal and noise.

4. Conclusion

We found a method of source separation by spatio-temporal decorrelation. This al-
gorithm runs very fast (less than a minute on a 550 MHz PentiumTM PC). This is

1 The sign convention for a spatial–temporal component, i.e., a pair of temporal trace O and activity pattern
m, is the following: at a given time t and a given voxel location x, when the value O(t) of the temporal
trace and the value m(x) of the activity pattern are both positive or both negative, it means an increase
in the blood oxygen level dependent (BOLD) contrast; when one is positive and the other is negative, it
means a decrease in BOLD contrast.
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Fig. 7. fMRI activity patterns for three di4erent ways of Inger tapping performed with the right hand of a
subject. They are (a) simple Qexion, (b) sensorimotor sequences, and (c) imagining sensorimotor sequences.
Shown on the top are the three task-related activity patterns ma; mb, and mc, for which the corresponding
temporal traces Oa; Ob, and Oc are shown at the bottom. They account for 3.0%, 12.2%, and 2.2% of the
signal variances of the corresponding experiments, respectively.

much faster than the independent component analysis [10]. We are able to separate
task-related from task-unrelated events which gives us better signal-to-noise ratio in
studying brain function. This allows us to minimize the e4ects of head movement and
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other physical or physiological events unrelated to the tasks the subject is performing.
Also, and this has not, to our knowledge, been reported before, the algorithm is not
limited to identifying a single task-related event but can separate multiple task-related
brain activities and their time courses. As demonstrated here, it can separate task-
related events which are spatially and temporally uncorrelated. Our method is an an-
alytical method. It works in a scenario with no prior assumptions about the temporal
scale or about the probability distribution (i.e., Gaussian or non-Gaussian) of di4erent
events.

Supplementary information

It is available on the authors’ web site (http://dove.ccs.fau.edu/01-MRI-add.html).
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