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Fractal time and 1/f spectra in dynamic images and human vision
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Abstract

Many physical and biological systems have 1/f β Fourier spectra — a fractal attribute implying multiple similar mecha-
nisms operating at various spatial and temporal scales. These scaling laws of physical phenomena should have correlates in
perceptual mechanisms that have evolved to transduce them. We show that measures of a changing visual environment and
perceptual measures of how we see it exhibit fractal-like multiscale characteristics; both dynamic images of natural scenes
and human temporal frequency perception display commensurate 1/f β spectral behavior. © 2001 Published by Elsevier
Science B.V.
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1. Introduction

At first blush, the visual world is diverse and com-
plex. An image on the retina may move at many
velocities over a short period of time and objects
comprising an image may move independently, or be
occluded by movement. In addition to object motion,
observer motions (head, eye and locomotion) take
place on many time scales, as do modulations of the
illuminant. This kind of spatially and temporally mul-
tiscale physical system is often best described in the
Fourier domain by 1/f β spectra [1–11]. Likewise, 1/f
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characteristics, from the kinetics of ion channel mem-
branes to the dynamic behavior of neural ensembles
are ubiquitous in biology [12–17]. Since organisms
must adapt flexibly to an environment in continuous
flux, here we ask whether measures of a changing
world (as described by a sequence of visual images)
and perceptual measures are also 1/f in nature. To find
out, we analyzed the dynamic visual environment by
digitizing and Fourier transforming videotape scenes
ranging from children chasing bubbles to windswept
rainy rooftops. We compared these results to scaling
relationships inferred from fractal correlation analysis
of our data on human sensitivity to luminance contrast
at many specific spatial and temporal scales. We show
that dynamic images of natural scenes and human tem-
poral contrast sensitivity exhibit commensurate 1/f β

behavior.
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2. Temporal frequency spectra of dynamic
natural scenes

2.1. Background: the spectral characteristics of
natural images

Despite their apparent diversity, natural images1

have surprisingly regular spectra; most images have
Fourier spatial frequency spectra whose amplitudes
follow the power lawA(fs) = k/f b

s , wherefs is spa-
tial frequency (generally measured in cycles/picture
width or cycles/degree of visual angle). These findings
are surprisingly robust; studies using different image
selection criteria, and different photographic, digitiza-
tion, and analysis methods all obtain strikingly similar
results [5–11]. The value ofb is generally between 0.7
and 1.4 [5–11]; a recent survey of the literature found
that for 1176 images with published statistics, the
mean value was 1.08 [18]. One factor in these spectra
is the 1/f spectra of each edge in an image, another
is the fractal-like multiscaled self-similarity of many
natural images [19,20]. The situation for temporal
spectra is not as clear. Since temporal frequency
(cycles/s) = velocity(degrees/s) × spatial frequency
(cycles/degree), one would expect that an image with
1/fs spatial frequency spectra moving at constant
velocity will give rise to a 1/ft temporal frequency
spectrum. However, images consist of many objects,
each with its own image statistics and these objects
may move independently, temporarily occluding one
another, or disappearing and reappearing across the
boundaries of the image. Illumination changes and
eye movements (both pursuit and search) add com-
plications as well. Compared to static images, there
is surprisingly little data on this point. Some studies
[21,22] have fit dynamic image spectra to lowpass
functions that are 1/f at high temporal frequencies
(see Section 2.3). Two other recent studies have ex-
amined some dynamic scenes and fit 1/f a models
to them [23,24]. Given the relative paucity of data
on this point, we decided to examine the spectra of
several dynamic video sequences.

1 Definition of a natural image varies between studies but gener-
ally include landscapes, woodland scenes, foliage, etc. and exclude
man made objects.

2.2. Characterization of dynamic image spectra:
methods

Five videotaped sequences were chosen for anal-
ysis based on their variety of light source modula-
tions and image movements (Fig. 1) including cam-
era movements, weather (moving leaves, windswept
rain), and especially biological movements by one
or more humans (see Table 1 and Fig. 1 for brief

Fig. 1. Data on dynamic natural image sequences. (A) Examples
(vertically offset) of pixel intensity time series followed over 512
frames (17 s) for five nearby pixels in the film sequence AM.
(B) 1/f γ amplitude spectra (vertically offset), for several motion
picture scenes chosen to represent a variety of object and camera
movement, as well as some light source modulation. The scenes
are: PR, soldiers moving stealthily through a jungle (γ of 0.81).
Sequence PR was taken from video of the filmPredator(Twentieth
Century Fox, 1987, J. McTiernan, dir.). BR, a policeman searching
a windswept rainy rooftop in flickering light (γ of 1.02). Sequence
BR was taken from video of the filmBlade Runner(Warner Bros.,
1982, R. Scott, dir.). SW, students walking to class (γ of 0.87).
CB, children chasing erratically drifting bubbles (γ of 0.61). AM,
a child climbing on playground equipment (γ of 0.68).
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Table 1
Statistics of motion picturesa

Description PixelsH × V Range (Hz) γ ± S.D. r2

PR: soldiers stealthily moving through jungle 720× 243 0.94–12 0.811± 0.005 0.999
BR: policeman searching rainy rooftop in flickering light 720× 243 0.75–12 1.018± 0.050 0.904
SW: students walking to class 720× 243 0.94–15 0.865± 0.013 0.990
CB: children chasing bubbles 320× 240 0.115–15 0.608± 0.007 0.985
AM: child climbing on playground equipment 320× 240 0.115–15 0.683± 0.006 0.991

a γ is the exponent off − γ function fit to the amplitude spectra of an image sequence.

descriptions). The video sequences CB and AM were
digitized frame-by-frame on a Macintosh AV1800
with built-in frame grabber. The digitizer’s reso-
lution was 320× 220 × 8 bits grayscale and 512
frames (representing image sequences sampled at 30
frames/s) were acquired (these sequences were digi-
tized frame-by-frame). The video sequences SW, BR
and PR were digitized on-the-fly with an Iris Indigo
system; the digitizer’s resolution was 720×223×8 and
number of frames was dependent on the computer’s
available memory. Spatial resolution per se is not im-
portant to our (primarily) temporal analysis, but each
pixel provides an entire time series for analysis. The
Fourier transform of a single 1D series is an unre-
liable predictor of the spectra, but the reliability of
thousands of averaged spectra is good [25–27]. Each
pixel’s gray-level time series (Fig. 1A) is analyzed
by fast Fourier transform (FFT) and the resultant
spectra (160,560 individual pixel spectra each of for
PR, BR and SW; 70,400 for AM and CB) are aver-
aged (Fig. 1B). The sequences taken from videotapes
made from commercial films (i.e., sequences BR and
PR) have a Nyquist frequency of 12 Hz, compared to
15 Hz for directly recorded videotape (i.e., sequences
SW, AM, CB). The minimum temporal frequency is
determined by the sequence length (two periods of
data were required).

2.3. Results and analysis

All five video sequences had temporal amplitude
spectra that were well fit (except for sequence BR,
r2 > 0.98 for all fitted spectra) byf − γ functions
(0.61 ≤ γ ≤ 1.02; see Table 1). Previous studies sug-
gested that the correlation between frames (the auto-

correlation function for the sequence) may drop expo-
nentially as a function of frame separation [28,29]. The
Fourier transform of this correlation function yields
a power spectrum ofP(f ) ∝ k/(k2 + f 2) (which
approximates a 1/f amplitude spectrum forf � k).
Other studies fit this spectrum derived from the expo-
nential model to short movie scenes [21,22] but based
on their published figures and an examination of their
tabulated “k” parameters, a simplef − γ model would
also fit most of their spectra. Our data also shows
hints of a shallower spectrum at the lowest tempo-
ral frequencies, which is to be expected for bandlim-
ited samples of stimuli — even those with true power
law spectra [30,31].2 Additionally, two recent studies
[23,24], using very different methodologies have also
found f − γ temporal spectra for sequences of moving
images (see below). Is a comparable scaling built into
human temporal vision?

3. Correlational structure of human contrast
sensitivity

3.1. Background: human sensitivity to temporal
scale and modulation

It is commonplace in audio engineering to charac-
terize the frequency response of the human auditory

2 Power in the lowest frequencies of a time series grows as the
length of a series is increased; as the number of periods of data
of a particular frequency increases, so does the power detected
by the FFT, up to about seven periods of data [30]. Similar
limitations apply near the Nyquist limit for noisy data [31]. (Note
that both [30,31] discuss optical spatial frequency spectra, but
their arguments are general and apply to any discretely sampled
bandlimited series of data.)
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Fig. 2. Temporal contrast sensitivity. Contrast sensitivity functions
(CSFs) of human observers vary in shape [37]. Both spatial and
temporal CSFs are made up of a number of more narrowly tuned
cortical mechanisms (often termed spatial and temporal frequency
channels [34–39]). This figure shows the Mandler and Makous
[35] three temporal frequency channel model of temporal CSFs
(reproduced by permission of Elsevier Science Ltd.). Other models
are qualitatively similar. The two frames show how different gains
of similar mechanisms can underlie differences in CSFs for two
observers (a) and (b).

system and devices designed to stimulate it. Besides
corresponding to the wave nature of sound and the hu-
man ability to distinguish pure tones, such measures
facilitate the application of Fourier’s theorem. Similar
measures of visual temporal frequency (flicker rate)
are of more recent vintage [32,33]. The temporal con-
trast sensitivity function (Fig. 2) is a plot of 1/contrast
needed to detect a sinusoidal modulation of light in-
tensity. In general, humans are most sensitive to mod-
erate temporal frequencies (2–8 Hz) and less sensitive
to lower and higher frequencies; for most observers
temporal frequency contrast sensitivity (measured for
uniform screens or low spatial frequencies) has an in-
verted U shape — a bandpass filter (see Fig. 2); for
high spatial frequencies temporal contrast sensitivity
is lowpass. The cuttoff frequency for vision varies
with luminance level; humans usually do not detect
the 24 Hz flicker of a motion picture in a darkened the-
ater, but do see up to about 80 Hz flicker under very
bright illumination levels [33]. Psychophysical stud-
ies show that the temporal contrast sensitivity function
is not unitary — it consists of several narrower, over-
lapping, independent mechanisms that together detect
temporal modulation [34–36]. One consequence of
independence of gain of these tuned mechanisms is
that normal human observers vary by as much as a

factor of three in contrast sensitivity at any given spa-
tial or temporal frequency [37] (Fig. 2 depicts the
mechanisms underlying two observers’ contrast sen-
sitivities). Another consequence is that the correla-
tional structure of contrast sensitivity data is a rich
source of information about the underlying mecha-
nisms [18,38,39]. Below, we develop and exploit this
property of visual perception, in a way that shows an
interesting correspondence to the spectra of natural
images.

3.2. Characterization of temporal vision
correlational structure: methods

We sought to measure the correlational structure of
human sensitivity to contrast modulations under dy-
namic circumstances. This was part of a larger study
on contrast perception and more detailed methods are
available in Ref. [38]. Briefly, we used 40 observers
with a mean age of 26 years and excellent spatial
vision (20/10–20/20). All subjects wore their best
refractive correction, if applicable. Most were Army
aviators or Department of the Army employees.3

We measured each observer’s ability to detect scale
specific oscillations in space and time. Such stimuli
have the luminance profile

L = L0[1 + M cos(2πfxx) cos(2πftt)] or

L = L0[1 + M cos(2πfyy) cos(2πftt)], (1)

where x and y are spatial dimensions,t is time, fx
and fy are spatial frequency (cycles/degree of visual
angle), ft is temporal frequency (cycles/s), andL0

(the space-time averaged luminance) is 100 cd/m2.
These stimuli appear to be flickering gratings of
blurry light and dark bars. Such stimuli are used
in vision research because they tap scale specific
spatial and temporal mechanisms in human vi-
sion (they are the psychophysical equivalents of
the grating stimuli and pure tones used in Fourier
optics and audio engineering). Such mechanisms are
orientation specific, with less sensitivity to unoriented

3 Informed consent was obtained and all experiments were made
in accordance with US Army human use protocols.
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stimuli, leading us to use oriented stimuli in our psy-
chophysical studies. The overall population of such
mechanisms seems to have similar spatial and tempo-
ral tuning properties for each orientation, leading us to
assume orientation isotropy in perceptual processing
for the purposes of this study.4 These spatiotemporal
sine-wave gratings were presented on a linearized CRT
display with a large, illuminated screen surrounding
the display.5 We varied contrast (M) and measured
temporal contrast detection thresholds for 12 differ-
ent spatial frequency conditions for each of our 40
observers (about 400 h of data collection). Detection
thresholds (M) were measured using interlaced yes/no
adaptive staircases to refine an initial estimate gene-
rated earlier by the method of adjustment; i.e., a correct
detection reduces the contrast of the next presentation,
while a missed detection increases the contrast. Such
contrast staircases converge on, and oscillate around,
the subject’s detection threshold; the measured thresh-
old is the average contrast level over the portion of the
staircase that oscillates. Spatial frequency of gratings
varied from 0.5 to 22.6 cycles/degree (in steps of 0.5
octave) and temporal frequency varied from 0.25 to
32 Hz (in steps of 1 octave).

3.3. Results and analysis

The data were used to calculate the statistical
independence of detection thresholds for each pair of
temporal frequencies under fixed spatial frequency
conditions. A sample temporal frequency correla-
tion matrix is shown in Table 2. This example was
created by holding the spatial scale constant at 2 cy-
cles/degree. Each coefficient is the Pearson product
correlation between the detection thresholds for two
temporal frequency stimuli for our 40 observers. For
example, the top left coefficient in Table 2 is the cor-

4 Half of our subjects viewed vertically oriented stimuli, while
the other half viewed horizontal stimuli; statistics for both data
sets were very similar [38]; we therefore combined the data for
statistical power.

5 Use of an illuminated screen surrounding the CRT display and
matched to the luminance and chromaticity of the CRT avoids
luminance artifacts at the edge of the display. Such artifacts near
the stimuli on the display tend to reduce visibility of the stimuli
[34].

Table 2
Example of a correlation structure derived from temporal contrast
sensitivity dataa

Hz 0.25 0.50 1.0 2.0 4.0 8.0 16.0

0.5 0.578
1.0 0.682 0.655
2.0 0.692 0.618 0.859
4.0 0.368 0.426 0.470 0.567
8.0 0.283 0.461 0.569 0.702 0.596

16.0 0.367 0.360 0.509 0.591 0.474 0.718
32.0 0.231 0.311 0.372 0.493 0.498 0.621 0.677

a Table entries are Pearson product correlations of log con-
trast sensitivities for 2.0 cycle/degree sine-wave spatial frequency
gratings flickering at rates of 0.25–32 Hz.

relation between the detection thresholds of the 40
observers for stimuli flickering at 0.25 and 0.5 Hz. Its
relatively high value of 0.58 indicates that subjects
who have high sensitivities to 0.25 Hz flicker usually
also have high sensitivities to 0.50 Hz flicker, while
subjects with low sensitivity to 0.25 Hz generally have
low sensitivity to 0.50 Hz flicker as well. However,
the correlation between sensitivity to 0.25 and 32 Hz
is a meager 0.23, indicating greater statistical inde-
pendence for the neural mechanisms that detect these
more distant temporal frequencies. In general, closer
temporal frequencies produce more highly correlated
sensitivities than more distant temporal frequencies.
This is expected if temporal contrast sensitivity is
made up of several statistically independent tuned
neural mechanisms (e.g., Fig. 2); stimuli activating
a single common mechanisms will have more corre-
lated contrast detection thresholds than those detected
by independent mechanisms.6 A graphical repre-
sentation (Fig. 3) of this can be created by plotting
correlation as a function of temporal frequency sepa-
ration. If we plot temporal frequency separation log-
arithmically, all of the correlation coefficients along
a given diagonal in Table 2 coincide and can be aver-
aged (each diagonal represents 1 octave of temporal
frequency separation). (Although we could have used
any spacing for this purpose, a log2 (octave) spacing

6 This result is not dependent on the bandpass shape of the
contrast sensitivity function [38], but does depends on there being
multiple contrast detection mechanisms, each covering only a
portion of the contrast sensitivity function’s temporal frequency
range (see Fig. 2).
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Fig. 3. Example of a correlation function derived from human con-
trast sensitivity. Our 40 observers show interobserver differences
similar to those shown in Fig. 2a and b and these variations result
in a pattern of correlations (e.g., Table 2) which would be expected
from multichannel models like that illustrated in Fig. 2 (see text
for additional discussion). Here, data from Table 2 is collapsed by
averaging correlations for constant frequency differences (which
are spaced in multiples of log(2); e.g., in octaves). Each point in
the graph is the average of one diagonal of Table 2. Error bars
show 1 standard error of the mean of the correlation coefficients.

was chosen because most measurements of visual
mechanism bandwidths are given in octaves.) On such
a log/log plot, the correlation function is a straight
line — a power lawrelationship between statistical
independence and temporal frequency separation. We
analyzed these power law temporal contrast sensitiv-
ity correlational structures using methodology from
the study of fractal systems that have similar correla-
tional structure and 1/f β spectra [40–42]. Mandelbrot
and van Ness [40] showed that fractional Brownian
systems with 1/f β spectra have power law correla-
tional structures (i.e., the correlation between two
variables is a power law function of the separation
of the scales on which those variables are observed).
Bassingthwaighte and Beyer studied similar correla-
tional structures in discrete branching systems [42].
They built on their earlier studies of correlations be-
tween blood flows through regions of lung and heart.
(Although these are three dimensional systems, the
dimensionality is reduced by taking a profile through
the system, and assuming tissue isotropy in the subse-
quent analysis.) They find, similar to Refs. [40,41], a
correlation relation which can readily be generalized

Fig. 4. Effects of spatial frequency on temporal correlation func-
tions. The significant differences(P < 0.001) in the scaling
properties of low (0.50–5.7 cycles/degree) and high (8–22.6 cy-
cles/degree) spatial frequency sensitive mechanisms may originate
in the anatomically and functionally separate parvocellular (small
cell, high spatial resolution, low temporal resolution) and magno-
cellular (large cell, low spatial resolution, high temporal resolu-
tion) visual pathways (see Section 4.3).

to continuous spatial or temporal systems:

r(d) = 0.5{|d + 1|2H − 2|d|2H + |d − 1|2H }, (2)

wherer is the Pearson correlation,d the distance in
space, time, or other metric (in our study temporal
frequency) andH the Hurst exponent — a measure
of long range correlation or trend persistence, ranging
from 0 to 1.H is estimated from the slope (S) of the
correlation/distance (in our case correlation vs tempo-
ral frequency separation) relation (in log/log coordi-
nates) as [16]

H ≈ 1 + 1
2S. (3)

The amplitude spectrum7 exponent associated with
such a correlation structure is [16]

γ = 1
2(3 + S). (4)

Our data showed power law correlational structure for
all conditions (Figs. 3, 4 and Table 3), the exponents

7 Eq. (4) differs from its counterpart in Ref. [16] by a factor
of two (the authors refer to amplitude but their mathematics are
for power (amplitude squared) spectra). Amplitude (equivalent to
stimulus contrast for sinusoidal stimuli) spectra are standard in
vision research).
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Table 3
Power law model fit to the structure of temporal frequency correlation matrices measured for various spatial frequencies (in cycles/degree)a

Spatial frequency Slope± S.D. r2 Hurst, (1 + 1
2S) γ, 1

2(3 + S)

0.50 −0.248± 0.053 0.812 0.876 1.376
0.70 −0.224± 0.042 0.850 0.888 1.388
1.0 −0.243± 0.025 0.951 0.879 1.378
1.4 −0.503± 0.060 0.934 0.748 1.248
2.0 −0.247± 0.026 0.948 0.877 1.377
2.8 −0.306± 0.038 0.928 0.847 1.347
4.0 −0.430± 0.023 0.986 0.785 1.285
5.7 −0.211± 0.011 0.987 0.894 1.394
8.0 −0.074± 0.020 0.732 0.963 1.463

11.3 −0.043± 0.007 0.864 0.978 1.478
16.0 −0.051± 0.012 0.791 0.974 1.474
22.6 −0.094± 0.016 0.879 0.953 1.453
0.50–5.7 −0.288± 0.022 0.971 0.856 1.356
8–22.6 −0.062± 0.009 0.909 0.969 1.469

a Slope (S) is in units of log(correlation)/log(temporal frequency separation). The Hurst exponent and amplitude spectra exponent (γ )
are computed from the slope (S). The last two rows are computed from data averaged over low and high spatial frequencies (see Fig. 4).

of which are used in Eq. (4) to compute the associated
spectral behavior. For low spatial frequency condi-
tions we findγ ’s of 1.25–1.39 and Hurst exponents
of 0.75–0.89, in accord with the high frame-to-frame
correlation (0.80–0.86) found for motion pictures
[43]. For high spatial frequency conditions (8–22.6
cycles/degree) the correlation data are consistent with
a 1/f 1.47 amplitude spectra and the Hurst exponent is
a very high 0.97. In fact, a correlation slope of 0 (a
γ of 1.5) would be consistent with a single temporal
mechanism governing detection at all time scales [38].
Conversely, the higher correlation function slopes
found psychophysically for low spatial frequencies
agree with evidence for several mechanisms tuned to
temporal scale [34–36].

4. Discussion

4.1. Complications

4.1.1. Spatiotemporal inseparability and the spatial
characteristics of motion

Recently, Dong and Atick [23] have shown that the
spatiotemporal power spectrum of a dynamic image
is in general an inseparable function of spatial and
temporal frequency.

P(fs, ft) ∝ f −m−1
s F

(
ft

fs

)
, (5)

wherem is a measurable property8 of the ensemble of
images in Dong and Atick’s [23] video sequences,fs
andft are spatial and temporal frequency, respectively,
and F is a nontrivial function of their ratio (which
under some circumstances can be approximated by
a spatiotemporally separable function [21,23]). Al-
though we concur, there are two significant advan-
tages in analyzing temporal spectra in isolation (as
done in our study on a pixel-by-pixel basis and in Ref.
[24] on a single photoreceptor basis9). (a) The slope
of the temporal spectra carries information about the
character of the image motion. In our five scenes,
higher exponents are characteristic of motion which is
correlated over all time scales. For example, the high-
est slopes are for video sequences of people walking
or running (γ s of 0.87–1.02), in accord with evidence

8 Dong and Atick [23] measured the spatial spectra of their scenes
by digitizing thousands of frames of video and treating each frame
as a snapshot, Fourier analyzing each one and averaging over
orientation. The resulting snapshot spectra were then averaged
and fit by a 1/f 2.3 power spectrum, in agreement with the value
inferred from fitting Eq. (5) to the spatiotemporal data.

9 Van Hateren [24], in a fascinating study, used an artificial
detector with a field of view comparable to a single photoreceptor.
He mounted it on a helmet and had a subject walk through a natural
environment, using head movements to simulate eye movements.
The resulting “single photoreceptor” temporal time series (which
had a beautifully 1/f Fourier spectra) was then used as a stimulus to
real photoreceptors (in flies) whose neural responses were recorded.
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for long range correlations in studies of human gait
[44]. Conversely, the lowest slopes are for the seem-
ingly random motions of small children playing (γ ’s
of 0.61–0.68). For example, film sequence CB —
children chasing seeming randomly blowing bubbles
— has aγ of 0.61. (b) This space independent formu-
lation may be better suited to the study of temporal
information processing in visual cortex. Although
the human contrast sensitivity function is spatiotem-
porally inseparable, analysis of temporal frequency
processing in human vision indicates the existence of
a number (2–4) of temporal frequency channels, each
spatiotemporally separable [34–36] and derived from
cortical processing of signals from retinogeniculate
neurons with spatiotemporally inseparable contrast
sensitivity.

4.1.2. Potential asymmetries in dynamic image
spectral assays

As in prior studies of dynamic images [21–24], our
spectral analysis of motion pictures makes no dis-
tinction of the effects of direction and orientation of
motion on the resulting spectra. In one sense, this is
appropriate. We are comparing the dynamic spectra
of natural images to temporal contrast sensitivity cor-
relational structure that is gathered using flickering
stimuli rather than movement. Moreover, although our
flicker gratings are oriented, we pooled the data from
horizontal and vertical grating stimuli to get better es-
timates of the correlation coefficients. However, this
leaves a significant opportunity for additional study.
Although the dynamic scenes that we selected have
some vertical motion components (e.g., from rain and
drifting soap bubbles and a child climbing on play-
ground equipment), the vast majority of movement in
the selected images is in the horizontal direction. In
retrospect such a bias seems obvious; we were par-
ticularly interested in human movement and walking/
running are more often encountered than climbing.
Recent studies have looked for orientation asymme-
tries in spatial vision and found a small but reliable
preference for horizontal and vertical stimuli relative
to oblique stimuli that may well arise from a simi-
lar asymmetry in the orientation of edges in natural
and carpentered environments [45–47]. It may be that

studies of motion anisotrophies would reveal analo-
gous perceptual phenomena.

4.2. Differences in the correlational structure of
spatial and temporal vision

In a previous study we applied a similar analy-
sis to spatial vision [18]. Unlike dynamic images,
there is more data and fewer sources of variation in
static images and it is possible to estimate the “typi-
cal spectra” (the average of a large ensemble of nat-
ural images). These studies find ensemble spatial fre-
quency amplitude spectra in the rangef− 0.9 –f− 1.2,
with a average over all published studies off− 1.08

(1176 total images, see [18] for a review). This raises
an interesting question. If humans evolve and develop
in an environment with these image statistics, would
the correlational structure of spatial contrast sensitiv-
ity show a similar built-in sensitivity? For low flicker
rates (relatively static conditions), Billock found spa-
tial correlation functions consistent with spectra in the
rangef− 1.09–f− 1.2, mirroring the image analysis [18].
Moreover, the correlational structure of infant spatial
frequency contrast sensitivity data [39] does not fol-
low a power law and changes greatly over the first 8
months of life, suggesting that the adult spatial scal-
ing is not built in. Although it would be fascinating
to extend this analysis to temporal vision, the paucity
of dynamic image spectra makes this unfeasible, and
the meaningful motion-linked nature of the temporal
spectra (see above), probably makes such an inflexible
relationship undesirable. It is interesting however to
explore differences in the correlational structure itself.
The slope of the temporal correlation functions for
every spatial condition (Table 3) are shallower than
the slopes of spatial correlation functions for any tem-
poral condition. Following the reasoning of Section
3.3, we could infer that there are fewer independent
mechanisms underlying detection of temporal modu-
lation than there are spatial mechanisms underlying
detection of spatial modulation. This inference is in
agreement with every study of mechanisms underly-
ing spatial and temporal vision (for review see [34]:
spatial mechanisms are many in type and relatively
narrow in spatial frequency bandwidth (spatial scale),
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temporal mechanisms are fewer in type and broader
in temporal frequency bandwidth (temporal scale).10

4.3. Biological implications of temporal
correlational structure

The dichotomous behavior of psychophysical tem-
poral frequency processing at low and high spatial
frequencies (Fig. 4) is consistent with Eckert and
Buchsbaum’s suggestions [22,48] that efficient cod-
ing of natural time varying schemes is enhanced by
using two functionally and anatomically distinct neu-
ral pathways found in early (retina and midbrain)
visual pathways: a lower spatial frequency, higher
temporal frequency system for detecting stationary
(e.g., global flicker) temporal modulation and a higher
spatial frequency, lower temporal frequency system
for detection of nonstationary temporal modulation
(e.g., moving edges). The first system is sometimes
called the transient system (because it responds only
to the onset and offset of a stimulus) and is medi-
ated primarily by the parasol ganglion cells of the
retina, whose signals are relayed to the cortex by the
larger (Magno) cells of midbrain. The second system
is sometimes called the sustained system (because it
responds as long as a stimulus is present) and is me-
diated primarily by the midget ganglion cells of the
retina, whose signals are relayed to the cortex by the
smaller (Parvo) cells of the midbrain.11 Eye move-
ments may keep the components of temporal modu-
lation arising from movement in the frequency range
of the mechanisms that subserve them [22,48]. This
role for eye movements may explain the mismatch

10 It is unclear what implications this has for temporal vision.
Color vision relies on only three photoreceptors types (cones) with
relatively broad and overlapping absorption spectra to span the
300 nm visible wavelength range, but this suffices to provide us
with the wide range of colors that humans experience.
11 This is a simplification of a rather more sophisticated posi-
tion. A more lengthy analysis would have to take at least three
complications into account: (1) There are at least some Magno
cells with sustained responses (e.g. the cells respond to a constant
stimulus, not just to a moving or modulated one) [52]. (2) There
is good evidence that thesustainedMagno pathway is involved
in the analysis of edge movements [53]. (3) There is evidence
that sustained Magno cells become much more transient for high
contrast stimuli [52].

between power law exponents for psychophysical
data and moving images. Eye movements tracking
image activity would tend to increase the correlation
between film frames imaged on the retina, producing
retinal image statistics that are more consistent with
the psychophysical data. In principle, this could be
explored by tracking eye movements induced by an
image sequence [49], mapping the fixation point onto
the image sequence. A Fourier analysis of the tempo-
ral spectra within a moving window centered on the
fixation point would simulate the effects on the reti-
nal image of tracking the stimulus. We note that the
invariant (power law) form of the amplitude spectra
implies additional importance for phase. To the ex-
tent that amplitude spectra are interchangeable, phase
determines the appearance of events [50] and is a key
variable in the interaction of perceptual systems with
the environment [17]. Finally, there appears to be a
link between the present results, and the power law
relationship between physical and perceptual magni-
tude (Stevens’s law). Some psychophysicists suggest
that Stevens’s law is the result of mapping the output
of a logarithmic-like (Fechner–Weber) transduction
stage onto a logarithmic representation of the sensory
domain [51]. Extrapolated to the frequency domain,
such a system would utilize equal neural resources
to transduce equal “energy” chunks of a 1/f spectrum
(e.g., the similar spatial frequency logarithmic band-
widths of cells in visual cortex [5]). Power laws relat-
ing input to sensation are likely specific instantiations
of the general relationship that we identify here.
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