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Abstract

In human bimanual coordination an in-phase movement pattern is typically preferred to an
anti-phase pattern. This preference results from a symmetry breaking in the dynamics between
its components whose degree can be altered not only by variation of environmental but also
intrinsic constraints. Recently, Carson et al. [Experimental Brain Research, 131, 196-214
(2000)] operationalized this notion and induced phase transitions from in-phase to anti-phase
movement patterns. Here, we tackle this situation theoretically by introducing an additional
parameter which represents the degree of symmetry into the HKB equation of bimanual co-
ordination. We predict new phenomena to be observed experimentally when this parameter is
manipulated independently or together with the movement rate. We derive the statistical
properties of the extended system from a stochastic theory in detail and suggest how the
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1. Introduction

Transition phenomena observed in the coordinated movements of human
limbs have been investigated systematically for more than 15 years in a va-
riety of experimental paradigms and manipulations. These studies include
bimanual finger coordination in a symmetric and anti-symmetric fashion
(Kelso, 1984; Haken, Kelso & Bunz, 1985), syncopation and synchronization
of single limb movement with a metronome (Kelso, DelColle & Schoner,
1990), coordination of different limbs, for example an arm and a leg (Kelso &
Jeka, 1992) including manipulations of the mechanical properties of the
components involved, and even between two subjects coordinating their leg
movements while watching each other (Schmidt, Carello & Turvey, 1990). At
slow movement rates two stable coordination patterns are found which can
be classified as in-phase (defined as homologous muscle groups being acti-
vated simultaneously) and anti-phase (if these muscles are activated in an
alternating fashion). In most cases, with an increase of the cycling frequency
an initial anti-phase pattern becomes unstable and subjects switch sponta-
neously to the in-phase mode. If a movement is started in-phase no transi-
tions are observed for an increase or for a decrease in the cycling frequency.
Haken et al. (1985) modeled this behavior on a phenomenological level as a
switch in the relative phase between the two limbs and derived an equation of
motion from coupled nonlinear oscillators representing the single limbs. The
specific form of the coupling function used led to a dynamical system that is
bistable for certain values of a control parameter (the movement frequency)
and becomes monostable when this parameter exceeds a certain threshold.

Recently, Carson, Rick, Smethurst, Lison and Byblow (2000) showed that
bimanual pronation ' (an, in-phase movement with respect to the above
definition) becomes unstable at a certain cycling frequency if on one side the
axis of rotation is located above and on the other side below the hand (see
Fig. 1). The situation is similar for bimanual supination in the same setup,
and both, initial bimanual pronation and the other supinating (an anti-phase
pattern) at the end of the trials. When the two axes are at the same location
with respect to the hands the former patterns are stable and pronating with

! Here pronation (supination) means to reach peak pronation (supination) at the beat of the metronome
and the opposite peak while the metronome was silent. In all cases these were full pronation-supination
movements.
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Fig. 1. Manipulating the axes of rotation: (a) The manipulandum used by Carson et al. is shown which
allows pronation and supination movements around an axis in the middle, above or below the hand.
(b) Location of the axes for the left and right hand can be changed continuously leading to a new control
parameter o.

one hand, supinating with the other becomes unstable at sufficiently high
movement rates.

The HKB model in its original form describes a switch from anti-phase to
in-phase coordination when a control parameter, related to the movement
frequency, exceeds a certain threshold. However, here both end effectors are
assumed to be identical and the axes of rotation are located symmetrically in
agreement with Carson’s recent results. No switching occurs when the co-
ordination is initially in-phase. With the manipulation of the axes in the
Carson et al. experiment, transitions from in-phase to anti-phase were found
which cannot be accounted for in the original HKB model.

Carson et al.’s experiment and its results provide an entry point to the
theoretical understanding of the degree of symmetry breaking in the dy-
namics of a complex system. In the theoretical description so far the anti-
phase and in-phase movement patterns are equivalent behavioral states,
distinguished only by the preference of the in-phase state at high movement
frequencies. This preference results from a symmetry breaking in the dy-
namics (i.e. the coupling) of the components commonly understood to be
central nervous (see Jirsa, Fuchs & Kelso, 1998) where a neural basis for the
HKB coupling is provided). However, also environmental and/or intrinsic
constraints may alter the degree of symmetry breaking which we quantify as
a scalar quantity, the symmetry parameter ¢. In the Carson et al. experiment
this parameter must be related to the positions of the axes of rotation for the
single limbs and can be varied continuously.
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Here, we present an extension of the HKB model which describes all cases
studied in the experiment but also predicts behavior that should be observed
with axes located not only above and below the hands (the extreme cases
studied by Carson et al.) but also somewhere in between. Based on symmetry
properties we derive additional terms for the coupling between two oscilla-
tors in a way that transitions from in-phase to anti-phase can be modeled.
Moreover, we will predict the phenomena that should be found for arbitrary
locations of the axes of rotation and discuss the stability of the movement
patterns in detail.

The paper is organized as follows: Section 2 summarizes the experimental
setup and the results of the Carson et al. experiment as far as they are rel-
evant here. In Section 3 we derive the equation of motion for the relative
phase which contains the extension needed to model the findings and make
the predictions mentioned above from the level of coupled nonlinear oscil-
lators. In Section 4 we discuss how the predictions can be tested experi-
mentally in a qualitative and quantitative fashion and Section 5 contains
assumptions and procedures needed to connect theory and experiment
quantitatively. In Section 6 we summarize and discuss the theoretical results.

2. Experimental findings

In a series of experiments Carson et al. (2000) studied the stability of
unimanual and bimanual pronation and supination movement patterns un-
der a manipulation of the cycling frequency and of the locations of the axes
of rotation. In the bimanual case an apparatus was used that fixed the axes of
rotation in the middle, above or below the hand as shown in Fig. 1(a).

Subjects were instructed to perform one out of four movement conditions
paced by a metronome starting at a frequency of 1.25 Hz and increasing by
0.25 Hz every 8 s up to 3 Hz. The four conditions were classified as in-phase
(both limbs pronating simultancously or supinating simultaneously) and
anti-phase (left/right limb pronating and the other supinating). Stable
movement patterns throughout the trials were found for the in-phase initial
condition if both axes of rotation were either above or below the hand, and
initial anti-phase was stable if the axes of rotation for the two hands were
different. Spontaneous transitions from anti-phase to in-phase with increas-
ing movement frequency were found with the axes located both on top or
bottom and from in-phase to anti-phase when the movement was performed
around different axes. Fig. 2 shows representative trials for two of the four
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Fig. 2. Time series of the relative phase from two representative trials showing the switch from anti-phase
to in-phase (left) and vice versa (right) under manipulation of the axes of rotation for the two hands
(compare text).

conditions. The most striking aspect of this experiment is the change in the
stability of the movement patterns depending on whether the axes of rota-
tions are on the same or on opposite sides of the hands and, more important
here, the possibility to manipulate the axes locations in an experiment in a
continuous way as indicated in Fig. 1(b).

3. Extending the HKB theory

The HKB model, originally introduced to describe spontaneous transitions
observed in coordinated bimanual finger or hand movements, identifies the
relative phase, ¢, as the order-parameter whose dynamics is captured by an
equation of motion of the form

¢ = —asin ¢ — 2bsin 2. (1)

The dynamical properties of this equation are well known and can be sum-

marized as follows:

e For all values of @ > 0 and b > 0 there are fixed points ¢, =0and ¢, =
corresponding to in-phase and anti-phase movement, respectively.

e In the parameter region b/a > 1/4 corresponding to low cycling frequen-
cies for the limbs both fixed points are stable, i.e., movements can be per-
formed either in the in-phase or in the anti-phase coordination mode.

e In the parameter region b/a < 1/4, i.e., for high cycling frequencies the
fixed point ¢, is unstable and the only remaining stable fixed point is
¢, corresponding to an in-phase movement pattern.
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It is our goal to extend (1) such that transitions in both directions can be
modeled, i.e., from anti-phase to in-phase but also from in-phase to anti-
phase as observed in the Carson et al. experiment. To this end we will derive
additional terms in the coupling function for the oscillators representing the
single limbs such that there is a symmetry between in-phase and anti-phase
coordination. Eq. (1) does not have this property (for a,b > 0) and predicts
that the in-phase mode is stable for all movement frequencies whereas the
anti-phase pattern can not be executed at high movement rates. We will
perform three steps to find an equation of motion for the dynamics of
relative phase with an additional parameter which allows for tuning the
stability of the in-phase and anti-phase mode in a continuous fashion.
Starting from standard equations for coupled oscillators with x;(¢z) and their
derivatives representing the finger locations, velocities and accelerations we
employ a coordinate transformation originally developed in Jirsa et al.
(1998) which shows the asymmetry between the coordination patterns more
explicitly. We add a term such that the equations become symmetric and
apply the inverse transformation leading us back to the original represen-
tation with additional terms in the coupling function. Then, following the
lines of HKB (Haken et al., 1985), we split x;(¢) into amplitude and phase in
order to obtain an equation for the dynamics of relative phase. For these
calculations we use the so-called hybrid oscillator which has been shown to
approximate certain properties of human limb movement (Kay, Kelso,
Saltzman and Schoner, 1987). However, the final equation for the relative
phase does not depend on the specific form used for the oscillators.

Bimanual coordination can be described by two-coupled hybrid oscillators
for the left and right limb of the form:

jél + 6)'(,'1 + a)le + yx%)'cl + 5)6% = (xl —).Cz){OC + ﬁ(xl —XZ)2}7
).52 + 6.5(?2 + a)zxz + “/X%)'Cz + 5)6; = (x2 —).Cl){O( + ﬁ(XQ — X])z}.

(2)

The left-hand side of (2) shows self-sustained oscillation for the linear
damping constant € < 0 and the parameters of the nonlinearities (the Ray-
leigh and the van der Pol term) y,6 > 0. The right-hand side is the HKB
coupling which is known to lead to a dynamical equation for the relative
phase of the form (1).

The system (2) can be split into symmetric and anti-symmetric coordinates
Y, and Y _ defined as

Yp=x1+x and Y_=x —x, 3)
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where . vanishes for an anti-phase movement and y_ = 0 for an in-phase
movement (see, e.g., Jirsa et al., 1998, 1999 for details). The dynamics in these
new coordinates is found by substituting the inverse of (3),

W, +¢) and xo =5, + -y ), (4)

I\JI'—‘
N —

into the original Eq. (2) and reads

w++ap++w2w++§5<w++ V)50 430 =

5 . - .
Voteh oy +12d (W2 +3920 )+ (07 +3050 ) =29 (a+By7).
(5)

The system (2) is invariant under an exchange of x; and x,, i.e., exchanging
the role of the two limbs. The system (5) is not invariant under exchange of
the quantities i, and _ because the right-hand side of the first equation
vanishes, i.e., it is independent of the coupling parameters « and . The
coupling appears only in the second equation and only depends on /_, the
anti-phase mode, and not on the in-phase mode . Because of this asym-
metry the systems (2) and (5) exhibit only transitions from anti-phase to in-
phase but not vice versa. In the Carson et al. experiment this corresponds to a
situation where the location of the axes of rotation is the same for both limbs.
Now we introduce a symmetry parameter ¢ into (5) such that for ¢ = 0 we
obtain the system (5) where the anti-phase movement becomes unstable at a
critical frequency w.. For ¢ = 1 we require the opposite behavior, i.e., in-
phase movement becomes unstable and for high movement rates the only
stable coordination mode is anti-phase which corresponds to a situation with
the axis above the hand on one side and below the hand on the other side.
This scenario appears to be fully equivalent to the former (¢ = 0) with the
roles of in-phase an anti-phase exchanged. The extended system is given by

lﬁ+—|—aﬂ++w2¢+ +ﬁ&(¢++ lp Y)+ (lﬁi+3lﬂ2,lﬁ+)
=20, (o + BY7),
S . o
o tel + oty +1zdt(‘” 3P+ + 3

=2(1— o) _(a+BY*).
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Notice that for ¢ = 1 (6) has the same structure as (5) with the roles of
and y_ reversed. We now go back to a representation in the original variables
x; and x, by adding and subtracting the two equations in (6), respectively:

R AN ARy e UNCAS A AN )}

b=y ()= e B ol (e B2 ) (kB
)

As we only changed the coupling on the right-hand side the oscillators on the
left-hand side are still the same as in (2) and we rewrite them only in the
symbolic way X, + ---. In fact, our resulting equations must be invariant
under the exchange of x; and x, and it is therefore sufficient to calculate only
one of them, say X;.

Resubstituting (3) into the left-hand side of (7) we obtain after straight-
forward calculations

.3(.'1 4= ()C] —Xz){OC'i‘ﬁ(xl —)Cz)z} +20’{OOC2 +ﬁ[X2x% +)'C2x§ +2X1X1)C2]},
Xp4--= (X2 —)'61){0(+ﬁ()€2 —)C])z} +2O’{OC).C1 —i—ﬁ[xlx% —i—)'c]xf +25c2x2x1]}.
(8)

The first term on the right-hand side in both equations of (8) is identical to
the HKB coupling in the original system (2) and independent of the sym-
metry parameter ¢. The second term, which vanishes for ¢ = 0, originates
from the extensions introduced into (6) and its specific form is certainly not
trivial. However, for ¢ = 1 this system undergoes a transition from in-phase
to anti-phase and not vice versa as shown by the numerical simulations in
Fig. 3.

The next step is to derive an equation for the dynamics of relative phase
analogous to the original HKB equation. To this end we split x; into an
amplitude r (which we treat as a constant and assume to be the same for
k =1,2) and a phase ¢, (), and derive the equation of motion for the relative
phase ¢ = ¢, — ¢,. These calculations are given explicitly in Appendix A and
lead to

¢ = —(1 — 20)asin ¢ — 2bsin 2. ©)

As in the original HKB model the equation of motion can be derived from a
potential function
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Fig. 3. Numerical simulations of (8) for the cases ¢ = 0 (top two plots) and ¢ = 1 (bottom two plots) with
initial conditions in anti-phase and in-phase. The frequency is continuously increased from w = 1.4 on the
left to @ = 2.1 on the right. The anti-phase (in-phase) condition is stable for ¢ = 1 (¢ = 0) and switching
occurs from anti-phase to in-phase for ¢ = 0 and from in-phase to anti-phase for ¢ = 1. Other parameters
used: e=—-0.7,y=0=1,0a=-02,=0.5.

b= _6V_@)) with V(¢) = —(1 — 20)acos ¢ — bcos2¢. (10)

0¢

Fig. 4 shows plots of the potential landscape for different values of k = b/a
and o. It is evident that the role of in-phase and anti-phase behavior in the
first (¢ = 0) and last (¢ = 1) column are exchanged. Obviously, ¢ = 0 rep-
resents the original HKB case and in the Carson et al. experiment the situ-
ation where the axes are on the same side of the hands. For values of £ > 0.25
corresponding to low movement rates of fixed points ¢, = 0 and ¢, = 7 are
stable. As k decreases (which corresponds to an increase in the cycling fre-
quency) and exceeds its critical value, ¢, loses its stability and the only stable
fixed point remaining is ¢,, i.e., in-phase movement. The opposite is true for
o = 1, the situation where the axes are located on opposite sides. The mini-
mum of the potential for the fixed point ¢, is not as deep as the minimum at
¢, at slow movement rates. As the movement speeds up the in-phase mini-
mum becomes a maximum and any initial in-phase movement will undergo a
switch to anti-phase.
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Fig. 4. Potential functions for relative phases ¢ from (10) for different values of k = b/a and o. The
vertical dashed lines correspond to ¢ = £m.

In summary, the extended version (9) of the HKB equation derived
above describes the experimentally observed phenomena qualitatively. The
predictions, however, go beyond what was found experimentally so far,
both qualitatively and quantitatively as discussed in Section 4. From a
formal point of view (9) is equivalent to the original HKB equation (1) if
the parameter a can take negative values. The derivation presented here
has the advantage that it allows to discriminate between the two experi-
mental manipulations (locations of the axes and coordination frequency),
and gives the explicit form for the coupling term in the oscillator equa-
tions (8).

4. Predictions from the theory

We will proceed in two steps: First we discuss the qualitative features of
the dynamical behavior we can expect if the axes locations are different from
the extreme cases studied in the experiment, i.e., one axis above or below the
hand, the other somewhere in between. Second, we will analyze the stability
properties of the movement patterns quantitatively from the viewpoint of a
stochastic theory.
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4.1. Qualitative predictions

Different scenarios of what happens between the extreme cases ¢ = 0 and

g = 1 can be imagined. For instance, the exchange of stability between the

fixed points ¢, = 0 and ¢, = = could occur as a shift of the potential land-

scape along the horizontal axis, i.e., the fixed points drift away from the
former stable states as the symmetry parameter is varied. From the theo-
retical work above we conclude that this is not the case but make the fol-
lowing predictions in addition to the well-known properties of the original

HKB system realized for ¢ = 0:

1. The fixed point locations under a change of the cycling frequency, k, or the
symmetry parameter, g, remains ¢, = 0 and ¢, = 7, i.e., the stable coordi-
nation patterns are either in-phase or anti-phase. Continuous dependencies
of the locations of the points of stable relative phase along the ¢-axis with
these parameters should not exist.

2. There is a value of the symmetry parameter (¢ = 0.5) where (if noise is pre-
sent, as in all biological systems) the relative phase at high movement fre-
quencies should undergo a random walk throughout the entire interval
[0,27], i.e., there is no preferred phase value. For slower movement fre-
quencies the coordination pattern should switch randomly between the
in-phase and anti-phase mode.

3. An initial anti-phase (in-phase) movement pattern should be more stable if
the symmetry parameter is larger than zero (smaller than zero), i.e. the
switching should take place at a higher cycling frequency compared to
the extreme case ¢ = 0 (¢ = 1). The critical value k., where the switching
occurs, can be expressed as a function of ¢ by calculating the value of &
for which the slope of the curves in the phase space plots vanishes at the
intersection point with the horizontal axis, i.e., where the fixed point is
neutrally stable. From (9), linearized around the fixed points (see below),
we find

[ —i(1=20) for ¢, =0,
kc—{i(l—za) for ¢, — 1 (11)

As k has to be positive these values are valid for the fixed point ¢, only if
o> 1/2 and for ¢, only if 6 < 1/2.

4. Starting at a movement rate for which the system is monostable for
0 =0 (6 = 1), an increase (decrease) of the symmetry parameter will lead
to a switch to the other coordination pattern at a certain value o.. If o is
now changed into the opposite direction the switch back to the initial
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pattern will occur at a lower (higher) value than o, i.e., the system shows

hysteresis under a manipulation of the symmetry parameter. This can be

seen best in Fig. 4 for £ = 0.15. The in-phase mode is stable for small ¢
and becomes unstable at ¢, = 0.8 where the switch to anti-phase takes
place. If ¢ is now decreased the switch back to in-phase will not occur until

o = 0.2 is reached.

All these predictions can be tested. Experiments are currently in prepa-
ration where the axis of rotation on one side is kept fixed above or below the
hand while the location for the other hand can be varied systematically.
When the axes are close together the setup corresponds to a small value of the
symmetry parameter; a large parameter is realized when the axes are far
apart.

4.2. Quantitative predictions

For quantitative predictions of the dependence of the movement pat-
terns on the cycling frequency and the symmetry parameter ¢ it is nec-
essary to know the relation between ¢ and the actual locations of the axes
of rotation for both hands. For the extreme cases this relation is clear: for
g =0 the axes are located on the same side of the hands whereas ¢ = 1
corresponds to axes on opposite sides. All values in between can be re-
alized by keeping one axis fixed above or below and varying the location
of the other. We will assume here that ¢ also vanishes if the vertical
position of the axes for both hands is the same and that the symmetry
parameter depends only on the relative positions of the two axes /i, /, as
shown in Fig. 1(b).

For the general case we expect ¢ to be a function of /; and /, like

€

-1
— : (12)

L

h—1h
L

or, more general ¢ =

where L is the distance between the extreme cases, i.c., the length of the
manipulandum. The value of ¢=1/2 is not necessarily realized for
|ly — | = L/2 what the exponent e accounts for. In fact, the locations of the
axes for this value may be different for the different conditions, i.e., for an
initial pronation and supination movement, or whether the dominating hand
is pronating or supinating, and has to be determined experimentally as dis-
cussed later.
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4.3. The influence of noise

Human movements are not exactly reproducible and differ slightly from
cycle to cycle or trial to trial. As a consequence during an experiment subjects
cannot reproduce the exact same relative phase even for parameters where no
switching takes place. In the original HKB system the dynamics of the rel-
ative phase around stable fixed points is therefore not a single constant value
but a distribution function. The presence of stochastic fluctuations may also
lead to switching from ¢, to ¢, while both fixed points are still stable but the
potential minimum at ¢, is shallow. The more shallow this minimum the
earlier a switch will occur (on average over many trials) and this phenomenon
is quantitatively described by the so-called mean first passage time (MFPT)
(see Schoner, Haken, and Kelso, 1986).

Qualitatively new phenomena can be expected with the extension due to
the symmetry parameter o. Now there exist regions in parameter space where
both minima of the potential function are shallow or the potential is entirely
flat as seen in Fig. 4. For the former case we expect the relative phase to
switch back and forth between the fixed points, for the latter ¢ will undergo a
random walk. To capture these phenomena quantitatively and relate exper-
imental data to the theory, a stochastic description is necessary. For readers
unfamiliar with stochastic systems we give a brief introduction on the in-
fluence of noise on the dynamics in Appendix B.

4.4. Stability of the movement patterns from a stochastic theory

In the presence of noise a stochastic term has to be added to (9) which then
becomes a Langevin equation of the form

¢ = —(1 —20)asin ¢ — 2bsin 2¢ 4+ /OE(1), (13)

where £(7) is uncorrelated (white) noise with zero mean and a Gaussian
distribution

(€() =0 and ((1)&(F)) = o(t = 1), (14)

where Q is the amplitude of the stochastic force and (---) represents the
ensemble average across different realizations.
We distinguish three different situations corresponding to different regions
in parameter space:
1. Two stable states exist which is the case for low cycling frequencies inde-
pendent of the symmetry parameter.
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2. Only a single stable state exists which is found for high cycling frequencies
and the symmetry parameter either small (around zero) or large (around
one).

3. States exist in the system which are stable in purely deterministic situations
but the minima in the potential are shallow. If fluctuations are present they
can include transitions into more stable states or lead to a kind of random
walk for the relative phase. The former is predicted for medium movement
rates and ¢ around zero and one. The latter should be found for high
movement rates and ¢ around one half.

For the first two cases the movement patterns are stable either in-phase or
anti-phase and transitions or drift of the relative phase do not happen within
the time scale of observation. The stability of the fixed points depend on the
cycling frequency and on the symmetry parameter, and is given quantitatively
by the Jacobian of (13). Graphically this is expressed as the curvature at the
extrema of the potential functions in Fig. 4. As the system stays in the vicinity
of the fixed points we can use the local dynamical behavior and estimate the
stability from the linearization of (13) around the fixed points ¢, and ¢,. For
the third case we will have to deal with the full system.

4.5. Local dynamics around the fixed points

It is straightforward to calculate the linearization of (13) from a Taylor
expansion around the fixed points ¢, and ¢,:

b~ { —{(1 =20)a +4b}$ + VOL(1) for ¢ =0, (15)
{(1 = 206)a —4b}(¢p — ) + VOE(t) for ¢, =m.

The (15) represents two Ornstein—Uhlenbeck processes of the form

¢ =—7¢ + /0% (16)

whose stationary distribution p(¢) = p(¢,t — o) can be calculated as the
stationary solution from the corresponding Fokker—Planck equation

§0.0) = 5500 0.0} +5 255000 =0 (17)

This (normalized) solution is a Gaussian distribution which reads

plg) = Ne @I with V(¢) = %(l)z and N = % (18)
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By dropping ¢ in the argument and introducing v/6 as the standard deviation
of the distribution or the variance in the times series we obtain

> 1

P((f)) = Ne_(?’/Q)d’ - e_(1/25)¢2
Voo
with o= [“aope) ' =1 [ e, o)

From (19), we find a relation between the experimentally accessible quantity
0 and the parameters in the stochastic theory y and Q, namely

y 1 o

L 5 == 20

0 2 9772 (20)
We still need a second independent quantity from the experimental data to
determine y and Q uniquely. This can be found from the autocorrelation
function G(r) which falls off exponentially for the Ornstein—Uhlenbeck
process (16) with a time constant of y~!,

6(0) = tim - [ dr o0 (e + 0 Lo o)

or even easier from the Fourier transform of G(t) which is the spectrum of
¢(t). From this relation (known as Wiener—Khinchin theorem) the analytic
form of the spectrum can be calculated and turns out to be a Lorentzian
which reads

Q2

S(@) = F{G0) = IF{0)= 55—

where 37{ . } — / - dtefiwt (22)

represents the Fourier transform. These functions have the property that at
w = y they have fallen off to half of their value at w = 0. Fig. 5 shows how the
values of 6 and y can be read off from the Gaussian distribution and the
Lorentzian spectrum. With these two quantities the dynamical behavior of
the system in the vicinity of stable fixed points with deep minima in the
potential is completely characterized.

Here we have treated the relative phase as a quantity that can take values
between +oo which allowed us to solve the Fokker—Planck equation (17),
and calculate the autocorrelation function and the spectrum analytically. Of
course, as a cyclic quantity ¢ is actually restricted to the interval [0, 2x]. This
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. . W
Gaussian Lorentzian

Fig. 5. Reading the values of 6 and y from a Gaussian distribution and a Lorentzian spectrum. For the
standard deviation of the Gaussian the actual value is at e (/2 p(0).

procedure is justified because the probability distribution has to fall off fast in
the vicinity of the fixed point for the linearization to be valid, i.e., § < 7.
Therefore, the contributions to the integrals from regions outside about +7/2
around the fixed points can be neglected.

4.6. Quantities from the nonlinear system

In regions in parameter space where the potential minima are shallow the
linearization around the fixed point will not give a valid description of the
dynamical properties because transitions into other states or random walk
behavior of the relative phase will occur even if the movement frequency
remains constant. In these situations the system is not confined to a small
region of relative phase but explores the entire [0, 27] interval. For the ran-
dom walk this is obvious but also for a descent into a deeper minimum on
one trial the switch in relative phase may occur in one direction (say = — 0),
on another trial it may be in the other direction (x — 2n) so that all values
are reached at some point 2. Histograms for different values of the symmetry
parameter and movement frequency should look like the stationary distri-
bution functions shown in Fig. 6 which are given by

p(¢) =Ne @I with V(¢) = —cos ¢ — kcos2¢ (23)

with N a normalization constant.

2 Here we assume the potential to be perfectly symmetric with respect to the ¢ = 0 axis. Differences
between pronation and supination may break this symmetry and lead to a preferred direction for the
switching.
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=04 0=05 0=0.6 0=0.8 o=1.0

Fig. 6. The probability distribution for different values of ¢ and k = b/a. Vertical dashed lines correspond
to ¢ = £m.

These functions allow to identify the value of ¢ = 0.5 for the symmetry
parameter as the distance between the axes of rotations |/, — /|, where the
maxima at ¢, and ¢, are the same (or where there are no extrema at all), in
other words, where a symmetry exists along the vertical axis ¢ = n/2. These
stationary distributions can only be observed if the system is sufficiently
unstable that it leaves the vicinity of its fixed point within the time of the
experimental observation. The mean first passage time 7,_, for a movement
initially anti-phase to the in-phase state, i.e., a switch from ¢, to ¢, is
given by

T o= é / ’ dp e2/DV(@) / ’ dy /D7) (24)
and is shown for different values of k and ¢ in Fig. 7. The circles indicate the
values of k& where the fixed point becomes unstable. Note that the mean first
passage time increases rapidly when these values are passed.

The simplest case is k = 0 and ¢ = 0.5 for which the potential is entirely
flat and the MFPT depends only on the noise strength Q:

2
Ty = —. (25)

(Q:l
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Fig. 7. The mean first passage time calculated from (24) as a function of k for different values of
d (6 =0,0.1,0.2,0.3), solid, dashed, dotted, dashed—dotted lines, respectively). The open circles indicate
the values of k where the fixed point becomes unstable.

For the parameter Q = 0.25 used in Fig. 7 this leads to T, o =~ 40 s (a case not
shown in Fig. 7).

5. Relating the quantities from theory and experiment

This section is devoted to the problem of how to determine the parameters
that can be found experimentally and how to relate them to the quantities
used in the theory. The general form of the HKB model derived here (13)
contains four parameters a, b, ¢ and Q which have be to determined from the
time series. Again, we distinguish between the regions in parameter space
where the movement is stable in the vicinity of a fixed point and regions
where transitions and drifts occur. We will restrict ourselves here to an ex-
plicit discussion of the former case and publish the latter elsewhere together
with experimental data as soon as they are available. The first problem is to
establish a relation between the symmetry parameter ¢ and the axes locations
/; and [,. As in Section 4.2 we assume that this relation is of the form

L —hL|

- (26)

o —

This functional form is an operational assumption and cannot be derived
from theoretical reasoning. However, assuming the validity of (26) we can



A. Fuchs, V.K. Jirsa | Human Movement Science 19 (2000) 425-449 443

determine the parameter e from the cases ¢ = 1/2. For the two cases above
we have to find the values of |/, — /;|, where the width J of the distribution is
the same for around the fixed points ¢, and ¢, for the former and where the
bimodal distribution functions are symmetric for the latter. For ¢ = 1/2, € is
given by

In2

ezlnL—ln]ll—lz|'

(27)

This value has to be determined for all movement frequencies for all of the
four conditions.

If two stable states exist the parameters a,b and Q can be determined
straightforwardly. From (15) and (20) we find

50 = 2Q0{(1 — 20')61 + 4b}71 for ¢0a

X (28)
0, = =20,{(1 —20)a —4b} " for ¢,,
which can be readily solved for a and b:
s
1-20 |60 ;)
oL (29)
b = l % + %
4160 0. )
The noise strengths Oy and Q, are determined from (20) and are given by
Qo =200y, and Qp = 20,y,, respectively. (30)

If only one stable state exists we cannot determine all three parameters but
only k and Q as
k:g and Q= 20y. (31)
20
To find the parameters in the cases where transitions and drifts of the relative
phase exist is much more difficult and computationally intensive. We have to
deal with the fully nonlinear system which is described by the stationary
distribution

pé(qa) — Ne(2/Q)(acos¢+bcosZ</))

T -1
with N = {/ d¢e(2/Q)(acoso+bcos2(/))} ) (32)
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However, there are two procedures that allow to calculate the drift and
diffusion terms in the Fokker-Plank equation (17), i.e., K(q) and Q, re-
spectively. The first procedure was proposed by Haken (1988) and further
elaborated by Borland and Haken (1992a,b), the second was first applied to
turbulent flow by Friedrich and Peinke (1997) and described in a more
general form in Siegert, Friedrich and Peinke (1998). Both of them work for
simulated time series but it needs to be determined which one is better for
dealing with the experimental data in question.

6. Summary and conclusion

We presented predictions about coordinated human movement behavior
under a manipulation of a symmetry parameter ¢ which controls the stability
of the different coordination states, i.e. in-phase and anti-phase. The breaking
of symmetry is generally achieved through environmental and/or intrinsic
constraints. Particularly, in the Carson et al. experiment, the symmetry pa-
rameter ¢ is given by the position of the axes of rotation and can be ma-
nipulated in a continuous fashion. As the theoretical analysis shows, we
expect new phenomena to be observed experimentally that so far (to our
knowledge) have not been found like symmetric phase drifts * or back and
forth switches between the fixed points ¢, and ¢_. The theory also predicts
that these fixed points are not shifted (as in the case with broken symmetry
due to different eigenfrequencies of the components). Finally, the procedures
outlined in the previous section allow to determine the theoretical parameters
as a function of the cycling frequency and the symmetry parameter, with an
independent consistency check by calculating the mean first passage time and
its comparison with experimentally measured values.
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Appendix A. The extended HKB equation

In order to derive an equation for the dynamics of relative phase we re-
write the quantities x; in the way

xp =re?%e” +cc. and x; =iwre % e +c.c. (A.1)

Here we have used two standard approximations, the rotating wave ap-
proximation by assuming that the dominating frequency in the system is w
and the slowly varying amplitude approximation, i.e., the time dependence of
the phases ¢, (¢) is slow compared to the time scale given by 7 = 2n/w and
therefore, the derivatives ¢, < o can be neglected.

With (A.1) we rewrite the nonlinearities that appear in the new coupling
terms in (8):

=iwr’ (262 —e”) e +c.c. = iwre” e +c.c., (A.2)
561)61?62 — iCO}"3 (eup] elwt _ e—lgbz e—lwt) (eltpl elwt + e—ub] e—lu)t) (elq)z elu)t 4 e—l(/)z e—lwt) 4c.c.

=i elGo—edglor 4 ¢ o

Inserting (A.2) into (8) we obtain

@ += et ZG{ioce_i“" +ipr? [2e—i(<m—wz) —¢llo1=02) 4 gil0i=e2) | 2ei(w|—wz>] }
= +20i{a+ prr[3e ™ +e?]} =+ 20i{a+ 2B [’ + cos ] },
Gyt =+ 201{a+ 2B [ +cos ] }, (A.3)

where - - - on the right-hand side represents the contributions from the orig-
inal HKB coupling. For the relative phase ¢ = ¢, — ¢, we find

¢ = (1 —20) (o + 2p) sin ¢ — pr?sin2¢ (A.4)

and with the common abbreviations « + 27> = —a and fr*> = 2b we obtain
the extended dynamics of the relative phase in its final form:

¢ = —(1 —20)asin ¢ — 2bsin 2. (A.5)
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Appendix B. The stochastic description of dynamical systems

Systems with random noise are described by introducing a stochastic term
into the equation of motion. There are several ways this can be done but we
will restrict ourselves to the easiest case which is additive uncorrelated (white)
noise with a Gaussian distribution. Here we give a brief summary of the
properties of such systems and refer the reader to standard textbooks on
stochastic systems (e.g. Haken, 1977; Gardiner, 1983; Risken, 1984; see also
Schoner et al., 1986) for details,

A one-dimensional stochastic system for a variable ¢ is described by an
equation of motion, called a Langevin equation, of the form

q =K(q) +/0(1), (B.T)

where K(g) is a deterministic force term, Q represents the noise strength and
(1) 1s a stochastic force consisting of uncorrelated (white) noise with a zero
mean and a Gaussian distribution. The former two properties are formally
expressed as

(€(0) =0 and (()E()) = ot —1) (B.2)
where (---) represents the ensemble mean over different realizations. If we
assume the deterministic force in (B.1) to be linear, K(¢) = —yg, a formal

solution ¢(¢) can be obtained:

q(t) = q(t =0)e7 + \/Q/Ol dr &) e =), (B.3)

Due to the explicit dependence on &(¢') this solution is different for each
realization and, unfortunately, cannot be compared with the experimental
data because we do not know ¢(#) for the particular realizations. The sta-
tistical properties of ¢, expressed by the distribution p(q, ) for an ensemble
average, are independent of the explicit form of £(#) as long as (B.2) is ful-
filled. The function p(q,¢) represents the probability density and p(q,t)dq is
the probability for finding the system in the interval [¢, ¢ + dg] at time ¢. This
distribution can be calculated from the Fokker—Planck equation that corre-
sponds to the Langevin equation (B.1) and reads

plg,t) = — 6% {K(q) p(q,0)} +% Ga_qz p(q,1). (B.4)
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The first term on the right-hand side of (B.4) carries the deterministic part of
the Langevin equation and is called the drift coefficient whereas the second
contains the noise and is know as diffusion coefficient.

For the so-called natural boundary conditions, i.e.,

0
plg — £o00,1) = @p(q — t00,1) =0, (B.5)

the stationary solution p(q) of the partial differential equation (B.4) can be
readily calculated:

plq) =p(g,t — 00) =Ne ¥ with K(q) = — 3.V @), (B.6)
q

where V(q) is the potential corresponding to the deterministic force K(g) in
(B.1). The constant N normalizes the distribution and can be expressed
formally as

o0 71 o0
N = {/ e‘(z/QM‘”} to ensure / plg)dg = 1. (B.7)

oo

The relation between a potential ¥ (g) and the corresponding stationary
distribution p(g) is shown in Fig. 8 (top). Obviously, the probability to find
the system is high where the potential is low and vice versa.

Beside the distribution a second important quantity to describe stochastic
systems is the time it takes (on average) to reach a point ¢ = b if it was
initially located at ¢ = a. This question is in particular interesting for a
situation as in Fig. 8 (top) where a is at the bottom of a shallow minimum
and b is a deep minimum of the potential. In a deterministic system with no
stochastic forces present « is a stable fixed point and if we chose a as an
initial condition it will stay there forever. In the stochastic case with fluc-
tuations there is a finite probability that the system gets kicked over the hill
at ¢ and reaches the deeper minimum b. The time it takes on average to
reach b when it was initially located at a is called the mean first passage
time (MFPT) T,_,. It can be shown (Gardiner, 1983) that this time is
given by

b
R ) B3
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AV,p A

Fig. 8. Top: A potential function (solid) and the corresponding stationary probability distribution
(dashed). Bottom: The mean first passage time (MFPT) for the system to reach a location ¢ when initially
at a (solid) or at b (dashed-doted).

which can be generalized to the question how long it takes the system on

average to reach a point ¢ when it was located initially at a or b. These times
are T,_., and T,_,, respectively,

Tpy= g /q dy eV /y dx e~V
0 Ja a

- ) (B.9)
Ty = /b dy e2/070) /b dx 02OV 0

Plots for both of these times are shown in Fig. 8 (bottom). Evidently, the
system can also be kicked into the shallow minimum at @ when it was initially
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at b but it takes much longer. For the potential used in Fig. 8 we find
T,.,=1.1 and T,_, = 5.6 (in arbitrary units).
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