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Recruitment of Degrees of Freedom Stabilizes Coordination 

Philip W. Fink, J. A. Scott Kelso, Viktor K. Jirsa, and Gonzalo de Guzman 
Florida Atlantic University 

By showing that transitions may be obviated by recruiting degrees of freedom in the coupled 
pendulum paradigm, the authors reveal a novel mechanism for coordinative flexibility. In 
Experiment 1, participants swung pairs of unconstrained pendulums in 2 planes of motion 
(sagittal and frontal) at 8 movement frequencies starting from either an in-phase or antiphase 
mode. Few transitions were observed. Measures of spatial trajectory showed recruitment 
effects tied to the stability of the initial coordinative pattern. When the motion of the 
pendulums was physically restricted to a single plane in Experiment 2, transitions were more 
common, indicating that recruitment delays---or even eliminates--transitions. Such recruit- 
ment complements transitions as a source of coordinative flexibility and is incorporated in a 
simple extension of the Haken-Kelso-Bunz (1985) model. 

At the core of modem dynamical approaches to the study 
of coordination is the recognition that such behavior results 
from a self-organized process involving multiple degrees of 
freedom (see, e.g., Beck & van Wieringen, 1994; Kelso & 
SchOner, 1987; SchSner & Kelso, 1988a; Turvey, 1990). 
Analysis of the transition properties of a system is important 
for understanding the nature of these self-organized coordi- 
nation dynamics. Numerous experiments on different kinds 
of coordination have shown that salient features of the 
coordination dynamics can often be elucidated by driving 
the system toward a point of instability in which a qualitative 
change or phase transition occurs. Near such critical points, 
new modes of coordination arise that permit one to delineate 
the system's relevant collective variables or order param- 
eters and the collective variable dynamics (see Haken, 1996; 
Kelso, 1995, for reviews). A prototypical system that has 
been explored in detail is bimanual coordination (Haken, 
Kelso, & Bunz, 1985; Kelso, 1981, 1984; Schfner, Haken, 
& Kelso, 1986), in which relative phase was shown to be a 
significant collective variable. Subsequent experiments have 
demonstrated the informational nature of coordination dy- 
namics (Kelso, 1994; Turvey, 1994): The same collective 
variable--relative phase--and the same basic collective 
variable dynamics capture the coordination behavior be- 
tween similar components within an organism (e.g., Byblow, 
Carson, & Goodman, 1994; Carson, Goodman, Kelso, & 
Elliott, 1995; Kelso, 1984), between stimulus and response 
(e.g., Kelso, DelColle, & Schtiner, 1990; Wimmers, Beck, & 
van Wieringen, 1992), between stimulus and manipulandum 
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(Stins & Michaels, 1999), and between organisms (e.g., 
Amazeen, Schmidt & Turvey, 1995; Schmidt, Carello, & 
Turvey, 1990). To say that coordination dynamics is informa- 
tional is not to downplay biomechanical properties that may 
influence these dynamics. For example, eigenfrequency 
differences between components have been shown to tailor 
the coordination dynamics in significant ways, such as by 
systematically shifting the fixed points of the relative phase 
(e.g., Kelso & Jeka, 1992; Schmidt, Shaw, & Turvey, 1993; 
Treffner & Turvey, 1996) as well as by causing phase drift 
and relative coordination effects (Kelso, de Guzman, & 
Holroyd, 1991). 

By and large, transitions among coordination patterns are 
induced by instabilities effected, typically, through a fre- 
quency or movement-speed control parameter (but see also 
Buchanan and Kelso, 1993; Buchanan, Kelso, & de Guz- 
man, 1997; Kelso, Buchanan, & Murata, 1994, for examples 
of transitions driven by changes in spatial control param- 
eters). An apparent anomaly in the literature, however, exists 
in the coupled pendulum paradigm advanced by Turvey, 
Kugler, and colleagues (see Amazeen, Amazeen, & Turvey, 
1998; Schmidt & Turvey, 1995; Turvey & Schrnidt, 1994, 
for reviews). Transitions between modes of coordination 
have not been observed in this system despite clear indica- 
tions that one pattern (antiphase) is less stable than the other 
(in phase). This differential stability of the in-phase and 
antiphase patterns is evident in the standard deviations of 
relative phase near frequency regions where transitions were 
expected on the basis of results from other similar experi- 
ments (Schmidt et al., 1993; Stemad, Turvey, & Schmidt, 
1992; Turvey & Schmidt, 1994). Because the frequencies 
tested in the coupled pendulum experiments by Turvey and 
colleagues (Schmidt et al., 1993; Stemad, Turvey, & Schmidt, 
1992; Turvey & Schmidt, 1994) fall in the range of 
frequencies in which transitions occurred in other move- 
ments, it is possible that certain factors not considered or 
measured in the coupled pendulum paradigm act to function- 
ally stabilize the antiphase pattern in the coupled pendulum 
paradigm. Such factors are conceptually and theoretically 
important. The basic theoretical model used to explain 

671 



672 FINK. KELSO, JIRSA, AND DE GUZMAN 

coupled pendulum movements is the Haken-Kelso-Bunz 
(HKB) model (see, e.g., Sternad, Amazeen, & Turvey, 
1996), suitably extended to include symmetry breaking 
(Kelso et al., 1990) and stochastic fluctuations (Sch~)ner et 
al., 1986). Yet, a significant feature of this modified HKB 
model is transitions from antiphase to in-phase coordination, 
conspicuously absent in the conventional coupled pendulum 
paradigm studies thus far (but see Mitra, Amazeen, & 
Turvey, 1997), Thus, previously unsuspected processes that 
serve to delay or even inhibit transitions in the coupled 
pendulum paradigm may need to be incorporated into 
theoretical accounts. 

What might these processes be? One possibility, pursued 
here, is that additional, typically unobserved biomechanical 
degrees of freedom are active in the coupled pendulum 
paradigm, the role of which is hypothesized to stabilize 
coordination according to task or environmental require- 
ments (Kelso, Buchanan, de Guzman, & Ding, 1993). Early 
experiments in bimanual coordination showed that degrees 
of freedom may be recruited or suppressed depending on 
temporal or spatial constraints (Buchanan, Kelso, de Guz- 
man, & Ding, 1997; Kelso & Scholz, 1985). More recently, 
Kelso et al. (1993) proposed that this recruitment and 
suppression of degrees of freedom complements pattern 
switching in cases in which the repertoire of stable coordina- 
tion modes has been exhausted (e.g., at high movement 
frequencies when even the in-phase mode becomes un- 
stable). This mechanism requires that the system is biome- 
chanically redundant; that is, the number of available 
degrees of freedom exceeds the number required for a 
nominal execution of the task. 

In this study, we explored putative recruitment processes 
in the coupled pendulum paradigm. In the first experiment, 
we examined the behavior of the pendulum in multiple 
planes in the typical situation, that is, in situations during 
which participants are instructed to maintain the original 
plane of motion but movements are not mechanically fixed. 
A stronger test of the effects of recruitment of degrees of 
freedom was performed in the second experiment, in which 
the behavior of the system was observed when the additional 
degrees of freedom available in the first experiment were 
physically constrained. Our results necessitate a new theoreti- 
cal account, based on the HKB model, that incorporates 
planes of motion other than those necessary for nominal 
performance of the task. 

behavior. Instead, the coordinative system was shown to be a 
complex structure consisting of temporal variables (e.g., 
relative phase) and spatial variables (e.g., amplitude) that 
interact to stabilize the task. In the present article, we expand 
the work of Buchanan and Kelso and its implications for the 
coordination dynamics of coupled pendulum movements. 

Experiment 1 differs from Buchanan and Kelso's (1999) 
work, which like much of the earlier research, was limited to 
motions taking place primarily in the sagittal plane. Here, 
we examine coordination in both the sagittal and frontal 
planes in the coupled pendulum paradigm. This is an 
important comparison because previous studies of frontal 
plane motion (Byblow et al., 1994; Carson, 1995; Carson, 
Byblow, & Goodman, 1994; Mitra et al., 1997) lead us to 
expect that coordination will become unstable in the frontal 
plane when movement frequency is increased, leading to 
other coordinative patterns. The recruitment hypothesis 
(Kelso et al., 1993) predicts that recruitment of degrees of 
freedom will occur in directions orthogonal to the direction 
dictated by the task regardless of the original plane of 
motion. Moreover, if recruitment fulfills the role of stabiliz- 
ing otherwise unstable coordinative patterns, it should 
become manifest both in response to the energetic demands 
of the task (e.g., maintaining the desired frequency) and in 
response to the required phase difference (e.g., the less stable 
antiphase pattern should result in more recruitment than the 
more stable in-phase patterns in both planes). 

Method 

Participants. Eleven participants, (6 men and 5 women) from 
the university population volunteered for this experiment. Partici- 
pants were compensated by being awarded class credit. Participants 
gave informed consent prior to participation in accordance with the 
local human subjects committee. All participants were treated in 
accordance with the ethical standards of the American Psychologi- 
cal Association (APA). 

Apparatus. Participants were seated in a chair with their 
forearms placed parallel to each other and supported but not 
strapped on an armrest designed to easily allow pronation and 
supination of the forearm (Figure 1). Infrared-emitting diodes 
(IREDs) were placed in the following locations of both the right 
and left arm: (1) at the end of the pendulum, (2) on the articulation 
of the first and second phalanges of the middle finger, (3) and (4) on 

Experiment  1 

Investigation into the recruitment hypothesis in the coupled 
pendulum paradigm was begun by Buchanan and Kelso 
(1999). Buchanan and Kelso observed recruitment and 
suppression of degrees of freedom on the biomechanical 
level using three different measures: (a) deviations of the 
end of the pendulum from the desired planar trajectory, (b) 
transitions from linear to spherical trajectories, and (c) 
motions of other joints proximal to the end-effector. By all 
three measures, participants were shown to recruit degrees 
of freedom, indicating that the relative phase between the 
limbs, by itself, does not capture the full coordination 

Figure 1. Setup of the coupled pendulum experiment (see text for 
details). IRED = infrared-emitting diodes; 1, 2, 3, 4, 5, and 6 -- 
locations where IREDs were placed. 
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a metal bar fastened to the anterior portion of the styloid process (to 
place the markers in a visible location allowing identification of the 
wrist joint center), (5) on the biceps, approximately two thirds of 
the way from the shoulder to the elbow, and (6) on the anterior 
portion of the shoulder. Although the experimental apparatus 
allowed for measurement of joint angles as well as the end- 
pendular trajectory, we chose to concentrate on the latter in the 
present article because planar pendulum movement has been the 
sole focus of the many coupled pendulum studies presented in this 
journal. 

Since recruitment may be influenced by the inertia of the 
pendulum (Buchanan & Kelso, 1999), three pairs of pendulums-- 
referred to as low, medium, and high inertia pendulums--were 
used by each participant. The low inertia pendulum consisted of an 
unweighted wooden dowel (2.2 cm diameter) with a rubber hand 
grip placed in the middle. The medium and high inertia pendulums 
were constructed out of 2.2-cm-diameter wooden dowels with hand 
grips placed on the proximal ends and with circular lead weights 
placed at different locations along the pendulum. The properties of 
the pendulums are given in Table 1. Note that the inertial effect of 
the hand is not included in the moment-of-inertia calculation, as is 
frequently the case in the coupled pendulum paradigm (see, e.g., 
Turvey, Rosenblum, Schmidt, & Kugler, 1986). This omission is 
expected to affect the results only slightly quantitatively but not at 
all qualitatively. 

Pacing for the participants was provided by an auditory metro- 
nome, generated by a Quick Basic program from a Macintosh 
Classic II computer. Both the movement and stimulus data were 
simultaneously collected at 128 Hz using the Optotrak 3010 and the 
Optotrak Data Acquisition Unit (Northern Digital Inc., Waterloo, 
Ontario, Canada) systems, respectively. The following conventions 
were used for the IRED positions: +x to the fight, +y forward, and 
+z upward, relative to the participant (see Figure 1). 

Procedure. Participants were asked to swing the pendulums in 
time with a metronome that increased from 1.25 Hz to 3 Hz in 
0.25-Hz intervals every 10 cycles. Pendulums were swung in two 
planes under two initial coordinative modes: (a) parallel to the 
sagittal plane of the body in an in-phase mode with the pendulums 
moving forward and backward together, (b) parallel to the sagittal 
plane in antiphase mode with the fight and left pendulums 
alternating, (c) parallel to the frontal plane in an in-phase mode 
with the pendulums moving in and out at the same time, and (d) 
parallel to the frontal plane in an antiphase mode with the 
pendulums moving fight and left together. Thus, in the in-phase 
conditions, homologous muscle groups contracted simultaneously, 
whereas in the antiphase conditions, homologous muscle groups 
contracted in an alternating fashion. Participants were instructed to 
swing the pendulums using only wrist abduction and adduction in 
the sagittal plane conditions and using forearm pronation and 
supination in the frontal plane conditions. They were also in- 
structed to keep their eyes closed and not to intervene if the 
coordinative pattern started to change but to continue with what- 
ever pattern felt most comfortable. In each condition, two trials per 
participant were recorded. 

Analysis. After analyzing the frequency distribution using 
Fourier methods, we filtered the coordinates of each IRED using a 
second order Butterworth filter with a cutoff of 6 Hz. Angles for the 
frontal and sagittal components of the pendulum motion were 
calculated from the angle between the line from IRED 1 to IRED 2 
and the vertical line descending from IRED 2, projected onto the 
frontal and sagittal planes (see Figure 1). The maximum angular 
displacements for each hand in the two planes were found using a 
Matlab routine (Mathworks, 1994). A point estimate of the relative 
phase of the pendulum motion was found from the angular 
positions and velocities of the two hands using the following 
algorithm: ~bj = 21r. [(Ri - Tj)/(Ri+ 1 - Ri)], where Rj and Ri+ 1 are 
the times of the peak position or velocity of the left hand and Tj is 
the time of the peak position or velocity of the fight hand between 
R i and Ri+ i. The point estimates of relative phase using position and 
velocity were combined to produce a relative phase measure with 
two values per cycle. In-phase was defined as utilizing homologous 
muscle groups, so that for frontal plane movements, the fight-hand 
frontal plane angles were multiplied by - 1. All statistical analyses 
on relative phase were performed using mean and standard 
deviations of relative phase that were obtained using circular 
statistics (Batschelet, 1981). 

Spatial deviation from the required task was calculated in two 
ways. First, for each trial, a linear regression was performed 
between the x- and y-coordinates of IRED 1 for each cycle, defined 
as the period between maxima in the pendulum motion in the 
primary plane of motion (i.e., the sagittal plane for the sagittal 
plane of motion or the frontal plane for the frontal plane of motion). 
The inclination (0) of that line relative to the primary plane of 
motion (see Figure 2 for the case of the frontal plane condition) was 
used as a measure of deviation of the trajectory from the task. The 
eccentricity (e), or linearity, of the paths was found by rotating the 
coordinate system on a cycle-by-cycle basis so that a local x-axis 
was defined along the regression line. The eccentricity was then 
defined as the ratio of the amplitude of the trajectory normal to the 
regression line and the amplitude of the trajectory along the 
regression line. Note that eccentricity is defined as a ratio of 
maximum excursions in two directions and does not require 
elliptical motion. This is not identical to the classic definition of 
eccentricity, but it does provide a measure of the "straightness" of 
the trajectory. For both measures, low values indicate adherence to 
the task requirement. 

Statistical analyses of amplitude, inclination, and eccentricity 
were performed using a repeated measures analysis of variance 
(ANOVA) with plane of motion (2), initial coordinative mode (2), 
pendulum (3), and frequency (8) as factors. A similar ANOVA was 
used to analyze the mean and standard deviation of relative phase. 
Tukey's post hoe tests were applied in the case of significant 
effects. 

Resul t s  

Tracking. To see how well  the participants paced with 
the metronome, correlations between the movement  period 

Table 1 
Inertial Properties o f  the Three Pendulums in Experiment 1 

Length Mass of Added Distance to Moment of 
Pendulum (m) pendulum (kg) mass (kg) added mass (m) a inertia (kgm 2) 

Low 0.190 0.085 0.0 0.000 0.0010 
Medium 0.299 0.125 0.3 0.155 0.0112 
High 0.299 0.125 0.3 0.254 0.0233 

aDistance to added mass is the distance from the proximal end of the pendulum to the added mass. 



674 FtNI(, KELSO, JIRSA, AND DE GUZMAN 

+y 

c = a/b 

b i 

/ 

Figure 2. Measures of spatial deviation from the required task. 
and 0 are the eccentricity and inclination of the spatial trajectory, 
respectively, a and b are the amplitudes perpendicular and parallel 
to the plane determined by the inclination, respectively. The figure 
assumes the frontal plane condition, and 0 is the angle with respect 
to the +x-axis. 

for each pendulum and the time between metronome beats 
were calculated. The means of the correlations are given in 
Table 2. The correlations ranged from .76 to .96. The lowest 
correlations were found in the frontal plane antiphase 
condition and were due to increased occurrence of phase 
wrapping or intervals of systematic frequency desynchroni- 
zation. Lower correlations were also found in the low inertia 
pendulum condition, owing in all likelihood to difficulties in 
controlling the pendulum because of its very low inertia. 

Time series. A representative trial for the frontal plane 
antiphase condition with the medium inertia pendulum is 
shown in Figure 3 for three frequency plateaus. At a 
frequency of 1.5 Hz, the frontal or primary plane of motion 
had a large amplitude, whereas the sagittal or secondary 
plane motion was small and less regular (note different 
scales). At 2.0 Hz, the secondary plane motion grew in 
amplitude and was phase locked with motion in the primary 
plane. At 2.75 Hz, a reduction in amplitude in the primary 
plane occurred relative to lower frequencies along with a 
further growth of motion in the secondary sagittal plane. 
Later in the frequency plateau, at 2.75 Hz, a transition 
occurred in both planes of motion from antiphase to in-phase 
coordination. 

Relative phase. Four distinct phase behaviors were 
identified in the data and are illustrated in Figures 4A and 
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Figure 3. Time series of the left (solid lines) and right (dashed 
lines) pendulums for three movement frequencies in the frontal 
plane antiphase mode. The sagittal (secondary) plane amplitude 
increased with movement frequency, accompanied by a small 
decrease in the frontal (primary) plane amplitude. A transition from 
antiphase to in-phase was seen in both planes at 2.75 Hz. 

4]5. Vertical lines in Figure 4 separate the trial into frequency 
plateaus. In addition to the in-phase (Figure 4A) and 
antiphase (Figure 4B) patterns, phase wrapping and phase 
drift (Figures 4C and 4D) were observed. Phase wrapping 
occurred when the frequencies of the two pendulums 
became different for a period of time, resulting in a rapid 
systematic change in relative phase (Figure 4C) or a slower 
phase drift (Figure 4D). Transitions from antiphase to 
in-phase, shown in Figure 4E, consisted of an antiphase 
pattern changing to slow phase drift and then to an in-phase 
pattern. Cycles were identified as in-phase or antiphase if, 
when looking at a five cycle window, at least three of the five 
relative phases fell within 45 ° of either in-phase or antiphase 
coordination. All other cycles were classified as wrapping. 

Table 2 
Mean of the Correlations of Hand Frequency With Metronome Frequency for the Four 
Conditions and Three Pendulums 

Left hand Right hand 

Low Medium High Low Medium High 
Condition inertia inertia inertia inertia inertia inertia 

Sagittal in-phase .93 .95 .93 .92 .95 .96 
Sagittal antiphase .89 .93 .93 .91 .95 .94 
Frontal in-phase .90 .95 .95 .91 .95 .95 
Frontal antiphase .76 .87 .88 .86 .91 .91 
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Figure 4. Relative (Rel.) phase behaviors identified in the data and shown for representative trials. 
Panel A: In-phase. Panel B: Anti-phase. Panel C: Rapid phase wrapping in which the frequencies of 
the two hands became different for a period of time, resulting in rapid systematic change in the 
relative phase. Panel D: Slow phase drifts usually initiated from the antiphase condition. Panel E: 
Transition from antiphase to in-phase. 

Although the foregoing changes in coordination were often 
initiated from the antiphasc mode (frontal or sagittal), no 
transitions of any type were found in the in-phase condi- 
tions. Figure 5 shows the percentage of occurrence of the 
different patterns for the three pendulums in the antiphasc 
conditions as a function of movement frequency. Few 
transitions arc present in the sagittal plane: For the majority 
of the trials, the sagittal plane antiphase pattern remained 
antiphase for the entire duration of the trial. In the frontal 
plane, however, the majority of the trials showed a transition 
from antiphase to other patterns, although in most cases not 
to in-phase. A chi-squarc test on the number of occurrences 
of the patterns in the last frequency plateau revealed a 
significant effect among the six combinations of plane and 
pendulum (Six Conditions × Three Coordinative Patterns), 
)(2(10, N = 131) = 41.26, p < .0001. These differences 
were due to differences between the planes, )(2(2, N = 
131) = 29.13, p < .0001, with fewer transitions away from 
the original antiphase mode in the sagittal plane than in the 
front~ plane. Although no significant effect of pendulum 
was found, )(2(4, N = 131) = 7.06, p > .05, there was a 
trend, particularly in the frontal plane, for the high inertia 
pendulum to transit to phase wrapping rather than to 
in-phase. Data for the plateau in which the transition took 

place and later plateaus were excluded from further statisti- 
cal analysis. 

The ANOVA for the standard deviation of relative phase 
revealed significant main effects for pendulum, F(2, 20) = 
6.71, p < .01, coordinative mode, F(1, 10) = 24.90, p < 
.001, and frequency plateau, F(7, 70) = 6.59, p < .0001. 
Several interactions were also significant, including a three- 
way interaction of pendulum, plane, and coordinative mode, 
F(2, 20) = 6.51, p < .05, and a twO-way interaction of 
coordination mode and frequency plateau, F(7, 70) = 4.14, 
p < .001. Figure 6 shows the standard deviation of relative 
phase as a function of plane, coordinative mode, pendulum, 
and movement frequency. In general, the frequency depen- 
dence took the form of an initial decrease in phase variabil- 
ity, followed by an increase as movement frequency in- 
creased. This decrease in the standard deviation, however, 
generally occurred only from the first to the second fre- 
quency plateau and was most likely a result of the partici- 
pants needing time to settle into a pattern at the beginning of 
the trial. An exception to this pattern of results was found in 
the antiphase conditions with the medium inertia pendu- 
lums, in which decreases in variability continued until 2 Hz. 
Such a finding may be interpreted as a stabilizing effect that 
was due to the rising amplitude in the secondary plane of 
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Figure 5. Percentage of occurrence of the different patterns in each plane of motion for the 
antiphase conditions as a function of movement frequency and out of a total of 22 trials in each 
condition. IP = in-phase pattern; W = wrapping pattern; AP = antiphase pattern. 

motion. In all cases, the in-phase condition exhibited lower 
relative phase variability than the antiphase condition and 
increased less in variability as the frequency of motion was 
scaled upward. These effects were generally greater in the 
frontal than in the sagittal plane and were larger for the high 
and low inertia pendulums than for the medium inertia 
pendulum. 

Both the data showing the number of occurrences of the 
basic patterns (Figure 5) and the standard deviations of 
relative phase (Figure 6) highlight stability differences 
between the patterns of coupled pendulum motion. First, for 
both planes, the antiphase patterns are less stable than the 
in-phase patterns. Second, frontal plane antiphase coordina- 
tion tends to be less stable than sagittal plane antiphase. 
Third, in-phase patterns are equally stable on both planes. 
The effect  of the pendulum, or the resistance, appears to 
relate more to the nature of the transitions, with the higher 
inertia pendulum tending to produce wrapping rather than 
transitions to in-phase patterns. 

Amplitude. Figure 7 shows the effect of the plane of 
motion, initial coordinative pattern, and movement fre- 
quency collapsed across all pendulum pairs on the ampli- 
tudes in both the primary and secondary planes of motion. A 
significant main effect of initial coordinative mode, F(1, 

10) = 91.29, p < .0001, and a significant interaction of 
pendulum, plane of motion, and movement frequency was 
found for amplitude in the primary plane of motion, F(14, 
140) = 1.8, p < .05. Post hoc tests showed that the initial 
antiphase condition produced larger amplitudes than the 
initial in-phase mode (p < .05). In all conditions, there was 
a general pattern of a decrease in amplitude as frequency 
increased, with the amplitude in the last frequency plateau 
being significantly less than in the first frequency plateau 
(p < .05). Amplitude decreases were modified by both 
pendulum and plane of motion, with the largest percentage 
decreases found with the high inertia pendulums. In the 
secondary plane of motion, the interaction of all the main 
effects was significant, F(14, 140) = 4.98, p < .0001. In all 
conditions (except the sagittal in-phase condition with the 
low inertia pendulum), there was an increase in amplitude 
from the first frequency plateau to at least one of the 
subsequent frequency plateaus (p < .05), although the shape 
of the resulting frequency-amplitude curve (increasing or an 
inverted O) varied for the different conditions. 

Inclination. Trajectories of the end of the pendulum for 
representative antiphase trials are shown in Figure 8 in the 
sagittal (Panel A) and frontal (Panel B) planes. Also included 
are values of the measures of the inclination and eccentricity 
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Figure 6. Standard deviations of relative phase plotted as a function of movement frequency for the 
three pendulums in each plane of motion. Triangles denote in-phase patterns, and squares denote 
antiphase patterns. 

for each frequency plateau. In both planes, a systematic shift 
away from the instructed plane of motion occurred as 
frequency increased, seen in a general increase in inclination. 

The means of the absolute value of the inclination from 
the desired plane of motion are shown in Figure 9. The 
ANOVA revealed significant main effects of plane of 
motion, F(1, 10) = 9.21, p < .05, initial coordinative mode, 
F(I ,  10) = 9.30,p < .05, frequency, F(7, 70) = 27.25,p < 
.0001, and pendulum, F(2, 20) = 8.15, p < .005. The 
four-way interaction among these effects was also signifi- 
cant, F(14, 140) = 2.45, p < .005. Generally speaking, 
inclination increased with movement frequency, with signifi- 
cant differences between the first and at least one subsequent 
plateau (p < .05) for all cases with the exception of sagittal 
plane motions using the high inertia pendulum and sagittal 
plane in-phase coordination using the low inertia pendulum. 
In cases in which significant differences occurred between 
the antiphase and in-phase conditions, the antiphase condi- 
tion had a significantly greater inclination (p < .05). 

Eccentricity. Eccentricity measures are presented in 
Figure 10. A significant main effect was found only for 
frequency, F(7, 70) = 34.20, p < .0001, although the 
three-way interaction of pendulum, plane of motion, and 
frequency was also significant, F(14, 140) = 2.80,p < .005. 
Unlike inclination, the initial coordinative mode was not 

significant either as a main effect or as a factor in the 
significant interaction for eccentricity. As seen in Figure 10, 
eccentricity increased as movement frequency increased, 
with the exception of the sagittal plane motions using the 
high inertia pendulums and the sagittal plane in-phase 
condition with the low inertia pendulum (p < .05). In- 
creases in eccentricity were more pronounced in the fron- 
tal plane, particularly with the high and medium inertia 
pendulums. 

Discussion 

Experiment 1 was designed to probe an apparent anomaly 
in the coupled pendulum paradigm, namely the absence of 
transition phenomena despite differential stability of the 
coordinative modes and related phenomena (e.g., phase 
shifts, increased antiphase variability). On the basis of a 
hypothesis proposed by Kelso et al. (1993), we predicted 
that this absence of transitions was at least in part due to 
recruitment of previously quiescent degrees of freedom, the 
role of which, in a biomechanically redundant system, is to 
stabilize coordination under conditions in which it may 
otherwise be unstable. To detect signs of putative recruit- 
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Figure 7. Mean amplitudes collapsed across all pendulums for the sagittal (left panels) and frontal 
(right panels) plane conditions. The top panels show the amplitude in the primary plane of motion; 
bottom panels show the amplitude in the secondary, or recruited, plane of motion. Triangles denote 
in-phase patterns, and squares denote antiphase patterns. 

ment, we examined the pendulum trajectory in detail, as well 
as other more conventional measures (e.g., amplitude, 
phase). 

Previous studies (see Turvey & Schmidt, 1994, for a 
review) of coordination involving the coupled pendulum 
system did not report well-defined switches between anti- 
phase and in-phase modes when participants had swung the 
pendulums in the sagittal plane. In this study, we reproduced 
the results of these previous experiments in the sagittal 
plane, although we also found that at high movement 
frequencies, a small number of trials did change from the 
antiphase pattern, primarily to phase wrapping. This result is 
consistent with much previous work (e.g., Schmidt et al., 
1993; Sternad et al., 1992; Turvey & Schmidt, 1994), 
showing that the standard deviation of relative phase was 
higher for antiphase than for in-phase patterns and is 
indicative of differential stability. It may be safely concluded 
that transitions away from the antiphase pattern are rare in 
the typical coupled pendulum experiments in the sagittal 
plane. 

On the other hand, we show here that transitions from 

antiphase to other phasing patterns occur frequently in 
frontal plane motions, although the resulting pattern is rarely 
in-phase. Similar results were found in unconstrained mo- 
tion in the frontal plane using coupled pendulums (Mitra et 
al., 1997) or isometric contractions (Carson, 1995). On the 
basis of the direct comparison conducted here, it appears that 
the original plane of motion has a clear effect on the 
occurrence of transitions, with transitions being far less 
frequent in the sagittal plane than in the frontal plane. 

Our main finding is that recruitment of motion in the 
secondary plane of motion occurs in both sagittal and frontal 
plane conditions as movement frequency is increased. The 
amount of recruitment was modified by the inertial proper- 
ties of individual pendulums. Some, and indeed probably 
most, recruitment was a result of the task requirement to 
produce high movement frequencies. Because additional use 
of the primary-joint motions merely causes an increase in 
the amplitude of motion along the original plane, recruit- 
ment, by necessity, entails the use of joint motions other than 
those specified in the task (wrist abduction-adduction in the 
sagittal plane, forearm pronation-supination in the frontal 
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Figure 8. End-pendular trajectory for each frequency plateau for representative trials in the 
antiphase sagittal (Figure 8A) and frontal (Figure 8B) conditions. ~ = eccentricity; O = inclination. 

plane condition). Such recruitment occurred in every single 
trial, despite clear instructions to restrict motion to a single 
plane of motion. 

Despite the observed dependence of movement frequency 
and pendulum inertia on recruitment, not all of the recruit- 
ment can be attributed to biomechanical factors. If biome- 
chanical factors alone were responsible for recruitment, 
there is no reason to expect that the stability of the relative 
phase pattern between limbs has an effect on the amount of 
recruitment. Instead, what we see is that recruitment, as 
measured either by absolute amplitude in the secondary 
plane of motion or by inclination away from the primary 
plane of motion, is a function of the initial relative phase 
pattern, with the less stable antiphase pattern producing 
more recruitment than the in-phase pattern. Moreover, the 
manner in which the additional plane of motion is recruited 
(i.e., in a phase- and frequency-locked manner, as evidenced 
by a nonzero inclination) strongly suggests that the dynam- 
ics of such recruitment are of a similar nature to those seen 
between limbs (i.e., informational or neural), implying that 
recruitment is, in large part, the result of a self-organizing 
central nervous system strategy. Our results are consistent 
with the hypothesis tested here, namely that recruitment of 

previously quiescent degrees of freedom acts to functionally 
stabilize coordinative patterns at values of the control 
parameter at which instability and transitions are normally 
present. At the same time, they point to a limitation of the 
HKB model, which does not include a mechanism for 
recruitment. 

Experiment  2 

A strong test of the recruitment hypothesis would be to 
restrict pendulum motion to a single plane of motion 
coinciding with the required task. On the basis of previous 
results in which motion was confined to a single plane (e.g., 
Byblow et al., 1994; Kelso & Jeka, 1992) and thereby 
restricted the number of available degrees of freedom to 
perform the task, transitions in both planes of motion may be 
expected to occur. If the lack of transition behavior in the 
sagittal plane observed in Experiment 1 is due to the 
recruitment of motion in planes other than the original or 
task plane, transition behavior should be observed when 
these additional planes of motion are no longer available. We 
designed an apparatus to perform a simple experiment to 
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Figure 9. The means of the inclination are plotted against movement frequency for the three 
pendulums for sagittal (left panels) and frontal (right panels) plane conditions. Triangles denote 
in-phase patterns, and squares denote antiphase patterns. 

check out this prediction with the aim of  obtaining converg- 
ing evidence for the recruitment interpretation. 

Method 

Participants. Six participants (5 women and 1 man) from the 
university population volunteered for this experiment. None of the 
6 participants took part in Experiment 1. Participants received 
course credit for their participation and gave informed consent 
prior to participation in accordance with the local human subjects 
committee. All participants were treated in accordance with the 
ethical standards of the APA. 

Apparatus. The apparatus constrained pendulum movements 
to a single plane. A horizontal axle was connected to a manipulan- 
dum, which in turn consisted of a metal bar leading to an 
unweighted pendulum (total mass was 0.61 kg, moment of inertia 
was 0.0097 kgm z, similar to the medium inertia pendulum in 
Experiment 1) that was grasped by the participants. The axes of 
rotation of the manipulandum were aligned with either the antero- 
posterior axis of the wrist in the sagittal plane condition or the 
longitudinal axis of the ulna in the frontal plane condition. By 
aligning the axis of rotation of the pendulum mechanism with the 
axis of the appropriate joint motion, the contribution of other joints 
was minimized. Participants were seated with forearms positioned 
in an armrest to further limit unwanted joint motion. Pendulum 
position was recorded with a coaxial potentiometer and sent to an 
ODAU analog-digital converter connected to an Optotrak 3010 

system. A metronome signal, generated by a Quick Basic program 
from a Macintosh Classic II computer, was used to pace the 
movement frequency. Pendulum positions and the metronome 
signal were recorded at 256 Hz. 

Procedure. Participants were asked to swing the pairs of 
pendulums in either the frontal or sagittal planes in time with an 
auditory metronome that increased in frequency from 1.25 to 3 Hz 
in 0.25-Hz intervals every 10 cycles. In each plane, five in-phase 
and five antiphase trials were collected for each participant, with 
the order of the planes and trials within a plane randomized. As in 
Experiment 1, we defined in-phase as movements requiring 
simultaneous contraction of homologous muscles (e.g., pendulums 
moving forward and backward at the same time in the sagittal plane 
or in and out at the same time in the frontal plane), whereas 
antiphase patterns were produced with alternating contrac- 
tions of homologous muscles. Participants were told to keep their 
eyes closed and not to intervene if the coordinative pattern 
started to change but to continue with whatever pattern felt most 
comfortable. 

Results 

Metronome pacing. As in Experiment 1, correlations 
were calculated between movement period and metronome 
period. Correlations were again high, ranging from .87 to 
.98. No significant differences were found between condi- 
tions ( p  > .05). 
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Figure 10. The means of the eccentricity are plotted against plateau frequency for the three 
pendulums for sagittal (left panels) and frontal (right panels) plane conditions. Triangles denote 
in-phase patterns, and squares denote antiphase patterns. 

Time series. Figure 11 shows a time series for a 
representative frontal plane antiphase trial for three frequen- 
cies. A reduction in movement amplitude was seen as 
frequency was increased, and a transition from antiphase to 
in-phase occurred at 2.5 Hz. When compared with the time 
series for Experiment 1 (Figure 3), the same general 
decrease in amplitude occurred in both cases, but in 
Experiment 2, the secondary plane amplitude was restricted 
to zero. Notably, a phase transition occurred at a lower 
frequency than in Experiment 1. 

Stability of the coordinative pattern. Three distinct 
relative phase patterns were identified in the data--in-phase, 
antiphase, and phase wrapping--using the procedure de- 
scribed in Experiment 1. The frequency of occurrence of 
each of the patterns in the initial antiphase condition is 
shown in Figure 12. As frequency was increased, there was 
an increase in the number of transitions away from anti- 
phase, seen in this experiment in both planes of motion. 
Table 3 shows the percentage of trials in which the patterns 
were observed for at least part of the trial for both 
Experiment 1 and Experiment 2. Transitions away from the 
initial coordinative mode were observed in all four experi- 
mental conditions in Experiment 2; at high frequencies, even 
in-phase coordination sometimes became unstable and dis- 
played wrapping behavior. The four conditions differed in 

the number and type of transitions, as confirmed by a 
significant chi-square value, X2(6, N = 58) = 13.35, p < 
.05, on the presence of three patterns: the initial coordinative 
mode, phase wrapping, and the opposite coordinative mode 
(i.e., in-phase for the initial antiphase mode). A significant 
chi-square value was found for initial coordinative mode, 
×2(2, N = 58) = 9.63, p < .01, with the antiphase mode 
showing more deviations from the initial relative phase 
pattern than the in-phase mode, although this difference 
resulted more from the difference between the two coor- 
dinative modes in the frontal plane, ×2(2, N = 58) = 8.96, 
p < .05, than from the sagittal plane, X2(2, N = 58) = 2.35, 
p > .05. 

More important is the comparison between the number of 
transitions from antiphase to in-phase coordination between 
Experiment 1 (seen on the left side of Table 3), in which 
additional degrees of freedom were available to be recruited, 
and Experiment 2, in which they were not. In Experiment 2, 
such transitions occurred more often in both planes of 
motion, including 23% of the trials in the sagittal plane as 
compared with 2% in Experiment 1 (and none in the many 
previous studies on the coupled pendulum paradigm). The 
difference in number of transitions between Experiments 1 
and 2 was confirmed by a significance test between the 
sagittal plane antiphase condition in the two experiments (2 
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Figure 11. Representative time series for three frequency pla- 
teaus in the frontal plane antiphase condition. A transition from 
antiphase to in-phase was observed at 2.5 Hz. 

experiments × 3 patterns), X2(2, N = 160) = 9.08, p < .05, 
and between the two experiments in the frontal antiphase 
condition, ×2(2, N = 160) = 9.08, p < .05. Although these 
results could be interpreted as meaning that participants in 
Experiment 2 were more likely to display transitions, this 
explanation seems unlikely, given the complete absence of 
transitions reported in the numerous studies of sagittal plane 
antiphase coordination to date. The observed increase in the 
percentage of transitions in Experiment 2 strongly supports 
our hypothesis that recruitment of degrees of freedom serves 
to stabilize coordination under conditions in which it would 
otherwise become unstable and change. 

Amplitude. Movement amplitude, shown in Figure 13, 
followed the same general pattern as shown in Experiment 1, 
with a decrease in amplitude as movement frequency 
increased. Significant main effects were found for the initial 
coordinative mode, F(1, 5) = 93.25, p < .0005, plane of 
motion, F(1, 5) = 13.65, p < .05, and frequency plateau, 
F(7, 35) = 5.21, p < .0005, with no significant interactions 
among the variables. Tukey tests revealed significantly 
larger amplitudes in the antiphase mode and in the sagittal 
plane (p < .05). Significant differences were found between 
the first three frequency plateaus and the last three frequency 
plateaus (p < .05). 

Discussion 

We explored the hypothesis that recruitment of additional 
degrees of freedom serves to stabilize coordination. By 
physically constraining the pendulum motion to a single 

plane, participants were prevented from using additional 
degrees of freedom, at least as measured by pendulum 
motion. This procedure, of course, does not consider addi- 
tional sources of variation, such as forces applied to the 
pendulum or activity in additional joints (e.g., elbow flexion 
and extension). Despite this caveat (which applies to all 
coupled pendulum studies), transitions from antiphase to 
in-phase were observed in both planes of motion. Previous 
experiments in the coupled pendulum paradigm have not 
revealed transitions from antiphase to in-phase in the sagittal 
plane (see Amazeen et al., 1998, for a review). Here, 
however, we show transitions from antiphase to in-phase on 
23% of the trials, a figure that although lower in the sagittal 
than in the frontal plane, clearly supports our hypothesis that 
the complete lack of transition behavior reported earlier is 
due, in part, to the availability and use of additional degrees 
of freedom. There also appears to be an effect of the plane of 
motion, with transitions in the frontal plane more frequently 
observed than in the sagittal plane. This effect could have 
several causes, among which are (a) the use of different joint 
motions in the two planes (an unavoidable concern because 
moving to a new plane of motion necessitates a change in 
either the joint motion used--as in the current experi- 
ment---or a change in the position of other joints [see 
Carson, 1996, for effects of the latter]), (b) symmetry 
properties, or (c) the fact that many tasks performed 
primarily in the sagittal plane (e.g., walking or running) are 
performed in what may be described as an antiphase pattern. 
Additional research is needed to resolve these issues. 

General  Discussion 

From the perspective of elementary coordination dynam- 
ics, essential sources of task-specific flexibility have been 
shown both empirically and theoretically to arise in at least 
three basic forms: (a) multistability and switching among 
states of absolute coordination, including hysteresis; (b) 
partial, or relative, coordination characterized by metastabil- 
ity in which individual components express their indepen- 
dent variation while remaining globally coordinated; and (c) 
spontaneous recruitment of previously quiescent biomechan- 
ical degrees of freedom and the suppression of others. The 
two experiments reported here are among the first to explore 
the effects of recruitment of degrees of freedom on the 
stability of coordinative patterns in the coupled pendulum 
paradigm. In previous coupled pendulum experiments (many 
reported in this Journal; Amazeen et al., 1997; Schmidt et al., 
1993; Sternad et al., 1992; Treffner & Turvey, 1996; Turvey 
et al., 1986), motions in planes other than those designated 
by the task were not constrained, under the assumption that 
behavior was adequately described by motion in a single 
plane. In Experiment 1, we found systematic recruitment of 
planes of motion orthogonal to the initial plane of motion 
when movement frequency was increased. This recruitment 
occurred despite instructions to maintain coordinated behav- 
ior on the original plane of motion throughout the trial. In 
light of these results, it appears unlikely that participants in 
previous studies were able to remain in the initial plane of 
motion, especially at higher movement frequencies. 
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Figure 12. Percentage of occurrence out of 30 trials of the basic patterns in the initial antiphase 
condition in Experiment 2. Note that some participants failed to keep pace with the metronome, so 
the number of patterns reported for each plateau does not always add up to 100%. IP = in-phase 
pattern; W = wrapping pattern; AP = antiphase pattern. 

What role does this recruitment play in coordinated 
behavior? In Experiment 1 recruitment, seen in the inclina- 
tion of the pendulum trajectory, was dependent on the 
stability of the relative phase pattern being performed, with 
the less stable antiphase pattern producing greater inclina- 
tions than the in-phase pattern. This fact is consistent with 
the proposal of Kelso et al. (1993) that recruitment of 
additional degrees of freedom serves to stabilize coordina- 
tive patterns. Converging on the recruitment interpretation 

are the results of Experiment 2, showing that when the 
number of available degrees of freedom are limited to the 
task plane of motion, the number of transitions, especially in 
the sagittal plane, increases. This provides one explanation 
for an apparent anomaly in previous coupled pendulum 
experiments, namely the rarity or complete absence of 
transition behavior. Lack of transitions, then, can be attrib- 
uted to the fact that additional degrees of freedom were used 
to delay, or even eliminate, transitions. In this light, recruit- 

Table 3 
Percentage of Occurrences of the Basic Patterns in Experiments 1 and 2 

Condition 

Unconstrained (Exp. 1) Constrained (Exp. 2) 

In-phase Wrapping Antiphase In-phase Wrapping Antiphase 

Sagittal in-phase 100 0 0 100 27 3 
Sagittal antiphase 2 14 100 23 23 93 
Frontal in-phase 100 0 0 97 43 0 
Frontal antiphase 15 44 100 30 37 93 

Note. The three pendulum types in Experiment 1 were collapsed. When a transition from one 
pattern to another occurred, both patterns were counted for that trial. Thus, percentages can add up to 
more than 100% in some conditions. Exp. = Experiment. 
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Figure 13. Mean amplitudes collapsed across all pendulums for the sagittal (left panel) and frontal 
(fight panel) plane conditions. Triangles denote in-phase patterns, and squares denote antiphase 
patterns. 

merit of degrees of freedom serves as a stabilization 
mechanism,-enhancing the flexibility of the system by 
increasing the number of available stable coordinative 
states, 

Theoretical Modeling 

Given the present experimental results, it seems obvious 
that coordination behavior cannot be described fully by a 
single relative phase variable. Rather, the recruitment of 
other planes of motion must be incorporated into the 
coordination dynamics. This is not to deny the validity of the 
HKB model or its extension to include frequency differences 
between the components (Kelso et al,, •990). On the 
contrary, on the basis of the agreement of results from 
coupled pendulum experiments with various predictions 
based on the extended HKB model (e.g., relative variability 
of in-phase and antiphase coordination, shift in the fixed 
points owing to asymmetries in the pendulums, relative 
coordination effects, etc.), it is clear that the HKB model is 
valid for describing the coordination of coupled pendulums 
in terms of a single phase variable. However, the HKB 
model and its later modifications were not intended to model 
coordination in more than a single plane of motion. Thus, it 
is necessary to modify the basic HKB model to accommo- 
date additional degrees of freedom, such as has been done 
for unconstrained bimanual coordination (Kelso et al., 
1993), multifrequency tasks (de Guzman & Kelso, 1991; 
Haken, Peper, Beek, & Daffertshofer, 1996), four-limb 
movements (Sch6ner, Jiang, & Kelso, 1990), environmental 
information (Sch6ner & Kelso, 1988b, 1988c), the influence 
of intention (Kelso, Scholz, & SchiSner, 1988; SchSner & 
Kelso, 1988c), learning (Sch/Sner, Zanone, & Kelso, 1992), 
handedness (Treffner & Turvey, 1996), attention (Amazeen, 
Amazeen, Treffner, & Turvey, 1997), and trajectory forma- 
tion (de Guzman, Kelso, & Buchanan, 1997). 

Any modified model must retain the essential properties 
of the HKB theory at both the coordinative (e.g., multistabil- 

ity, phase transitions, hysteresis) and component (e.g., 
frequency-amplitude-velocity relations, limit cycle stability 
features) levels. Vis-a-vis recruitment, several new proper- 
ties must be incorporated into the model. First, phase 
locking is present not only between hands in the primary 
plane but also in the secondary plane and between the two 
planes. The latter effect is seen in the inclination data (Figure 
9), in which a nonzero inclination indicates phase locking 
between the planes at values near zero or 180 ° . Second, the 
amount of recruitment increases as movement frequency is 
increased (Figures 3, 8, 9, and 10). Finally, recruitment 
serves to stabilize the coordinative pattern by delaying or 
eliminating phase transitions (cf. Figures 5 and 12). 

Coordination with recruitment: Component oscillator 
model. In the following, we present a modified HKB 
model that captures the features of the old model while 
incorporating the novel properties observed experimentally. 
Frontal motion of the left and right pendulums is represented 
by the oscillators xi(t) and x2(t), whereas the left and right 
sagittal motions are given by ya(t) and y2(t), respectively. 
When uncoupled, these are assumed to be of the hybrid van 
der Pol-Rayleigh type (Beck, Rikkert, & van Wieringen, 
1996; Haken et al., 1985; Kay, Kelso, Saltzman, & Schfner, 
1987; Kay, Saltzman, & Kelso, 1991). The basic model is 
given as 

xl + (A:x ~, + B:x~ - , t:)xl + ~o2x, 

= (~: + ~:[x~ - x=l~)(& - & )  

- Xi(y~ + y l ) ( &  + it2) + ~ ( t )  
(1) 

= ( ~  + t3:[x2 - xd~)(x2 - x O  

- X : ( y ,  2 + y~)¢.~, + x~) + ~l( t )  
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and 

Yl + (AsY~ + Bs):'21 - %))1 + t°ZYl 

= ((xs + f3s[Yl - Y212)())1 - -  )2) 

- Ks( x2 + x2)(.91 + 3~2) + ~( t )  
(2) 

Y2 + (Asy 2 + B ~  2 -- %))2 + t°2y2 

= (as  + ~s[Y2 -- yl]2)())2 -- Yl) 

- -  k ~ ( x l  + x ~ ) O ~ l  + 3~2) + ~2( t )  

for the frontal and sagittal components, respectively. This is 
similar to the HKB model but involves four components and 
additional frontal and sagittal couplings (terms in bold) with 
parameters kf and ks, respectively. The HKB coupling 
provides the requisite relative phase behavior (Haken et al., 
1985). Terms with hi and hs factors act both as a damping 

force as well as a phase stabilizing influence on the basis 
oscillators. To simulate the fact that all real  systems contain 
noise, we have added the Gaussian, delta-correlated func- 
tions ~( t )  and ~(t).  All the parameters except of and as are 
taken to be positive. To see the feasibility of such a system, 
we numerically integrated Equations 1 and 2 for a represen- 
tative set of parameter values close to those used in the HKB 
model (Haken et al., 1985). The initial conditions were set 
up to simulate the task of swinging the pendulums on the 
frontal plane in the antiphase mode and correspond to the 
frontal antiphase task of Figure 3. Because the case of 
synchronizing antiphase in the sagittal plane is formally the 
same as the above condition, we limited analysis to the 
frontal antiphase task. Plotted in Figure 14 are the time 
series at strategic values of the frequency parameter, show- 
ing the system's behavior around the points of recruitment of 
the sagittal plane and the phase switch in the frontal plane. 
For frequencies below 1.6 (not shown) and after the system 
has settled down to a well-defined oscillation, frontal motion 
remains stable at antiphase with equal amplitudes for both 
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Figure 14. Simulation of the Haken-Kelso-Bunz dynamics with recruitment (Equations 1-2) for 
the case when the primary task is antiphase in the frontal plane. The parameters used were A!  --- As = 
1, By = Bs = 1, "yf = 1, % = 0 .3 ,  o t f =  - 0 . 2 ,  ~ f  = 0 .5 ,  ors = - 0 . 1 3 ,  13s = 0 .5 ,  k f  = 1.0 ,  ks = 0 .4 ,  and a 
noise level of 10 -3. The initial conditions were set to antiphase frontal and zero amplitude for the 
sagittal component. For frequencies below 1.6 (not shown), sagittal motion was minimal and was 
dominated by noise. Panel A: Recruitment of the sagittal degree of freedom at to = 1.6. Panel B: At a 
higher frequency, to = 1.8, motion remained phase locked but with a slight decrease in the frontal and 
increase in the sagittal amplitude. Panel C: Near to = 2.1, both sagittal and frontal motions became 
unstable and coordination switched to in-phase in both planes. 
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Figure 15. Simulation of the frontal Haken-Kelso--Bunz dynamics without recruitment (con- 
strained case). Here, y,(t) and y2(t) were identically set to zero, and only the frontal components 
(Equation 1) were integrated using the same parameters of Figure 14. Panel A: At the starting 
frequency, to = 1.5, frontal motion was phase locked at antiphase. Panel B: At a higher frequency, 
to = 1.6, motion remained phase locked at antiphase but with a lower amplitude. Panel C: Transition 
from antiphase to in-phase in the frontal relative phase occurred around to = 1.8. Note that this 
frequency was earlier than the frontal transition frequency (to = 2.1) of Figure 14C. 

limbs. Sagittal motion, which was minimal at low frequen- 
cies, is recruited and becomes coherent at to ~ 1.6 (cf. 
Figure 3A). For ¢o > 1.6, the sagittal amplitude rises, and 
frontal and sagittal motion remain phase locked (between 
left and right pendulums) within each plane (cf. Figure 3B). 
The frontal and sagittal components then switch to in-phase 
at ~o ~- 2.1 (cf. Figure 3C). In short, the model reproduces 
three of the main features seen in Experiment 1: frequency- 
dependent recruitment, phase locking between planes, and 
transitions. 

In Figure 15, our model system is constrained to move 
only on the frontal plane as in Experiment 2. This is 
accomplished by keeping yl(t) = y2(t) = 0 at all times in 
Equation 1 or, alternatively, by setting the frontal coupling 
h / =  0 and disregarding the sagittal component dynamics 
altogether. Thus, only the x-components of Equation 1 are 
integrated. When we focus on just the frontal motions, xl(t) 
and x2(t), we note stable antiphase coordination at low 

frequencies (cf. Figures 15A and l lA).  As frequency 
increases, coordination remains antiphase but with a lower 
amplitude (cf. Figures 15B and liB).  Then, at a still higher 
frequency (to = 1.8), coordination switches from antiphase 
to in-phase (cf. Figures 15C and 11C). A key point to note is 
that switching under constrained conditions (Experiment 2) 
occurs at an earlier frequency than in the unconstrained 
conditions. It is thus possible to stabilize a coordination 
mode within the HKB framework by recruiting biomechani- 
cal components from other planes and coupling them 
appropriately. These theoretical results are meant to demon- 
strate the essential properties of the model. No attempt has 
been made to fit the data. 

I To produce the requisite dimensions and correct parameter 
values, Equations 1 and 2 need to be scaled appropriately in time 
and space (see e.g., Fuchs, Jirsa, Haken, & Kelso, 1996). 
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Phase and amplitude dynamics. Since phase locking 
within and between planes is a prominent feature of our 
experiments, we turn now to a consideration of the phase 
and amplitude dynamics. Just as in the two-component HKB 
model, wherein the stability of the coordination depends on 
the amplitudes in the primary plane of movement, the 
amplitude of the recruited degrees of freedom also affects 
the stability of a pattern in the initial plane. We see this more 
explicitly in the following case, in which we extract the 
amplitude and phase dynamics corresponding to Equations 1 
and 2. To do this, we assume the system exhibits a dominant 
oscillation at frequency to and then apply the slowly varying 
amplitude and rotating wave approximations (Minorsky, 
1962; see Appendix for details). Additional simplifications 
are possible by noting that after the system has stabilized, 
the left and fight components of the same plane have equal 
amplitudes. We may therefore set rl = rE ---- r and pt = P2 -- 
p, where r and p refer to the frontal and sagittal amplitudes 
(see Appendix for the resulting equations of motion)• 
Because there are four phases (~b~, d~2, %, q~2) available, we 
can define at most three independent relative phases at one 
time. We have chosen to define the following combinations: 
~b - -  ~b~ - dp~, ¢p =-- % - ',P2, a n d  ~ - -  % - dp~ + ¢P2 - ~b2. W e  
refer to d~, q~, and ~ as the frontal, sagittal, and within-limb 
relative phases, respectively. For the case of equal ampli- 
tudes, we obtain the relative phase equations 

tb = [or/+ 21~yr 2 - 2hf(2 - cos 5 cos  qo)p 2] 

AMPLITUDE 

0.5 
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Frequency  

Figure 16. Mean values of the ampfitudes and relative phases as a 
function of movement frequency in the frontal antiphase task. Each 
point is an average of the time series generated by numerical 
integration of amplitude (F_zluations A5 and A6) and relative phase 
equations (Equation 3), on the basis of the oscillator parameters in 
Figure 14. 

• sin ~b - I~/r 2 sin 2dp (3a) 

(P = [Ors + 2~sO 2 --  2ks(2 - c o s  8 c o s  d p ) r  2]  

• sin q~ - ~sp 2 sin 2q~ (3b) 

= - 4  hsr 2 cos 2 ~ cos dp + ) k f [  2 c o s  2 "~ COS qO sin ~ (3c) 

We note that for kf = ks = 0, Equation 3 yields two 
independent HKB systems, one for the frontal (d~) and one 
for the sagittal (q~) planes. Because the coupling between 
planes in this case is nonexistent, the within-limb relative 
phase dynamics (8) is not fully determined. For nonzero k I 
and ks, it is clear that a subset of fixed points of Equation 3 is 
of the form dp*, q~*, ~*, where each component phase takes 
the value 0 or "rr. e Such fixed points correspond to the basic 
coordination modes seen in Experiment 1. Note that Equa- 
tion 3 may have other fixed points aside from these basic 
modes, but this goes beyond the scope of the present article. 
To illustrate the amplitude and phase dynamics of our model 
and to verify the approximations and assumptions, we 
consider the circumstances of Experiment 1, in which the 
primary task is to coordinate antiphase motion in the frontal 
p l a n e .  

In Figure 16, we have plotted the mean amplitudes and 
circular mean of the relative phases as a function of 
movement frequency for our model. The means were 

computed using the time series generated by direct integra- 
tion of Equation 3 and the amplitude equations (see Appen- 
dix) for each frequency plateau. 

Parameter values are the same as in Figure 14. Note that 
since there is no sagittal amplitude at the beginning of the 
task, there is no (one) initial condition that can be imposed 
on the relative phases q~ and 8. Thus, we have set these 
phases to ,tr and 0, respectively. Figure 16 simulates some of 
the mean features seen experimentally. A drop of frontal 
amplitude with frequency is accompanied by a rise in 
sagittal amplitude as frequency is increased. Initially, the 
frontal and sagittal relative phases are stable at It, become 
unstable at t~ ~- 2.1, and switch to 0. At higher frequencies, 
both frontal and sagittal relative phase are stable and phase 
locked. Comparing Figure 16 with our model Figure 14, we 
see agreement between the oscillator and the phase- 
amplitude dynamics simulation in terms of the recruitment 

2 The above assumes a left-right, fully symmetric condition. The 
empirical situation is, however, slightly different because observa- 
tions reveal asymmetry both in time and space. Temporally, one 
sees not only in-phase and antiphase modes but also slight 
deviations from these generic phases. In addition, phase wrappings 
and slow drifts occur. As in the extended, symmetry-breaking 
version of the HKB model (Kelso et al., 1990; Kelso & Jeka, 1992), 
introducing slight differences in the left- and right-component 
oscillators may accommodate these additional effects. At the phase 
dynamics level, this involves the introduction of constant terms in 
Equation 3. Thus, both the temporal and spatial features of the 
trajectory may show the asymmetry. 
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frequency (to ~ 1.6) and the relative phase transition fre- 
quency (to ~ 2.1). Note the general increase in the sagittal 
amplitude as the frontal amplitude decreases (cf. Figure 7). 

We now consider in more detail how sagittal motion 
stabilizes the frontal phase dynamics. Assuming that both 
frontal and sagittal amplitudes are already active, we express 
the ~b equation (Equation 3a) for the frontal relative phase as 

qb = - a f  sin d~ - /~f  sin 2~b, (4) 

where a / -  -[or/ + 2 ~ f r  2 - 2ky(2 - cos 5 cos q~)pE] and 
b f  --~ ~ f  r 2. Note that except for the extra kf term in the tiy 
coefficient, Equation 4 is identical to the standard HKB 
model of bimanual coordination (Haken et al., 1985). 
Assuming the other phases remain stable, Equation 4 is 
bistable at in-phase and antiphase w h e n  ay < 2by and 
monostable at in-phase when t i />  2bf. The transition from 
bistability to monostability occurs when af = 2/~f. Because 
kf > 0 and p > 0, the result is a decrease in the magnitude of 
tif (compared with when p = 0, as in the standard HKB 
model). This in turn extends the bistable region to smaller 
frontal amplitudes r, or, equivalently, higher values of 
omega. The result of this effect is seen in a delay in relative 
phase switch in the frontal plane. This is consistent with 
the experimental finding that less phase switching occurs in 
the primary plane when the secondary plane is involved 
(see experimental comparison in Figures 5 and 12 and in 
Table 3). 

To see how the onset of recruitment and phase switching 
depend on the spatial coupling, we computed the critical 
recruitment frequency (12p) and the frontal phase transition 
frequency (l'l,~) for the unconstrained case for a combination 
of k~ and k/. The result is shown in Figure 17, in which we 
have plotted 120 and 12~, versus k~, ks E [0, 1], for the cases 
kf = 0.25 and kf = 1. For comparison, we also plotted 12~), 
the frontal phase transition frequency were recruitment not 
allowed (constrained case). Note that for the latter case, the 
critical frequency is independent of the spatial coupling and 
that the curve is given by the horizontal line gl = 12~). We 
see that 12~) is consistently greater than 12p and less than 12~ 
when ks is below a critical value h*, the latter being defined 
by the point at which the frequency curves intersect. We 
therefore take the interval [0, h*] as the valid region for the 
sagittal parameter ks. For fixed kf, low values of ks 
correspond to earlier sagittal recruitment and more delayed 
relative phase switching on the frontal plane. When the 
frontal degree of freedom is strongly coupled to the sagittal 
degree of freedom (ks ~ k*), there is a competition between 
recruitment and phase switching, and the outcome may very 
well be determined by noise. 

Spatial trajectory. We now consider the trajectories 
traversed by each limb in space. Assuming equal amplitude 
solutions, the kth limb traverses a path given parametrically 
by x~(t) = 2r cos (tot + qb~) and yk(t) = 2p cos (tot + q0k). 
The equation of the curve in space, found by eliminating t 
from the parametric equations, is given by p~x 2 + rEy 2 --  

2rp cos ~x~ Yk = 4rEp E sinE 5k, where 5~ = q0~ - qbk is the 
relative phase between the frontal and the sagittal motion of 
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Constrained Q, : ~ = 0 . . . . . . i " " ~  

Saglttal recruitment 
frequency D.p 

011 012 013 01, 015 015 017 01s 0.9 
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Figure 17. Plot of the sagittal recruitment frequency t0  (solid 
line) and the frontal phase transition frequencies ~ ,  (dotted lines) 
in the frontal antiphase task as a function of the sagittal coupling ks 
for the frontal coupling hf = 0.25 and k: = 1. The horizontal solid 
line represents what the frequency in the frontal phase would be 
were recruitment not allowed (constrained condition) and may be 
considered as representing a third case (i.e., h/= 0, fl = 1"~)). The 
phase values used were (~b*, q~*, 8") = Or, "tr, 0). Comparing the 
l'~,~ curves for hf = 1, 0.25, and 0, we see that as we decreased the 
effect of the sagittal on the frontal motion, the unconstrained curve 
approached the constrained case, as expected. For a given h/, fl o < 
~ )  < 1~,~, provided ks is below a critical value k*, defined as the 
parameter point at which these three curves intersect. Note also that 
low values of ks correspond to much earlier sagittal recruitment and 
more delayed relative phase switch. As he increased, recruitment 
occurred later and consequently did not delay the frontal phase 
switch as much. 

the k-th limb. For stable r, p, and Sk, the curve is an ellipse 
with inclination ~k, given by tan 2a3k = 2rp(r 2 -- p2 )-1 
COS 5k. The ratio of the minor to the major axis (denoted by 
~k), a measure similar to the eccentricity of an ellipse, can 
also be expressed in terms of the amplitudes and phases and 
is given by 

2 
Ek 

r 2 + p2 _ ~ ( r  2 + p2)2 _ 4r2p2 sin 5k 

r2 + p2 + ~/(r 2 + p2)2 _ 4r202 sin 5k 

The relative phase between the planes can be expressed as 
51 : 1/~(5 - -  (t) "{- q~) and 51 = ½(5 + d~ - qo). Thus, the 
inclination and axes ratio depends on the amplitudes and the 
overall coordination pattern. In Figure 18, we show the 
different geometries arising from the basic phase patterns. 
Note that there is a slight indeterminacy in the variables 51 
and 52 because each of the phases ~b, q~, and 5 are defined to 
within a multiple of 2~r. This results in two spatial trajecto- 
ries for each basic pattern (dp, qo, 8). 

Simulations starting from the basic modes tend asymptoti- 
cally toward linear trajectories so that the eccentricity ~k 
remains largely at zero. This occurs because the more stable 
basic mode yields 5k equal to either zero or rr, which renders 
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(~k equal to zero, as is easily verified using Equation 5. Such 
is not the case if strict left-fight symmetry is broken. For 
example, an eigenfrequency difference (a feature sometimes 
considered germane to the problem of handedness; see, e.g., 
Treffner & Turvey, 1996) may be accommodated by con- 
stant correction terms on Equation 3 (see, e.g., Fuchs, Jirsa, 
Haken, & Kelso, 1996, for an analysis of a comparable 
problem). This results in fixed points that are offset from the 
basic coordination modes of Figure 18, and, consequently, 
more elliptical trajectories. Because of recruitment in the 
secondary plane, a trajectory not only may change shape but 
also may reorient from its initial condition, a feature 
captured in the inclination measure a~. In Figure 19, we 
plotted the predicted inclinations ~ and ~2 as a function of 
frequency for the case when both planes are already active at 
the start of the task. Because the sagittal degree of freedom 
participates immediately in the first frequency plateau, O~ 
and ~2 start at nonzero values. Because the sagittal ampli- 
tude increases while the frontal amplitude decreases with 
frequency, we also expected increasing tendencies in inclina- 
tion. This compares favorably with the empirical findings 
(e.g., right column of Figure 9). 

Conclusion 
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Figure 19. Predicted inclinations of the spatial trajectory as a 
function of the frequency for the case when the task was frontal 
antiphase. The inclinations were computed from the mean values of 
the amplitudes and relative phases generated from Figure 16. 
Initially, there was a general increase in the inclination with 
increasing frequency consistent with what has been found empiri- 
cally. ~1 and 02 = inclinations of the first and second trajectories, 
respectively. 

Transitions have been demonstrated time and again to 
provide human beings with a source of flexibility, enabling 
them to switch easily from one mode of behavior to another 
under changing environmental and task demands. Here we 
have asked, what other sources of flexibility do biological 
systems possess? Specifically, using the well-established 
coupled pendulum paradigm as a tool, we have inquired 
whether other (previously unsuspected) processes may serve 
to stabilize coordinated behavior under conditions in which 
it might otherwise become unstable and change. The motiva- 
tion is twofold. First, despite much empirical and theoretical 
work on the coupled pendulum paradigm and despite much 

FRONTAL IN-PHASE 

(¢, ~, oO (0,0~ 0) (0,0,1:) (0, ~r,0) (0, 7r, ~r) 

(4,,~2) (o,o) (,,,,~)! (~'~'~'~)I (~,r,~,r) (~,~,~,~) (~,~,~,0 (o,,~) (,~,o)! 
Spatial 

r,a~o~i',,,/' / \  O 0  O 0  O 0  O 0  ",~",,,, // 

(¢, ~, a) (Tr, o, o) 

'(4,8=) (~Tr,}~r3 (}Jr,~Tr) 
Spatial 

Trajectory 0 0 0 0 

FRONTAL ANTIPHASE 

(Jr, 0, ~r) (~r, ~r, 0) 

(~ ~) (~r, 0) (0, 0) (~r, ~r) 

\ \  / /  

(~r, ~r, 7r) 

" , ~ , , ~ / \ o o  o o  

Figure 18. Basic coordination modes of the relative phase 
dynamics and the corresponding spatial trajectories for the case 
when both degrees of freedom are active. Note that for each mode, 
there are two left-right symmetric trajectories. 

empirical validation of the (extended) HKB model, transi- 
tion effects have been largely absent. The present work was 
based on the hypothesis that in biomechanically redundant 
systems, (e.g., those not constrained to a single plane of 
motion), recruitment of degrees of freedom may serve to 
stabilize coordination states. Second, previous work on 
bimanual coordination in which motions were allowed on 
multiple planes revealed a rich set of recruitment-annihila- 
tion effects, suggesting that like mechanisms may be active 
in the coupled pendulum paradigm, thereby explaining the 
lack of observed transitions. 

The results of our experiments highlight the important 
role that recruitment of degrees of freedom plays in stabiliz- 
ing coordination. When other previously quiescent degrees 
of freedom are allowed to participate, we have shown 
experimentally that coordination may be stabilized over a 
broader range of environmental and task conditions than 
when they are not. By using additional spatial-dependent 
coupling in a theoretical model, we show that recruitment 
inhibits phase transitions, thereby resolving an anomaly in 
the coupled pendulum literature of some theoretical and 
empirical import. That anomaly concerns the use of the 
extended form of the HKB theory to explain coupled 
pendulum coordination despite the fact that transitions in 
that paradigm have seldom been observed. Our model 
analysis modifies but certainly does not destroy the general 
spirit of the HKB model and is consistent with the notion 
that modulation of the component amplitudes enhances 
flexibility in coordination tasks. More generally, by challeng- 
ing the completeness of current accounts of coupled pendu- 
lum coordination, this work elucidates an alternative mecha- 
nism-recruitment-through which animals and human 
beings can adjust to environmental and task-related change. 
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Appendix 

Reduction From the Oscillator to the Phase-Amplitude Dynamics 

Typical derivation of the phase and amplitude equations from the 
component oscillators involves the rotating wave and slowly 
varying amplitude approximations (see e.g., Minorsky, 1962). To 
make those approximations, we assumed first that the system 
exhibits a dominant oscillation at frequency to and has solutions of 
the form xk = ate i~t + a~e -i~t and Yt = bke i~t + b~e -i~, where k = 
1, 2 and at and bk are complex numbers with conjugates a~ and b~. 
The first and second derivatives Of Xk with respect to time are given 
by 

xt = ,ik ei~ + itoak ei~ + + c.c. 

)it = iiee i~t + 2ire,ire i~t - to2ak ei~t + C.C., 
(A1) 

where the notation c.c. signifies complex conjugation of the 
preceding term. The slowly varying amplitude approximation 
implies [,it[ << t o l a t l  and lakl << to21ak I. Using these in Equation 
A1, we obtained 

Yct "-~ itoake i°'t + c.c. 

xt + tO2Xk ~ 2ito,it ei~t + C.C. 
(A2) 

Similarly for the s a g ~ a  component, this means ID~i << ¢~]bkl and 
[bk [ << to2 I bk [. Direct substitution of the assumed solutions xk and 
Yk and the approximations (Equation A2) and their sagittal version 
into the oscillator Equations 1 and 2 yield linear combinations of 
e /~ ,  e 2i~, a n d  e 3i°~t as  we l l  as  the i r  complex conjugates. To apply the 
rotating wave approximation to the result, we neglected oscillations 
faster than e 'i''t. The result yields equations for ak and bt as 
follows: 

2a~--  - ( A f  la~l ~ + 3a~B:la,  I ~ - "v:)a~ 

"~- (Yk(OLf "~ ~ f l a l  -- a212)(a! --  a2) 

_ kf[2(a 1 + a2)([b I [2 + Ib212) _ (a* + a2*)(b 2 + b22)] and (A3) 

2/~ k ~ -  --(As[bkl 2 + 3fl2Bslbkl 2 - % ) b  k 

+ irk(or s + ~slbl - bEI2)(bl - b2) 

- ky[2(b~ + b2)(lail 2 + la212) - (b*+ b2*)(a 2 + a2)], (A4) 
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where ~rl = -or2 = 1. Next, we express at and bt in terms of phase 
and amplitude as follows: at = rte i¢k and bt = Pie i'p~ • Differentiat- 
ing these with respect to t, we found at = (& + irtdpk )e i~'k and bt = 
(Ok + ipk % )ei% or, upon inverting, 

ft = ~e(dk e-i**) lb* = ~e(/~d -i'pk) (A5) 

follows (where rl = 1"2 = r and p] = P2 = P): 

= ½ r .  {~/f + 2ay sin 2 ½dp - [,4/+ 3~o2Bf - 813/sin' ½dp]- r 2 

- 4kf[1 + cos dp - cos (8 - ½dp) cos ~ cos ½~b]. p2} (A7) 

= ½ p .  {% + 2a, sin 2 ½~ - [A, + 3~o2B, - 813, s in  4 ½~]. p2 

dpt = r~-t~m(t~ke -i~'k) % = p~-l~m(/~ie-/~*), (A6) - 4k,[1 + cos ¢p - cos (8 + ½q~) cos dp cos ½¢0]. r2}. (AS) 

where the symbols fire( ) and ~m( ) refer to the real and imaginary 
parts, respectively. Using Equations A3 and A4 in Equations A5 
and A6, it is now straightforward to derive the relative phase and 
amplitude equations. Amplitude equations (symmetric case) are as 
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