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Abstract In studies of rhythmic coordination, where
sensory information is often generated by an auditory
stimulus, spatial and temporal variability are known to
decrease at points in the movement cycle coincident with
the stimulus, a phenomenon known as anchoring
(Byblow et al. 1994). Here we hypothesize that the role
of anchoring may be to globally stabilize coordination
under conditions in which it would otherwise undergo a
global coordinative change such as a phase transition. To
test this hypothesis, anchoring was studied in a bimanual
coordination paradigm in which either inphase or anti-
phase coordination was produced as auditory pacing
stimuli (and hence movement frequency) were scaled
over a wide range of frequencies. Two different anchor-
ing conditions were used: a single-metronome condition,
in which peak amplitude of right finger flexion coincided
with the auditory stimulus; and a double-metronome con-
dition, in which each finger reversal (flexion and exten-
sion) occurred simultaneously with the auditory stimuli.
Anchored reversal points displayed lower spatial varia-
tion than unanchored reversal points, resulting in more
symmetric phase plane trgjectories in the double- than the
single-metronome condition. The global coordination dy-
namics of the double-metronome condition was also
more stable, with transitions from antiphase to inphase
occurring less often and at higher movement frequencies
than in the single-metronome condition. An extension of
the Haken-K elso-Bunz model of bimanual coordination is
presented briefly which includes specific coupling of sen-
sory information to movement through a process we call
parametric stabilization. The parametric stabilization
model provides atheoretical account of both local effects
on the individual movement trajectories (anchoring) and
global stabilization of observed coordination patterns, in-
cluding the delay of phase transitions.
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Introduction

In the last decade or so, many studies have shown that,
when coordinative systems are driven through a range of
control parameter values, phase transitions, or qualitative
changes in coordination, occur (see Haken 1996; Kelso
1995 for reviews). More recent brain-behavior experi-
ments (Fuchs et al. 1992; Fuchs et al. 2000; Kelso et al.
1992; Mayville et al. 1999; Wallenstein et al. 1995) have
demonstrated that neural activity picked up by the mag-
netoencephalogram (MEG) and electroencephalogram
(EEG) also shows spatiotemporal phase transitions when
the movement pattern switches. Subsequent theoretical
studies (Fuchs et al. 2000; Jirsa and Haken 1996, 1997;
Jirsa et al. 1998) connected dynamics on the behavioral
and neural levels and provided a neurally based deriva-
tion of the Haken-Kelso-Bunz (HKB; Haken et al. 1985)
model of biological coordination. The biological advan-
tages of phase transitions are transparent: they provide a
mechanism for flexibility, allowing the system alterna-
tive ways to coordinate itself under changing environ-
mental or task conditions. Here we consider the other
side of the coin, namely the mechanism(s) through
which the central nervous system (CNS) functionally
stabilizes coordination under conditions in which it may
otherwise become unstable and switch. What strategies
are used to stabilize coordinative patterns at values of the
control parameter where the pattern typically becomes
unstable and switches? In an experimental setting, stabi-
lization of coordination may be seen in a delay or ab-
sence of transitions from a typically unstable state. Pre-
vious research has suggested that transitions can be de-
layed or eliminated by a number of factors, including:
(a) intentional forcing (Kelso et al. 1988; Lee et a. 1996;
Scholz and Kelso 1990); or (b) making use of hiome-
chanical redundancy in the system by recruiting degrees
of freedom other than those required for nomina execu-
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tion of the task (Buchanan and Kelso 1999; Fink et al.
2000; Kelso et al. 1993). Here we investigate the hypoth-
esis that global coordination can be stabilized through
specific local coupling to task-specific sensory informa-
tion from the environment.

Coordination or coupling between an individual and
the environment is an important feature of biological
systems, enabling production of consistent movement
patterns even in a continuously varying environment.
Such coupling has been studied extensively, for example,
in research that seeks to understand the relationship be-
tween postural sway and sensory inputs, either visual
(van Asten et al. 1988; Bertenthal et al. 1997; Delorme
et al. 1989; Dijkstra et al. 1994) or somatosensory (Jeka
and Lackner 1994; Jeka et al. 1997). Sway was coupled
to sensory information through phase and frequency
locking, a process that appears to be due to a velocity-
dependent coupling (Dijkstra et al. 1994; Jeka et al.
1997; see also Kelso et a. 1998). Such interaction is
two-way, in the sense that, while the perceptual informa-
tion affects the movement patterns, the movement pat-
ternsin turn alter the perceptual information. In rhythmic
movement, a similar environmental coupling has been
observed in between-subject coordination (Amazeen et
al. 1995; Schmidt et al. 1990) and in coordination with
auditory (Kelso et al. 1990) and visual signals (Wimmers
et a. 1992; see also Lang et al. 1984), both of which also
demonstrated features common to bimanual coordination
(Haken et al. 1985; Kelso 1981, 1984), including stable
phase and frequency locking and phase transitions be-
tween antiphase (syncopation) and inphase (synchroniza-
tion) as the control parameter of frequency isincreased.

In most rhythmic coordination experiments, coupling
with the environment has usually been provided in a
nonspecific way in the sense that metronome signals
merely drive the system through a variety of coordina-
tive states. In some cases, however, the metronome is
used in a more specific way, in which a particular point
in the movement cycle is synchronized with the metro-
nome, an effect referred to as anchoring (Byblow et al.
1994; Carson 1995; see also Beek 1989; Kelso et al.
1991). Anchoring stabilizes the coordinative pattern at
the point synchronized with the metronome (the an-
chored point) by: (1) decreasing spatial variability of the
point in the movement cycle, seen in a thinning of the
phase plane trgjectory at that point in the movement cy-
cle; and (2) reducing the standard deviation of relative
phase at the anchored point. These effects as previously
described are purely local, altering the coordinative pat-
tern at specific times in the perception-action cycle near
the metronome signal.

Here we explore whether this “local” effect of an-
choring on individual movement trajectories also carries
global consequences for the overall coordinative pattern.
We embedded anchoring in the familiar bimanual coordi-
nation paradigm, but, unlike in previous experiments, we
used two different metronome conditions: a single-met-
ronome condition in which there was a single auditory
stimulus for each movement cycle; and a double-metro-

nome condition in which there were two auditory stimuli
per movement cycle. Based on many prior experiments,
it is expected that, under parametric variation of move-
ment frequency, one pattern (antiphase) will become un-
stable and switch. However, if anchoring also has a glob-
al stabilizing effect on coordination we would expect dif-
ferences between the two metronome conditions in the
critical frequencies at which coordinative patterns lose
stability and switch. The double-metronome condition,
with two local anchoring points available to help stabi-
lize coordination, should delay transitions, i.e., exhibit a
higher critical frequency, when compared with the sin-
gle-metronome condition, which contains only one an-
choring point per movement cycle.

Materials and methods

Participants

Six right-handed volunteers (three men, three women) took part in
the experiment. Participants were volunteers from the undergradu-
ate psychology subject pool and received course credit in accor-
dance with the rules of the Department of Psychology at Florida
Atlantic University. All procedures were cleared by the local Hu-
man Subjects Committee and participants signed consent forms
before taking part in the experiment.

Apparatus

Participants placed their index fingers into two custom-built ma-
nipulanda which restricted motion of the metacarpophalangeal
joints to a single plane. Two coaxial potentiometers sensed the po-
sition of the index fingers, which were sampled at 128 Hz using an
ODAU andog-digital converter connected to an Optotrak 3010
system. An external metronome was generated by a Macintosh
Classic computer using a program in Quick Basic.l The metro-
nome signal (50 ms, 200 Hz) was sent to the ODAU unit and to a
speaker (Archer miniamplifier, spesker) placed approximately
0.5 m behind the participant.

Procedure

Participants were asked to move their index fingers in two differ-
ent initial coordinative modes, inphase and antiphase, and to
match their movements with two different metronome conditions,
single and double, described below and shown in Fig. 1. Order of
data collection was randomized for the six participants. In the in-
phase mode, homologous flexion and extension movements were
performed simultaneously. In the antiphase mode, opposite actions
of the fingers were performed simultaneously: as the right finger
flexed, the left finger extended and vice versa. In al conditions,
participants were instructed to keep their eyes closed during data
collection. Prior to beginning each condition, the participants were
told that “If at any time you feel the initial pattern start to change,
do not intervene, but continue with whatever pattern feels most
comfortable. Most importantly, try to stay with the metronome at
al times.” A single familiarization trial was provided prior to data
collection the first time each metronome condition was tested.
Three trials were recorded for each condition.

1 Standard deviation of the metronome period was found for each
trial and divided by the mean period to obtain Weber’s ratio. We-
ber’s ratio was under 3% for each frequency plateau, a ratio at
which variability is not expected to be perceived (Hapern and
Darwin 1982).



Fig. 1 Schematic of the experi-
mental conditions. The ovals
represent the fingers moving in
an inphase (top) and antiphase
(bottom) pattern with the two
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In the single-metronome condition, participants performed ten cy-
cles in each of nine plateaus. The metronome frequency for the
plateaus ranged in frequency from 1.4 to 3.0 Hz in 0.2-Hz steps.
The participants were asked to move one complete cycle for each
metronome beat and to move so that right finger flexion was coin-
cident with the metronome beat. In the double-metronome condi-
tion, as in the single-metronome condition, participants performed
ten cycles in each of nine plateaus. In the double-metronome con-
dition, metronome frequency began at 2.8 Hz and increased in
0.4-Hz steps to 6.0 Hz. Participants were instructed to move so
that each metronome beat corresponded with either a finger flex-
ion or extension. Thus, while the metronome was emitting pulses
at twice the frequency of the single-metronome condition, the par-
ticipant actually moved at the same frequency in both conditions.

Metronome conditions

Data processing

Finger positions were filtered using a low-pass, second-order But-
terworth filter with a cutoff frequency of 10 Hz. Velocities were
calculated using afirst central finite difference equation applied to
the raw position data. Previous research has indicated that vari-
ability of relative phase is reduced at some points in the movement
cycle (Kelso et a. 1991), in particular at points synchronized with
a metronome (Byblow et al. 1994). Thus, to examine the global
stability of coordination, we measured continuous relative phase,
which incorporates the entire movement cycle, rather than the
commonly used point estimate of relative phase. Continuous rela-
tive phase between the left and right fingers was obtained by first
normalizing the position and velocity of the two fingers to be-
tween —1 and +1 on a cycle-by-cycle basis, finding the phase as
the arctangent of the instantaneous velocity over the position, and
subtracting the phase of the right hand from the phase of the left
hand (Kelso et a. 1986). The metronome signal was analyzed to
find the onset of the metronome beats. Using this signal, the data
were divided into frequency plateaus. Means and angular devia-
tions of relative phase by plateau were calculated using circular
statistics (Batschelet 1981).

A measure of anchoring was found by examining the thickness
of the phase plane trajectories at the finger reversal positions. Note
that we are defining anchoring as occurring at positions where
participants are instructed to synchronize with the metronome
rather than using the point in the movement cycle that coincided

\ \\\

with the metronome beat. Thickness was calculated on a plateau-
by-plateau basis by first normalizing the phase plane trajectories
to between -1 (flexion) and +1 (extension) based on the mean re-
versal points at that frequency plateau. Thickness of the phase
plane trajectories was given by the standard deviation of the nor-
malized reversal position. A similar measure was obtained for the
phase plane trajectories across all frequency plateaus, except that
overall mean reversal positions were used to normalize the data
rather than the mean for each frequency plateau.

Results
Auditory-movement pacing

Mean correlations between right-finger cycle time and
the metronome period are given in Table 1. The correla
tions are, with only two exceptions, above 0.8 for every
trial, with all but two of the remaining trials above 0.9.
All four low correlations came from a single participant
who reported difficulty in staying with the metronome.
No significant differences in mean correlation were
found for the four conditions (P>0.05). Since the corre-
lations only indicate that the participants increased
movement frequency with the metronome, the movement
frequency at the last frequency plateau was also tested,
and no significant differences between conditions were
found (P>0.05). The lack of significant differences be-
tween conditions indicates that any differences between

Table 1 Mean and standard deviation of correlations between cy-
cle and metronome period. There are no significant differences
(P>0.05) in correlation between the conditions

Inphase Antiphase
Single metronome 0.98+0.01 0.96+0.08
Double metronome 0.93+0.17 0.96+0.04
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Fig. 2 Time series of the left (solid line) and right (dashed line)
fingers for a single-frequency plateau (2.4 Hz) for the single- and
double-metronome conditions. The upper plots show position with
flexion increasing in angle and extension decreasing in angle, mid-
dle plots the velocity, and bottom plots continuous relative phase.
Vertical lines indicate the presence of a metronome beat

conditions are caused by the conditions themselves and
are not due to differences in movement frequency per se.

Local effects on phase plane trajectories

Time series of the position, velocity, and relative phase
are shown in Fig. 2 (top, middle, bottom, respectively)
for a single frequency (2.4 Hz) for the single- and dou-
ble-metronome conditions for representative inphase tri-
as. The left and right fingers are shown on the same plot
in Fig. 2, with vertical lines indicating the metronome
beats. Note that in the single-metronome condition peak
position occurs before the metronome beat, suggesting
anticipation of the stimulus (Mates et al. 1994; Engstrom
et al. 1996). Nonharmonicities in the time series may be
seen in the velocity time series, where a small pause
causing slowing or deceleration of the finger can be seen
as peak flexion is approached. The magnitude of this ef-
fect is larger in the single-metronome condition and in
the left hand. The time series of continuous relative
phase shows a large range, particularly in the single-met-
ronome condition, but is relatively consistent at the peak
finger positions.

Phase plane trajectories for the same data are shown
in Fig. 3 for the single- and double-metronome condi-
tions for an inphase trial. Boxes in Fig. 3 indicate the po-

Double Metronome 2.4 Hz.
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sition at which the participant was instructed to synchro-
nize with the metronome. In the single-metronome con-
dition, there was a thinning of the phase plane trajectory
near maximum flexion (anchored point) for both hands.
By contrast, in the double-metronome condition, the
phase plane trajectories had nearly equal widths at both
maximum flexion and extension. Evidence for anchoring
may be seen in the phase plane trajectories as a differ-
ence in the thickness of the phase plane trajectory be-
tween reversal (maximum flexion or extension) points
where a metronome beat is present (anchored point) and
reversal points where no metronome beat is present (un-
anchored point). In the single-metronome condition,
metronome beats were present at the flexion reversals of
both hands in the inphase mode and the flexion reversa
of the right hand and extension reversal of the left hand
in the antiphase mode. In the double-metronome condi-
tion, there were metronome beats at both finger rever-
sals. Thus, if anchoring is present, small-to-zero differ-
ences should be observed between the two metronome
conditions in the thickness of the phase plane trajectories
where finger position coincides with the metronome beat
in both metronome conditions. At the other reversals
(extension of both hands in the inphase condition and
left finger flexion and right finger extension in the anti-
phase condition), the phase plane tragjectory should be
less variable in the double-metronome condition than in
the single-metronome condition.

Thickness of the normalized phase plane trgjectories
within a frequency plateau was tested statistically using
a five-factor (two coordinative modes x two metronome
conditions x two hands x two positions, flexion or exten-
sion, x nine frequency plateaus) repeated-measures
ANOVA (three trials per subject) using data from all tri-
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Fig. 3 Phase plane trajectories of the left and right fingers for an
inphase trial with the single- and double-metronome conditions
for a single-frequency plateau, with the thickness measures (nor-
malized units) for each position shown along the top. Rectangles
indicate the location where the movements were supposed to be
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Fig. 4 Mean thickness of the normalized phase plane trajectories
within a frequency plateau at flexion and extension for inphase
and antiphase coordination. Positions that were not anchored in
the single-metronome condition and therefore are expected to
show differences are underlined. Significant differences are
marked with an asterisk. Significant differences were found at all
expected positions. Error bars indicate between-subject variability

as at frequencies before a transition away from the orig-
inal coordinative pattern occurred. Anchoring can be
seen in the significant interaction of hand, coordinative
mode, position, and metronome condition (F; s=18.00,
P<0.001) shown in Fig. 4, collapsed across all frequency
plateaus. Standard deviations of the radii of the phase
plane trajectories for the left and right hands in the in-
phase and antiphase coordinative modes are given as a
function of hand and position. Since anchoring is mani-
fested in differences in phase plane trajectory thickness
in reversal positions where an anchoring point is present
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sion positions

Anti-Phase
0.25 : .

o
- ©
o M)

S.D. of radius
o

lex.

Left

Ext.

in the double-metronome condition and not in the single-
metronome condition (extension in both hands in the in-
phase condition and left hand flexion and right hand ex-
tension in the antiphase condition), we concentrated on
these positions. Using Tukey tests, significant differ-
ences (P<0.05) between the single- and double-metro-
nome conditions were found at each of these positions,
with greater thickness in the single-metronome condition
than in the double-metronome condition, confirming our
hypothesis.

An additional interaction, that of frequency plateau
and position, was also significant (Fg 40=4.98, P<0.0005)
and is shown in Fig. 5, in which trajectory thickness is
plotted against frequency plateau for flexion and exten-
sion. In both cases the curve has a U-shape with a mini-
mum at 2.2 Hz, possibly related to the eigenfrequency of
the finger. Tukey tests confirm that a significant decrease
in thickness occurred from 1.4 to 2.2 Hz in both flexion
and extension. In extension there was a significant in-
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Fig. 6 Phase plane trajectories of the left and right fingers for an
inphase trial with the single- and double-metronome conditions
across al frequency plateaus with the thickness measures (normal-
ized units) shown at the top. Rectangles indicate the location
where the movements were supposed to be synchronized with the
metronome. In the single-metronome condition, there is little
change in the reversal positions at flexion (anchored), while the
trajectory at the extension (unanchored) reversal was thicker. In
the double-metronome condition, thereis little difference in trajec-
tory thickness between flexion and extension positions

crease in thickness from 2.2 to 3 Hz. In flexion there was
a general trend for an increase in thickness as frequency
increased from 2.2 Hz, but the trend was not significant.
Anchoring may also be seen in the phase plane trajec-
tories over multiple movement frequencies. Figure 6

ext.

flex. flex.
Position

shows representative phase plane trajectories across all
movement frequencies for a single- and double-metro-
nome inphase trial. Asin Fig. 3 (within a single-frequen-
cy plateau), the phase plane trajectories are thinner in the
single-metronome condition near the anchored point
(flexion) than near the unanchored point (extension).
This shows that, in addition to the decrease in reversal
position variability within a frequency plateau, the an-
chored reversal point stays relatively constant as move-
ment frequency is increased, whereas the unanchored re-
versal position becomes more variable across changes in
frequency. In the double-metronome condition, the phase
plane trajectories are of equal width at both flexion and
extension, implying that position changes occurred
equally at both reversal points.
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Anchoring across plateaus was tested using a similar
ANOVA to that used for within-frequency plateau thick-
ness, using — to stay on the conservative side of our hy-
pothesis — only those trials in which no transition oc-
curred. Anchoring is seen here in significant interactions
for coordinative mode, metronome condition, and hand
(F,4=16.66, P<0.05), and coordinative mode and posi-

tion (F; 4,=4.98, P<0.05).2 A plot of the thickness of the
phase plane trajectory at maximum flexion and extension
across all frequency plateaus is shown in Fig. 7. Tukey
tests were again performed comparing the single- and

2 One subject displayed transitions on every single antiphase trial,
so the denominator degrees of freedom are changed from the pre-
vious analysis.
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double-metronome conditions at finger reversals where a
metronome beat was present in one condition and not in
the other. In the inphase condition, significantly greater
(P<0.05) thickness was found in the extension position
in the single-metronome condition than in the double-
metronome condition. In the antiphase condition, no sig-
nificant differences were found, although a general trend
toward greater thickness in the single-metronome condi-
tion was present.

Global coordinative stability

Relative phase patterns were divided into three types of
behavior: inphase, antiphase, and transient behavior. In-
cluded in the latter category was phase wrapping, in
which no steady state was realized. Four of the six sub-
jects showed a deviation from the initial antiphase mode
in at least one trial. The other two subjects remained in
antiphase coordination throughout all trials. A histogram
of the occurrence of the three patterns in the initial anti-
phase condition for the four subjects who demonstrated
transitions is shown in Fig. 8. At every frequency, in-
cluding the first frequency, there were more departures
from antiphase in the single-metronome condition than
there were in the double-metronome condition. This was
most evident at 2.0 Hz., where in the single-metronome
condition the initial antiphase pattern was not present in
half of the trias, while in the double-metronome condi-
tion there was only a single departure from the antiphase
mode.

Another indication of the stability of coordination is
the angular deviation of relative phase. We performed a
t-test comparing the angular deviations of the two metro-
nome conditions using the standard deviation of continu-
ous relative phase at all movement frequencies before a
transition. A significant difference was found between
the two conditions (t(34)=2.05, P<0.05), with the single-
metronome condition being more variable (SD 0.47 radi-
ans) than the double-metronome condition (SD 0.39 ra-
dians). Taken together, the greater number of departures
from antiphase in the single-metronome condition,
shown in Fig. 8, and the higher angular deviation of rela-
tive phase in the single-metronome condition point to the
fact that the double-metronome condition reduces vari-
ability of relative phase and delays or even eliminates
transitions.

Discussion

One of the most remarkable features of the CNS is its
plasticity, the ability to modify behavior according to
specific sensory inputs from the environment. Previous
research on coupling with the environment, or anchor-
ing, has shown that the environment exerts alocal effect,
stabilizing the movement cycle at places near the occur-
rence of environmental events. Here we have observed a
second property of coupling with the environment: by lo-

cally coupling points of maximal excursions of individu-
al finger movements to specific auditory inputs, stability
of overall coordination is altered. In addition to previ-
ously observed local effects of anchoring (i.e., thinning
of the phase plane trajectory), globa changes in behav-
ior, seen as delays in coordinative transitions, occurred
as the environmental information was manipulated. We
show below that local and global effects may be modeled
in a simple extension of the HKB model through the in-
clusion of specific coupling to the metronome, a process
we refer to as parametric stabilization.

Local effects

The intentional coupling of action and perception is ope-
rationalized here in terms of an interaction between
rhythmic movement and a metronome, a process called
anchoring. One of the ways in which anchoring has been
demonstrated previously is in asymmetries in phase
plane trajectories (Byblow et a. 1994; Carson et al.
1994), with thinning of the phase plane trajectories, or
stabilization of the movement pattern in space, at the an-
chored point. We have reproduced this effect within fre-
quency plateaus (Figs. 3, 4) with thinner phase plane tra-
jectories at reversals coincident with the metronome beat
than at other reversal points. Anchoring is also seen
across frequency plateaus (Figs. 6, 7), indicating that not
only is the anchored point stabilized, but also the an-
chored point is fixed in space across changes in frequen-
cy and amplitude. Thinning of the phase plane trajecto-
riesisapurely local effect, with no changes to the phase
plane trajectories other than those near the anchored
point.

Theoretically, local effects of anchoring have been
considered only in discrete models of coordination,
which do not attempt to handle the phase plane trajecto-
ries of the individua components being coordinated
(Beek 1989; DeGuzman and Kelso 1991; Kelso and
DeGuzman 1988). Obviously, any theoretical model of
coordination must accommodate: (a) local effects of sen-
sory stimuli on the individual movement trajectory; and
(b) global effects on the coordination states themselves,
including the enhancement of coordinative stability and
(correspondingly) delays or even elimination of phase
transitions. One characteristic of the HKB model at the
component level and subsequent versions is that the os-
cillators themselves are symmetric; flexion and exten-
sion positions may be exchanged without affecting the
phase plane trajectory (Beek et al. 1995, 1996; Kay et al.
1987). As long as all parameters of the oscillators, in-
cluding eigenfrequencies, are the same the phase plane
trajectories generated by the model are symmetric, with
left-right exchanges leaving the phase plot invariant
(Fuchs et al. 1996). We see in Fig. 3 that experimentally
derived phase plane trajectories do not share this trait.
Phase plane trajectories in the single metronome are nar-
rower at the reversal coincident with the metronome beat
than at the other reversal, a feature also noted by others



(Carson et a. 1994) that may be attributed to the effect
of synchronizing with a metronome. By contrast, in the
double-metronome condition, the phase plane trajecto-
ries are more symmetric, since information is available
at both flexion and extension reversal points.

Global effects

The present hypothesis is that local sensory inputs may
serve to stabilize global coordination. When an appropri-
ate kinematic property, say peak flexion, must be coordi-
nated with a metronome, we show here that the entire
coordination dynamics (stability, loss of stability, etc.)
are altered. The single-metronome condition, the metro-
nome condition typically used in experiments to date,
was far less stable than the double-metronome condition
as readily observable in the number of transitions seen
between the two metronome conditions (Fig. 8). Even
the single-metronome condition appears to stabilize co-
ordination: two subjects showed no transitions from anti-
phase in either metronome condition even though previ-
ous (not specifically anchored) experiments would sug-
gest that transitions are typically present before 3 Hz.
This phenomenon is consistent with previous research
(Byblow et a. 1994; Carson 1995), which indicated that
anchoring at a single point in a movement cycle acts to
decrease the angular deviation of relative phase at the
anchoring point coincident with the metronome beat.
However, in previous work, this decrease in the variabil-
ity of relative phase was not associated with any changes
in the global coordinative behavior such as phase transi-
tions. Here we see that stabilizing relative phase at two
positions in the movement cycle has the effect of reduc-
ing the propensity to switch coordinative patterns, indi-
cating that although the environmental information was
available only at discrete points in time, the stabilizing
effects of coupling with the environment extend to the
entire coordinative system.

The global effect of delaying transitions is crucial in
that it allows for flexibility in coordinative patterns. One
important source of flexibility in coordination is multi-
stability, which means that several different patterns can
be adopted for the same environmental or task condi-
tions. Here we have observed that by anchoring, or cou-
pling to the environment, transitions can be delayed or
eliminated, thus preserving (bi)stable coordination states
through a broader range of the control parameter than
would otherwise be possible. This effect has been used
by others to produce coordinative patterns not normally
available such as multifrequency movements (De Guz-
man and Kelso 1991; Haken et al. 1996) or relative
phase patterns other than inphase or antiphase (Tuller
and Kelso 1989; Zanone and Kelso 1992) through cou-
pling with a metronome. The importance of the ability to
use a metronome to produce new coordination patterns
was highlighted by Zanone and Kelso (1997), who found
that the component level dynamics were atered near the
synchronization point with a metronome, enabling pro-
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duction of new stable patterns during learning (see
Figs. 7, 8 by Zanone and Kelso 1997).

Modeling

The local and global effects of anchoring described above
are not accounted for by any existing model of coordina-
tion (to our knowledge). Previous attempts of modeling
coupling of bimanual coordination and an external stimu-
lus via linear driving of the HKB model (Schoner and
Kelso 1988a, 1988b) do not explain the changes in coordi-
nation observed here; namely the increase in critical tran-
sition frequency and changes to the phase plane tragjectory.
Here, we introduce a simple extension of the HKB model
that includes these effects. This extension is important in
that it not only accounts for the anchoring behavior ob-
served here, but carries implications for the underlying
neural dynamics as well. In recent years, various attempts
have been made to biologically motivate phenomenologi-
ca models of human coordination (see Haken 1996;
Kelso 1995 for reviews). In particular, the HKB model of
coordination has been derived from the level of excitatory
and inhibitory neural ensemblesin the neocortex, connect-
ed via intra- and corticocortical fibers (Jirsa et al. 1998).
This has alowed the behaviora HKB coupling to be ex-
pressed in terms of physiological and anatomical mea
sures. Thus, an extension of the HKB model that involves
the presence of auditory coupling (i.e., anchoring) not on-
ly provides a behavioral model for coordination dynamics
under environmental influence, but also suggests the pres-
ence of qualitative changes in the dynamics at the neural
level due to the auditory coupling.

In a separate paper (see Jirsa et a. 2000 for more de-
tails), we have extended the HKB model to accommo-
date these new effects by adding a parametric driving
term to each oscillator x. The equations take the form:

X+ (X1, X)X 002X =0(Xq, Xy, Xo, Xo)+E(D)Xy
Ko+ (Xg, X)X+ WPXo=0(Xo, Xo, Xq, Xq)+E(D)Xy

where f is a nonlinear damping function, g represents the
HKB bimanual coupling function, w is the eigenfrequen-
cy of the oscillator. £(t) represents the environmental in-
formation, here specified by an auditory metronome,
which is periodic, with g(t)=¢(t+T) , where T is the time
between two metronome beats. The conceptual differ-
ence here to earlier approaches (Schoner and Kelso
1988b) is the introduction of periodically changing envi-
ronmental information by a periodically changing pa-
rameter (parametric driving) rather than a linear additive
driving. The exact form of the parametric driving term
may be subject to change. Here we couple auditory input
to finger position, since the task requires peak finger po-
sition to coincide with the stimulus. A parametric driving
term coupling the stimulus to the velocity rather than to
the amplitude produces qualitatively similar results. We
refer to the global stabilization effect of the parametric
driving term as parametric stabilization.
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While retaining the qualitative behavior of the HKB
model (bistable coordination, spontaneous phase transi-
tions as movement frequency is increased, hysteresis,
etc.), parametric driving generates a vast variety of dy-
namics not achievable by earlier approaches because
they were restricted to 1:1 coupling between effector and
environment. The new effects observed experimentally
(i.e.,, stabilization of the relative phase pattern and
changes in the phase plane trajectories) are described by
the parametric stabilization model as well. Table 2 shows
estimates of transition frequencies derived from the
HKB model using standard parameters and from the
parametric model using the same parameters as the HKB
model and an estimate of the coupling strength € for both
the single- and double-metronome conditions. For arela-
tive comparison, experimentally obtained transition fre-
guencies in the two metronome conditions are aso in-

Table 2 Transition frequencies for the Haken-Kelso-Bunz (HKB)
and parametric stabilization models of coordination. A standard
set of parameters for the HKB model and an estimate of the cou-
pling strength € were used to generate the transition frequencies
(A=B=1, 0=-0.2, 3=0.2, =3, A=0.01; see Jirsa et al. 2000for de-
tails). For comparative purposes transition frequencies from the
experimental data are included. Only the relative values matter
here

Transition frequency

Model (Hz)  Experimental (Hz)2
HKB model 1.2
Parametric model
Single metronome 16 21
Double metronome 2.4 2.4

aTransition frequencies were calculated as the mean frequency at
which a departure from antiphase coordination was first observed.
Since the single-metronome condition produced more departures,
the difference in transition frequencies is most probably greater
than indicated here

Fig. 9 Phase plane trajectories for the single-metronome condi-
tion across frequency plateaus from the experimental data (left)
and theoretical model (right). Boxes indicate the position synchro-
nized with the metronome beat. The theoretical model reproduces
the thinning of the phase plane at the flexion (anchored) position.
Parameters for the model are the same as those used in Table 2

Experimental

flex.

Velocity

ext.

ext. flex. flex. ext.

Position

cluded in Table 2. The addition of coupling with a met-
ronome increases the transition frequency when com-
pared with the HKB model, with the highest transition
frequency in the double-metronome condition. This
agrees very well with Fig. 8, which shows that transi-
tions occur earlier, i.e., at lower frequencies in the sin-
gle-metronome condition. The addition of the parametric
stabilization term reproduces the local effects on phase
plane trajectories, resulting in a thinning of the phase
plane tragjectories, seen in Fig. 9 for both data and theo-
retical model, near the metronome beat. Note that no at-
tempt is made here to fit parameters of the model to the
data, but rather to demonstrate the main qualitative ef-
fect, namely thinning of the phase plane trajectory at the
anchored point. In addition, the concept of parametric
stabilization can accommodate previous experimental re-
sults, including single-limb coordination with rhythmic
auditory or visual stimuli (Kelso et al. 1990; Stins and
Michaels 1999; Wimmers et al. 1992).

Conclusion

Anchoring, or intentionally synchronizing a particular
point in the movement with a particular sensory input,
has previously been seen as a purely loca effect, influ-
encing coordinative stability and movement variability
only at times and places close to the stimulus. Here we
examined whether the local effects of anchoring (ob-
served, for example in thinning of the phase plane trajec-
tory) also carry globa consequences for the stability of
the coordinative patterns. Through a manipulation of the
environmental information available at discrete pointsin
time (i.e., an auditory metronome), we demonstrated that
global stahility of the coordination system is altered, de-
laying or even eliminating transitions. Such delays are
shown theoretically to be due to parametric stabilization
of the coordination dynamics and are expected to result
in qualitative changes in the neural dynamics as re-
vealed, for example, by EEG and MEG recordings (see
Kelso et al. 1992; Mayville et al. 1999). The stabilizing
effect is important because it provides a mechanism by
which multistability is preserved, allowing the CNS to
produce coordinative patterns at values of the control pa-

Theoretical
%
o
>
=
Q
S
)
>
€l
(0]
ext. flex. flex. ext.
Position



rameter at which coordination typically becomes unsta-
ble and changes. Preserving multistability enhances co-
ordinative flexibhility, allowing the brain to adapt both its
component and coordinative behavior to suit task and en-
vironmental conditions.
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