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A B S T R A C T

Living systems exhibit complex yet organized behavior on multiple spatiotemporal scales. To investigate the
nature of multiscale coordination in living systems, one needs a meaningful and systematic way to quantify the
complex dynamics, a challenge in both theoretical and empirical realms. The present work shows how in-
tegrating approaches from computational algebraic topology and dynamical systems may help us meet this
challenge. In particular, we focus on the application of multiscale topological analysis to coordinated rhythmic
processes. First, theoretical arguments are introduced as to why certain topological features and their scale-
dependency are highly relevant to understanding complex collective dynamics. Second, we propose a method to
capture such dynamically relevant topological information using persistent homology, which allows us to ef-
fectively construct a multiscale topological portrait of rhythmic coordination. Finally, the method is put to test in
detecting transitions in real data from an experiment of rhythmic coordination in ensembles of interacting
humans. The recurrence plots of topological portraits highlight collective transitions in coordination patterns
that were elusive to more traditional methods. This sensitivity to collective transitions would be lost if the
behavioral dynamics of individuals were treated as separate degrees of freedom instead of constituents of the
topology that they collectively forge. Such multiscale topological portraits highlight collective aspects of co-
ordination patterns that are irreducible to properties of individual parts. The present work demonstrates how the
analysis of multiscale coordination dynamics can benefit from topological methods, thereby paving the way for
further systematic quantification of complex, high-dimensional dynamics in living systems.
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1. Introduction

A complex system (e.g. a biological, social, ecological system) is
often bound together by the coordination between many dynamic
processes at multiple spatiotemporal scales (Waddington, 1962; Simon,
1977; Buzsáki, 2006; Lemke, 2000; Holling, 2001; Nathan et al., 2008;
Aguilera, 2018) — a multiscale coordinative structure (Kelso, 2009).
Yet when faced with such multiscale dynamics, we find ourselves short
of proper tools to describe them in a way that does justice to all relevant
scales. In the present work, we propose a topological approach to
analyzing dynamic patterns generated by multiscale coordinative
structures. Topological methods have been shown to detect dynamic
features of systems exhibiting, e.g. stable, spatiotemporal chaos
(Gameiro et al., 2004; Krishan et al., 2007; Kramár et al., 2016). Here
we leverage existing computational topology tools, principally, persis-
tent homology to capture the scale-dependency of topological features
hidden in complex coordination patterns and detect transitions between
them.

The quantitative and systematic study of multiscale coordinative
structures requires data analytic tools that are tuned to capture dy-
namic features across scales, that is, without predefining a specific scale
of analysis or using a different system of measurement for different
scales. The development of such tools is challenging since the mea-
surement not only needs to be multiscale in nature, but also dynami-
cally meaningful: it should capture dynamic patterns of coordination
and the transition between coordination patterns in time (Kelso, 1984,
2009). In the present paper, we propose a multiscale topological ap-
proach to this problem. Instead of keeping track of individual state
variables, we study the topological features of the spatiotemporal pat-
terns generated by virtue of their interaction. Although our approach is
customized for the study of phase coordination between multiple
rhythmic processes, it also provides a prototype for general coordina-
tion problems. We explore the conditions under which multiscale dy-
namics emerge in rhythmic coordination, the difficulties that arise in
analyzing such data, and why a multiscale topological approach helps
to resolve them.

The study of rhythmic coordination has been an essential part of
understanding collective dynamics in complex systems like the brain
(Kelso, 1995, 2009, 2012; Varela et al., 2001; Bressler and Kelso, 2001;
Buzsáki, 2006; Bressler and Tognoli, 2006; Tognoli and Kelso, 2009,
2014a) and groups of humans or other animals (Winfree, 1967;
Zerubavel, 1985; Schöner et al., 1990; Néda et al., 2000; Lagarde et al.,
2005; Alderisio et al., 2017; Zhang et al., 2018; Tognoli et al., 2018).

Two theoretical mechanisms are often used to explain empirically ob-
served phase coordination phenomena, namely, phase-locked syn-
chronization (e.g. Kuramoto, 1984; Winfree, 2001) and metastable
coordination dynamics (e.g. Kelso, 1995, 2012; Tognoli and Kelso,
2009, 2014a). If all oscillators of a system are phase-locked so that
phase relations are constant over time, they share a common in-
stantaneous frequency. In this case, multiscale behavior is not possible.
In metastable coordination, phase relations are not permanent but
formed intermittently, i.e. oscillators dwell at certain preferred phase
relations temporarily when they pass by them (further illustrated in
Section 2: Multiscale topological portraits and topological recurrence).
In this case, oscillators do not converge to the same frequency over time
so that the individuality or diversity of the component oscillators is
somewhat preserved. It is this preservation of diversity during me-
tastable coordination that gives rise to the coexistence of multiple
spatiotemporal scales, e.g. phase relations form intermittently at dif-
ferent rates and among groups of different sizes.

Metastable coordination can become quite obscure when the system
involves many coupled oscillators, and frequency diversity is large.
Moreover, traditional methods that work well in low-dimensional, low-
diversity settings, may be rendered less effective. For the rest of the
Introduction, we demonstrate this point through two example trials of
rhythmic social coordination from a human experiment (Zhang et al.,
2018) (Section 1.1). Metastable coordination of low dimensionality and
diversity can be directly interpreted by visual examination of the re-
lative phase dynamics (Fig. 1A), but this is far more difficult when the
dimensionality and diversity are high (Fig. 2A). Further, we show that
recurrence plots, a classical phase space method for nonlinear dyna-
mical systems (Eckmann et al., 1987; Marwan et al., 2007; Kantz and
Schreiber, 2003), do not improve our understanding of the high-di-
mensional, high-diversity example (Section 1.2 and Fig. 3).

1.1. Metastable dynamics of human social coordination

Figs. 1 and 2 provide two examples of actual metastable coordina-
tion between three and eight persons respectively. They show the
general form of metastable phase relations and, by virtue of the contrast
between the two, reveal why high-dimensional metastable coordination
is difficult to analyze. Later on, we use them to validate and test the
topological approach proposed in the following sections.

The two examples shown in Figs. 1 and 2 were recorded in two
separate trials in an experiment on human social coordination, dubbed
the “Human firefly” experiment (Zhang et al., 2018). In the experiment,

Fig. 1. An example of triadic coordination dynamics. Coordination among three agents (labeled as 1, 3, and 4) is shown as the dynamics of two pairwise relative
phases (A) and three instantaneous frequency trajectories (B). Around 10 s, three agents formed an all-inphase relation ( 01,3 3,4 rad) for a few seconds, marked
by a black bar on the left in (A). This pattern recurred intermittently two more times (middle, right bars in A), which ended when pair 3–4 switched to antiphase (40-
48 s, orange trajectory 3,4 rad). Both relative phase trajectories (A) evolve on a slow time scale because the frequencies of these three agents are very close (B).
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multiple human subjects tapped together rhythmically on a set of touch
pads. Taps by one person can be seen by others in real time as flashes of
specific LEDs (see Zhang et al., 2018 for details), creating the possibility
of subjects coordinating with each other spontaneously (i.e. they were
not explicitly instructed to coordinate). Each subject is here referred to
by a number from one to eight, associated with a specific touch pad and
LED assignment. Diversity in the tapping frequencies was manipulated
by pacing each subject for 10 s with a separate metronome before they
saw each other's behavior for 50 s. The pacing frequency was always the
same within the group of subjects numbered 1–4, and within the group
of subjects numbered 5–8, but could be different between the two
groups.

In the first example (Fig. 1), we show the coordination dynamics
between three agents paced with metronomes of the same frequency,
which may be interpreted visually through two pairwise relative
phases, a crucial coordination variable (Haken et al., 1985; Kelso,
2012). In Fig. 1A, coordination among three agents, numbered 1, 3, and
4, is shown in terms of two phase relations (1–3 magenta and 3–4 or-
ange). From 10 to 40 s, the system dwells recurrently at an all-inphase
pattern, where all taps are aligned in time (duration marked by three
black bars; between the bars only 3–4 are inphase with agent 1 wrap-
ping). Then the behavior switches to a partly inphase, partly antiphase
pattern after 40 s (1–3 inphase and 3–4 antiphase) as in Fig. 1A. This is
due to a sudden slowing down at around 40 s of agent 3, shown as the
orange trajectory in Fig. 1B (Note that the frequency is the time deri-
vative of the phase divided by 2 ). The relative ease of interpretation

comes from the facts that the number of interacting agents is small
(low-dimensionality) and that they stay close in frequency (Fig. 1B). As
a result, their phase coordination occurs on visually comparable time
scales.

This ease of analysis is lost when more interacting agents and fre-
quency diversity are involved, as illustrated in the second example
(Fig. 2). Here eight agents were paced with different metronomes be-
fore interaction, four at 1.2 Hz, four at 1.8 Hz (see caption of Fig. 2).
The dynamics of pairwise relative phases (Fig. 2A) is much more dif-
ficult to decipher now that behavior is evolving on very different time
scales. Observe the slow dynamics shown as thickened trajectories,
mostly horizontal (e.g. cyan trajectory for pair 6–8), in contrast to fast
dynamics shown as thin trajectories, mostly wrapping, i.e. with a steep
slope (e.g. blue trajectory for pair 7–6). Even though each trajectory can
be singled out and studied carefully in separation, it remains unclear
how these multiple phase relations constrain each other and perhaps
form higher-level structures. On the other hand, the frequency dy-
namics (Fig. 2B) is more informative regarding the global organization:
eight agents are separated into two frequency groups at the beginning,
coded in warm vs. cold colors, but gradually become intermingled over
the course of the trial. Yet it is not apparent how to relate such a global
trend in frequency to underlying phase coordination. Clearly, to char-
acterize this kind of multiscale coordination dynamics requires addi-
tional computational tools.

Fig. 2. An example of eight-agent coordination dynamics shown as seven pairwise relative phases (A) and eight instantaneous frequency trajectories (B). In (A),
slowly varying phase relations are shown as thick lines (orange trajectory 3–2, green 5–7, cyan 6–8), whereas fast varying phase relations are shown as thin lines with
much steeper slopes than the thick lines. In (B), the corresponding frequency trajectories indicate that frequency diversity is much greater than in Fig. 1B. Because
agents were paced with two different metronomes prior to interaction (1.2 and 1.8 Hz, marked by colored rhombi on the left), the ensemble of eight starts off as two
frequency groups, one in warm colors (1, 2, 3, 4) and one in cold colors (5, 6, 7, 8). Toward the end of the trial, members from the two groups begin to mingle.

Fig. 3. Recurrence plots of relative phase dy-
namics. (A) shows the recurrence plot of phase
relations among three agents where the state
variable is a vector with the 2 relative phases
shown in Fig. 1A as components, and (B) re-
currence plot of eight agents where the state
variable is a vector with the 7 relative phases
plotted in Fig. 2A as components.
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1.2. Limitation of traditional recurrence plots in explicating multiscale
coordination dynamics

A recurrence plot (Eckmann et al., 1987; Marwan et al., 2007) is a
powerful tool for visualizing and analyzing patterns of nonlinear dy-
namical systems, especially when the state space itself is too high-di-
mensional to visualize. Rather than showing the state variable itself, it
shows the relation between states at different points in time, e.g. as a
distance matrix, from which one can infer how frequently a system
visits different points in the state space. In Fig. 3A and B, we show the
recurrence plots of the two examples above in terms of the state vari-
able , whose components are relative phases shown in Figs. 1A and 2A,
respectively. The components of the distance matrices are defined as

=d W t t( ( ) ( ))t t, 1 21 2 (1)

where function W wraps each component to the interval ( , ] by
=W z e( ) Arg( )k

izk and · is the L2-norm. In Fig. 3, color encodes the
distance between the state of the system at two time points as defined in
Eq. (1).

The recurrence of relative phases (Fig. 3A) clearly captures the
dynamic structure of the three-agent example (Fig. 1A). In Fig. 3A, a 3-
by-3 grid between 10 and 40 s reflects the main recurrent pattern where
all three agents are inphase to each other; the blocks before 10 s and
after 40 s reflect two other patterns. In contrast to Fig. 3A, the recur-
rence plot for the eight-agent example (Fig. 3B) lacks any apparent
structure or signs of transition between different coordination patterns.
Not much useful information is gained compared to Fig. 2.

Fig. 3 illustrates that conventional recurrence plots can be useful for
low-dimensional coordination dynamics but may not work so well for
high-dimensional dynamics involving multiple spatiotemporal scales.
In order to shed more light on the latter, we next propose a topological
way of studying metastable patterns. Subsequently, we present a com-
putational method for constructing a topological recurrence plot, in-
spired by (Kramár et al., 2016), which captures the dynamics of topo-
logical features, such as connected components and loops (holes), in the
collective patterns that are irreducible to the properties of the in-
dividual components.

2. Multiscale topological portraits and topological recurrence

Here we propose a new approach to the study of metastable co-
ordination patterns by means of their topological features. More spe-
cifically, we construct multiscale topological portraits of coordination
patterns and study the recurrence plot of said portraits, i.e. a topolo-
gical recurrence plot. Further, we show how prominent transitions
observed in a topological recurrence plot reveal the time of transitions
in actual coordination patterns in terms of relative phases and in-
stantaneous frequencies.

In the following sections, we first explain intuitively what we mean
by multiscale topological portraits (Section 2.1), and then theoretically
justify their relevance to metastable coordination patterns (Section
2.2). Finally, we give a technical description of the construction of
multiscale topological portraits (Sections 2.3 and 2.4) with associated
recurrence plots (Section 2.5).

2.1. Multiscale structures and their topological portraits

By a multiscale structure, we refer to a spatial or spatiotemporal
structure the description of which is scale-dependent. For example, a
letter B made up of many A's as in Fig. 4 (image in left box) may be
described as a collection of A's at finer scales or a single B at grosser
scales. Both descriptions are correct at their respective scales, and to-
gether they form a more complete portrayal of the structure, i.e. a
multiscale portrait. Such a portrait should capture the scales at which
each description is characteristic. One way to keep track of these

descriptions across scales is through topological features — an A has
one connected component and one loop (hole), and a B has one con-
nected component and two loops. Thus, in a B consisting of many A's,
one should find 14 connected components and 14 loops at finer scales,
but only one connected component and two loops at grosser scales. To
create scale-dependent versions of the image (Fig. 4 left box), we can
replace each pixel of the image with a disk of growing radius (upper
panel of Fig. 4 , smaller scales/radius on the left, larger on the right).
Graphically, we can use a bar to mark the scales at which each topo-
logical feature exists, e.g. red bars in Fig. 4 representing loops from A's.
The collection of all such bars, a barcode, can serve as a multiscale to-
pological portrait of the structure. Fig. 4 lower panel shows such a
portrait, which indicates that the many-A description only exists at finer
scales (many red bars on the left), and the one-B description only exists
at grosser scales (two blue bars on the right). In practice, persistent
homology (Zomorodian and Carlsson, 2005; Carlsson, 2009; Ghrist,
2007) is a natural choice for computing such a multiscale topological
portrait. This homology not only captures certain topological features
of the structure at each scale, but it also describes how these features
persist across scales. Fig. S1B shows the actual barcode of loops com-
puted using persistent homology, which corresponds well to the intui-
tion conveyed in Fig. 4 lower panel; in addition, Fig. S1A shows the
barcode of connected components, which captures the existence of 14
components at finer scales, and 1 at grosser scales. Before giving a
technical description of persistent homology (Section 2.4), we first
address whether metastable patterns are multiscale structures that can
be suitably characterized, in principle, by multiscale topological por-
traits.

2.2. Multiscale topological features of metastable patterns

How can we relate the multiscale topological features illustrated in
the above example to dynamic metastable patterns? The answer lies in
the connection between dynamics of relative phases and that of in-
stantaneous frequencies, given by the time derivative of phase. Due to
this mathematical relation between phase and frequency, the dwell-
escape dynamics central to metastable phase coordination corresponds
to specific topological features in the frequency graph, here defined as
the collection of all instantaneous frequency trajectories. This point is
illustrated in Fig. 5 using numerically simulated metastable patterns of
a model (Zhang et al., 2019) derived specifically from the “Human
firefly” experiment (Zhang et al., 2018) (see also Zhang, 2018 and S1
Text). Fig. 5A shows a canonical example of dyadic metastable co-
ordination in terms of the temporal evolution of relative phase. Dwells
and escapes in the relative phase dynamics (Fig. 5A) correspond to
different numbers of connected components and loops in the corre-
sponding frequency graph (Fig. 5B): an escape can be seen as a split of
one connected component into two when viewed in a short time
window or as the formation of a loop when viewed over an extended
time window. Indeed, the distance between two frequency trajectories
reflects the slope of the corresponding relative phase trajectory, which
is by definition smaller during a dwell and greater during an escape.
The size of a loop, measured as the area enclosed by two frequency
trajectories during a period of escape, as in Fig. 5B, reflects the amount
of change in relative phase between two dwells. In the example, the
relative phase changes by 1 cycle between two consecutive dwells at
inphase; thus, the area of the corresponding loop in Fig. 5B is a quantal
value of one.

It is important to notice that here the number of connected com-
ponents or loops is in fact scale-dependent. At too fine a scale, the two
curves in Fig. 5B never cross so that there are two connected compo-
nents and no loop. At too gross a scale, all loops are filled in so that
there is one connected component and no loops. At intermediate scales,
topological features can capture the dwell–escape dynamics char-
acteristic of metastable coordination. When more oscillators coordinate
together metastably, multiple characteristic scales may coexist due to
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Fig. 4. A big letter B made up of many small letter A's and its multiscale topological portrait. This figure illustrates intuitively how one may gain insights about a
multiscale structure, i.e. a B of many A's (image in left box), by studying the scale-dependency of its topological features, i.e. connected components and holes. The
image may be viewed at succeeding greater scales as a sequence of images (above the scale axis) created by blowing up each pixel to a disk with increasing radius
(size of disks are shown on top). At finer scales (left two images above the scale axis), the image has 14 connected components and 14 holes (from 14 A's). At
intermediate scales (4th–6th image from left above the scale axis), a large connected component is formed with two holes in it (from one B). At even larger scales, all
holes are filled in (right-most image above the scale axis). A multiscale topological portrait (below the scale axis) summarizes the emergence and disappearance of
holes as a function of scale. The portrait consists of a collection of bars (a barcode), where each bar represents a particular hole and the scales at which it exists. The
portrait captures the separation between two descriptions (many A's or a B) in scale, by capturing the scale-dependency and relative size of topological features (14
red bars appear only at finer scales and are shorter, reflecting A's; blue bars only appear at grosser scales and are longer, reflecting the B; one blue bar is longer than
the other because the lower loop in B is larger than the upper). This portrait is drawn by hand for illustrative purposes, a computed version based on persistent
homology (see text) is shown in Fig. S1B.

Fig. 5. Metastable patterns characterized by
topological features in frequency graphs.
Examples of simulated coordination dynamics
are presented here to show why multiscale
topological features are relevant to metastable
patterns. (A,B) give a simple illustration of how
relative phase dynamics (A) can be studied in
terms of topological features in its corre-
sponding frequency graph (B) defined as the
collection of instantaneous frequency trajec-
tories. A dwell in the relative phase (A; period
labeled as “dwell”) is reflected as the merging
of corresponding frequency trajectories into a
single connected component (B, observed at a
sufficiently gross scale). An escape in the re-
lative phase (A; period labeled as “escape”) is
reflected as the branching of frequency trajec-
tories into two connected components or the
formation of a loop if viewed in an extended
time window (e.g. a window centered around
the escape that extends to the middle of
neighboring dwells). Thus, the dynamics of
metastable phase coordination can be studied
as topological features in the corresponding 2-
dimensional frequency graph, which is very
convenient when the dimension of the dyna-
mical system increases. (C) shows the fre-
quency graph of metastable coordination be-
tween eight oscillators, whereas a zoomed-in
version of one period of the pattern is shown in
(D). For such a complex pattern (D), the spa-
cing between curves and the size of loops are
very diverse, reflecting dwell-escape dynamics
at various spatiotemporal scales. As a result,
topological features in the frequency graph
have to be measured at multiple scales to
capture the complexity of such metastable
patterns.
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the diversity of distance between trajectories and the size of loops they
enclose, e.g. as in Fig. 5C and D; see (Zhang, 2018) for more examples.
Multiscale topological portraits of frequency graphs are suitable for
characterizing such complex metastable patterns in that they capture
topological features that are relevant to the coordination dynamics
across multiple scales. In the next few sections, we give more technical
descriptions of how to construct multiscale topological portraits and
topological recurrence plots from real data.

2.3. Preparing empirical data for topological analysis

In the previous section, we motivate the use of topological analyses
on frequency graphs as a way to characterize metastable coordination
dynamics. In the ideal case of simulated data, one may directly use the
frequency graph, or segments of it, to construct multiscale topological
portraits. If the parameters of the dynamical system are stationary (e.g.

i, a, b in Eq. S1), the same metastable pattern is repeated over time as
in Fig. 5C. Such ideal scenarios cannot be assumed for empirical data
such as the examples of human social coordination dynamics illustrated
above. In empirical data, transitions between different metastable
patterns are possible. During such a transition, instantaneous frequency
trajectories may oscillate significantly forming transient connected
components or loops that do not reflect the dwell-escape dynamics of a
stationary metastable pattern (see e.g. oscillation of orange trajectory 3
in Fig. 1B around 40 s). For this reason, we first decompose experi-
mental data into slow and very fast time scales, assuming that me-
tastable patterns unfold at the slow time scale, which is a basic as-
sumption in the theoretical study of phase coordination, cf. (Winfree,
1967; Kuramoto, 1984; Haken et al., 1985).

Specifically, the phase of each agent was decomposed into a
slowly varying frequency component f̂ in Hz (e.g. Fig. S2A for the
eight-agent example) and a fast varying residual phase r in cycles (Fig.
S2B), without losing any information, i.e. the original phase can be
recovered by = +f t2 ( ^ ( )d ( ))t

r0 . To obtain this decomposition,
we first performed a least-squares fit of the phase to a piecewise cubic
spline ˆ using splinefit in Matlab with robust fitting parameter

= 0.5 (Lundgren, 2017). Knots of the spline were chosen at 2 s in-
tervals, based on the observation that dyadic phase coordination mostly
exceeded 2 s (i.e. 87% of the dwells observed in the human experiment
exceeded 2 s; see the distribution of dwell times in Fig. B of S1 File in
Zhang et al., 2018). The slow component (frequency) is the time deri-
vative of ˆ , i.e. f̂ d1

2
ˆ

dt , and the fast component (residual phase) is
( ˆ)/2r . Based on this decomposition, we can subsequently

compute the multiscale topological portraits of 3-dimensional fre-
quency-phase graphs with the added dimension of residual phase, in-
stead of 2-dimensional frequency graphs. Note that parameters of the
decomposition should, in general, be chosen based on properties of
each specific dataset and tested on part of the dataset where the tran-
sitions between dynamic patterns are transparent (e.g. the triadic ex-
ample in our case).

To study the dynamics, we segment each frequency-phase graph
into 2 s windows (consistent with the decomposition above) such that
consecutive windows overlap by 1 s. In each window, each agent's be-
havior is then sampled at specific times to obtain a point cloud in 3-
dimensional space, which is a set of M points whose coordinates cor-
respond to local time, residual phase, and frequency respectively (e.g.
in Fig. 7A, each point in the point cloud is shown as a small ball). For
this study, =M 160 as each of the eight agents are sampled at 20 time
points (at 0.1 s intervals). Specifically, = … …X t x t x t x t( ) { ( ), , ( ), , ( )}i M1
where = × × +x t U I S( )i t t

1 with time interval
= +I t w t w[ /2, /2]t centered at time t of length w, S1 the set of

possible residual phases, and + the set of possible frequencies. To later
compute the topological portraits of each point cloud X(t), we equip the
space Ut with the following metric. The distance between points

=a a a a( , , )1 2 3 and =b b b b U( , , ) t1 2 3 is given by

=d a b a b W a b a b( , ) ( , (2 ( ))
2

, ) .1 1
2 2

3 3 (2)

Recall that the functionW wraps its argument to the interval ( , ] by
=W z e( ) Arg( )iz as in Eq. (1) and · is the L2-norm.

2.4. Persistent homology

Persistent homology is a tool from algebraic topology that captures
“holes” of a space at multiple scales. It was initially developed to un-
derstand the relative importance of topological features in data
(Zomorodian, 2018; Edelsbrunner et al., 2002) rather than to char-
acterize multiscale dynamic patterns. Yet as alluded to previously,
persistent homology happens to be a natural tool for extracting dyna-
mically-relevant information in complex rhythmic coordination pat-
terns. Here we use it to construct a multiscale topological portrait of
such patterns. In this section, we give a brief description of the per-
sistent homology of frequency-phase graphs. For a formal account of
homology, see (Hatcher, 2001), and persistent homology, see
(Zomorodian and Carlsson, 2005; Carlsson, 2009; Mischaikow and
Nanda, 2013).

Roughly speaking, the homology of a space counts “holes” of dif-
ferent dimensions by aggregating local connectivity information into
global invariants. The dimension of a hole is determined by the di-
mension of the boundary that encloses it. A connected component is
considered a 0-dimensional hole; a loop is considered a 1-dimensional
hole (e.g. the hole in an letter “A” is enclosed by a 1-dimensional
boundary); a cavity is considered a 2-dimensional hole (as in a bas-
ketball enclosed by a 2-dimensional surface). And more generally,
empty space enclosed by a k-dimensional boundary is considered a
k-dimensional hole. This hole-counting process is done algebraically,
and computationally, which requires a finite, combinatorial description
of the underlying space. Next we show how such a combinatorial de-
scription can be obtained from real data and how its homology can be
computed across multiple scales.

In the study of metastable patterns, the geometric structure of in-
terest is a segment of a frequency-phase graph, which is a 3-D point
cloud = …X x x{ , , }M1 as described above. When measured at a specific
scale , we obtain a union of balls centered at each point in X , see
Fig. 7A–C, i.e. = =X B x( )i

M
i1 /2 . To compute the homology, we first

map X to a simplicial complex. The building blocks of a simplicial
complex are simplices. Simplices can be thought of as triangles gen-
eralized to arbitrary dimensions (Fig. 6 left), i.e. a k-simplex is a k-di-
mensional triangle spanned by its +k( 1) vertices. A simplicial complex
is a collection of simplices of different dimensionality (e.g. Fig. 6 right
box gives an example of a simplicial complex consisting of 13 0-sim-
plices, fifteen 1-simplices, one 2-simplex, and one 3-simplex); some of
the simplices may attach to each other through shared faces (e.g. the 2-
simplex and 3-simplex in Fig. 6 right box both have 1-simplices at-
tached to them through the vertices). A more familiar example of a
simplicial complex is a network, which contains only 0-simplices as
vertices and 1-simplices as edges. In the present study, we construct the
Rips complex R X( ) (Hausmann, 1995) for each pattern X at scale ,
which is a computationally efficient proxy for X . See (Ghrist, 2007) for
comparisons with other constructions. R X( ) is an abstract simplicial
complex consisting of all points in X as its vertices and each k-simplex
whose vertices have all pairwise distances less than where distance is
defined in Eq. (2).

Algebraically, a simplicial complex is associated with a sequence of
groups Ck, which consists of chains of k-simplices of R X( ), i.e. k-chains,
along with corresponding linear operators C C: ,k k k 1 yielding

+
+C C C C C C 0.k k k1 1 2 1 0

k k1 2 1 0 (3)

Each boundary operator k maps a k-simplex to a k( 1)-chain in its
geometric boundary and is defined so that =+ 0k k 1 .

The kernel of k is the subgroup of k-chains whose boundary is
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trivial; this is the group of k-cycles, ker k. The image of +k 1 is the
subgroup of k-chains generated by the boundaries of +k( 1)-simplices;
this is the subgroup of +k( 1)-boundaries, +Im .k 1 Since =+ 0,k k 1 we
have +Im kerk k1 , and the k-th homology group of the simplicial
complex is defined by the quotient group

= +H ker /Im .k k k 1 (4)

Hk algebraically describes the boundary-less k-chains that do not bound
a +k( 1)-chain, i.e. k-dimensional “holes”, which can be counted by
computing the number of independent free generators, or Betti number

Fig. 6. Simplices and a simplicial complex. Simplices are elementary geometric objects of different dimensionality, which can be combined into more complex
structures, i.e. simplicial complexes. A k-simplex can be thought of as a k-dimensional triangle, determined by its +k( 1) vertices; illustrations of such simplices are
shown on the left. For example, a 2-simplex is a conventional triangle, determined by three vertices x x x[ , , ]1 2 3 ; a 0-simplex a vertex determined by itself x[ ]1 ; and a 1-
simplex an edge determined by two vertices x x[ , ]1 2 . A simplicial complex (right box) is essentially a set of simplices, some of which are glued together along certain
faces. Combinatorially, a simplicial complex can be described as a set of vertices plus a collection of its subsets which represent simplices connecting those vertices.

Fig. 7. Persistence of topological features. (A–C) shows a coordination pattern represented by point clouds at three different scales , i.e. a union of balls centered at
each point with diameter = 0. 1 in (A), = 0. 2 in (B), or = 0. 5 in (C). Note the merging of connected components from (A) to (B), the emergence of loops in (B)
and their destruction in (C). The 0th and 1st persistent homology (connected components and loops respectively) of this point cloud are shown in (D,E) as barcodes,
and in (F,G) as persistence landscapes. In (D,E), each horizontal bar represents a connected component (D) or loop (E), whose left (right) end indicates its birth
(death) scale. Right arrow in (D) indicates that this component never dies (one connected component remains at any scale). (F,G) summarize the same information as
a sequence of landscape functions, k

( ), where k indicates that the landscape function is derived from the k-th persistent homology (i.e. 0th persistent homology for
connected components in F; 1st persistent homology for loops in G) and indicates how prominent the landscape is (small more prominent; only the five most
prominent landscape functions are shown).
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k, of Hk (e.g. in Fig. 6 right box, the simplicial complex has three
connected components and one loop, which gives = 30 and = 11 .
There are no higher-dimensional holes; therefore, = = 02 3 ). This
heuristic (and simplistic) description of homology is a reasonable de-
scription in low-dimensions.

Persistent homology keeps track of each independent k-dimensional
hole in the family of Rips complexes R i in Eq. (5), which may emerge at
any scale, throughout its life span across scales i, where < +0 i i 1
for any index <i P0 1:

+R X R X R X R X R X R X( ) ( ) ( ) ( ) ( ) ( )i i i P0 1 1 1 (5)

+C C C C C Ck
f

k
f

k
f

k
f

k k
i

i
i

i
i P0

0
1

1
1

1
1 (6)

Each complex is associated with a chain group Ck
i. The Rips complex at

a finer scale is included in that at a grosser scale, and this inclusion
induces a corresponding inclusion map between adjacent chain groups

+f C C:i
k k

i i 1 as in Eq. (6). Importantly, these inclusion maps associate
the holes in the complexes across scales. Each independent k-dimen-
sional hole can then be represented as an interval ( , )b d , where b is the
scale at which a hole emerges, i.e. its birth scale, and d is the scale at
which it is filled in, i.e. its death scale. The life span d b indicates
how persistent the hole is across scales (not to be confused with per-
sistence over time, e.g. metastable dwells). With this interval re-
presentation, we can visualize these k-th homological features across
scales as a barcode (Ghrist, 2007). Fig. 7D and E show the persistence of
generators of the 0th and 1st homology groups H0 and H1 respectively,
capturing connected components and loops across scales. The set of all
intervals, the barcode, constitutes a multiscale topological portrait of
the point cloud X . Using the software Perseus developed by Nanda
(2017), we compute two multiscale topological portraits, the 0th and
1st persistent homology, for reasons stated in Section 2.2, for each

segment X t( ) of a frequency-phase graph, as described in Section 2.3,
for = …t 2, 3, ,48.

2.5. Topological recurrence plot

To study the dynamics of metastable patterns, we need to construct
the recurrence plot of multiscale topological portraits. This requires us
to define a measure of distance between any two such portraits. In the
present study, we use persistence landscape distance as a metric, con-
sidering its low computation time and potential for statistical use
(Bubenik and Dłotko, 2017). Persistence landscapes (Bubenik, 2015)
essentially convert a barcode (Fig. 7D and E) to a sequence of piece-
wise-linear functions (Fig. 7F and G). The construction of persistence
landscapes requires two steps: (1) representing the persistence of each
topological feature as a tent function that rises from zero to peak during
the first half of its life and falls back to zero during the second half, and
(2) taking envelopes of those tent functions in a nested manner. More
specifically, let us consider a barcode of B bars, i.e. a set of birth-death
intervals ={( , )}b

i
d
i

i
B( ) ( )

1. The goal is to convert them into a sequence of
piecewise-linear landscape functions ={ }L( )

1. Intervals are first used to
construct a sequence of tent functions

=
+

+

( )

0 ( , )

,
2

2
,

i

b
i

d
i

b
i

b
i b

i
d
i

d
i b

i
d
i

d
i

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( )

(7)

for = …i B1, 2, , . Define ( )( ) to be the th largest value of ={ ( )}i i
B

1.
The smaller the , the more prominent the features captured by the

Fig. 8. Topological vs. pointwise recurrence plots of metastable dynamics. (A,B) shows the recurrence of connected components and loops respectively for the triadic
example of Fig. 1, where the color of each pixel indicates the topological distance between segments of the frequency-phase graph at time x and time y, as defined in
Eq. (8), i.e. D X x X y( ( ), ( ))0 for (A), D X x X y( ( ), ( ))1 for (B). Black triangles on top mark the time of topological transitions. They correspond very well with transitions
in the original relative phase dynamics (Fig. 1A) and its associated recurrence plot (Fig. 3A). (C) shows the pointwise recurrence plot of the triadic example, where
the color of each pixel reflects the distance between point clouds X x( ) and X y( ) as state vectors, as defined in Eq. (9), instead of their multiscale topological portraits.
Similar transitions also appear in (C) as in (A,B) though less sharp. (D–F) shows the corresponding recurrence plots for the eight-agent example of Fig. 2. In the
recurrence plot of connected components (D), two transitions are apparent, each of which lasts about 5 s (marked by black brackets). The onset of the first transition
(around 10 s) and the offset of the second (about 33 s) also stand out in the recurrence plot of loops (E), marked by black triangles. These features are not apparent in
the pointwise recurrence plot of the frequency-phase graph (F), or the recurrence of relative phase (Fig. 3B).
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landscape function ( ). For example, Fig. 7F, G show the first five
landscape functions computed from intervals in D, E respectively (the
infinite interval that appears in every barcode is ignored in the com-
putation, see Fig. 7D). Note that for each the sequence ( )( ) is de-
creasing, and L( ) is the smallest function that is not zero for all . Now
we can compare multiscale topological portraits as functions. We define
the distance between the kth-level persistent homology of two point
clouds X and X as the supremum norm of the difference between their
corresponding average landscape functions,

= =D X X( , ) ¯ ( ) ¯ ( ) sup| ¯ ( ) ¯ ( )|k k k k k (8)

where = =
¯ ( ) ( )k L

L
k

1
1

( ) , and ={ }k
L( )

1 and ={ }k
L( )

1 are the land-
scape functions of the kth-level persistence homology of X and X .

With a metric defined, we are now in a position to compute the
recurrence plot of a multiscale topological portrait, a topological recur-
rence plot, which is a distance matrix with components

=d D X t X t( ( ), ( ))i j k i j, for the kth persistent homology of segments X t( )
of a frequency-phase graph (Fig. 8A, B, D and E). The subdiagonal of
this matrix reflects the rate of change of multiscale topological portraits
as a function of time.

To provide a direct comparison between topological and non-to-
pological recurrence, we define a pointwise metric by treating each
segment of a frequency-phase graph, a point-cloud with M points in 3D,
as a state vector with M3 components,

=

…

…

…

+ +

+ +

d X t X t

x t x t x t x t
W x x W x x

x x x x

( ( ), ( ))

(( ) ( ), , ( ) ( ),
(2 ( ))

2
, , (2 ( ))

2
,

, , )

x i j

i j M i M j

M M M M

M M M M

1 1

1 1 2 2

2 1 2 1 3 3 (9)

for any two segments = =X t x( ) { }i m m
M

1 and = =X t x( ) { }j m m
M

1, where the
function W wraps its argument to the interval ( , ] by

=W z e( ) Arg( )iz and · is the L2-norm. This metric treats the move-
ment of each point independently, and an associated recurrence plot
may be called a pointwise recurrence plot. In contrast to the recurrence
plot of relative phase (e.g. Fig. 3), the pointwise recurrence plot of
segments of a frequency-phase graph is a more appropriate non-topo-
logical counterpart of the topological recurrence plot as defined above.
The difference between topological and pointwise recurrence plots di-
rectly demonstrates the value of multiscale topological analysis that is
not attributable to frequency-phase decomposition or inclusion of a
temporal neighborhood alone.

In the next section, we show how topological recurrence plots help
reveal transitions in the coordination dynamics between eight agents
(Fig. 2) that eluded traditional methods of visualization and analysis
(Figs. 2A and 3A). Example scripts for computing topological recur-
rence plots are provided online (github.com/mengsenz/TopoDy-
namics).

3. Applying topological recurrence to empirical data

3.1. Validation with simple dynamics

Before investigating the eight-agent example, we first validate this
method with the triadic example (Fig. 1), the dynamics of which we
already know (see Section 1.1). Fig. 8A and B shows the topological
recurrence plots of connected components (0th persistent homology
landscape) and loops (1st persistent homology landscape) respectively.
In the recurrence plot of connected components (Fig. 8A), three mo-
ments stand out against the background (marked by black triangles),
indicating sudden changes in connected components. These topological
changes successfully identify the escapes from three recurring all-in-
phase patterns in the original relative phase dynamics (steepened ma-
genta trajectory 13 between black bars in Fig. 1A; the same interrup-
tions in the coordination pattern can be seen in Fig. 3A). The recurrence
plot of loops (Fig. 8B) reveals a small transition around 10 s and a large

transition around 40 s (marked by black triangles) in terms of loops.
They capture the disturbances surrounding the first formation of the all-
inphase pattern and its eventual destruction (see oscillation of fre-
quency trajectories around 10 and 40 s in Fig. 1B). Taken together,
topological recurrence (Fig. 8A and B) is able to faithfully capture im-
portant transitions of coordination patterns observed in the triadic ex-
ample (Fig. 1), as much as the traditional recurrence plot of the relative
phase (Fig. 3A). For comparison, a pointwise recurrence plot of the
frequency-phase graph is shown in Fig. 8C, which also captures the
essential transitions but not as definitively as the topological recurrence
plots (Fig. 8A and B) or the recurrence plot of relative phases (Fig. 3A).
This indicates that the clarity present in the topological recurrence plots
(Fig. 8A and B) is not solely due to the use of the frequency-phase graph
(Section 2.3) instead of relative phases.

3.2. Topological recurrence plots reveal structures in complex coordination
patterns

Following the basic validation above, we applied the same analysis
to the eight-agent example from Fig. 2, where coordination patterns are
more complex and the transitions between them remain obscure under
traditional means of analysis. Here, the topological recurrence plots
(Fig. 8D–E) are strikingly structured, compared to the original dy-
namics (Fig. 2), the recurrence plot of relative phases (Fig. 3B) or the
pointwise recurrence plot of the frequency-phase graph (Fig. 8F). The
recurrence plot of connected components (Fig. 8D) shows a major
transition around 30 s and a minor one around 10 s (marked by black
brackets on top of Fig. 8D). The onset of the 10 s transition and the
offset of the 30 s transition are also highlighted by the transition of
loops (marked by triangles in Fig. 8E). Next we return to the original
relative phase and frequency dynamics (Fig. 9) to investigate what
underlies these topological transitions, with an emphasis on the tran-
sitions of connected components.

3.3. Topological transitions reflect collective change in original dynamics

We found that, indeed, transitions in the topological recurrence plot
detect meaningful changes in the original dynamic patterns. We focus
on the most prominent transition of connected components around 30 s
(Fig. 8D, right bracket). The corresponding original dynamics is shown
in Fig. 9, highlighted by a black rectangle around 30s. Right before this
transition, the ensemble was in a relatively stable configuration with
three frequency pairs (Fig. 9A, trajectories enclosed by black circles), a
lone wolf (agent 1, magenta trajectory on top in Fig. 9A), and a com-
muter oscillating between its neighbors (agent 4, yellow trajectory in
Fig. 9A). At the onset of the transition (28s), two pairs suddenly broke
up (3–2, 5–7), switched partners with others, eventually returning to
the original configuration at the offset of the transition (33 s). Im-
portantly, this transition is also reflected in the dynamics of the relative
phases (Fig. 9BC). In particular, the transition took exactly the time for
pair 3–2 (orange trajectory in Fig. 9B) to be destabilized from antiphase
and return to antiphase after wrapping around for one cycle, suggesting
a collective transition may be controlled by local dynamics. Im-
portantly, such a collective transition is only revealed by topological
recurrence, and not by traditional means of analysis.

The minor transition of connected components (10 s) marks a more
local event — the splitting of the higher frequency group (warm colors
Fig. 9A) in to a lone wolf (agent 1, magenta in Fig. 9A), a pair (3–2,
orange and red in A), and a commuter in between (yellow in A). The
transitions of loops (marked by triangles in Fig. 8E), on the other hand,
highlight the local disturbances accompanying these changes in co-
ordination patterns. For example, the transition of loops around 10s
(Fig. 8E, first triangle) reflects high amplitude oscillation in the fre-
quencies of agents 1 and 3 (magenta and orange trajectories in Fig. 2B
and Fig. S2B) before the sudden departure of agent 1.

Overall, topological recurrence plots reveal local and global
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transitions of coordination patterns in the data that elude traditional
methods. To have a sense of why non-topological recurrence is in-
sensitive to such information, we compare side by side the topological
rate of change (blue trajectory in Fig. 9D) and the pointwise rate of
change (yellow trajectory). We find that greater topological changes
(peaks of blue trajectory) generally do not require a large pointwise
change (e.g. yellow trajectory at 28 s), and conversely, large pointwise
changes (peaks of yellow trajectory) do not imply a large topological
change (e.g. blue trajectory at 9 s). In other words, topological recur-
rence captures some of the interdependency between the movement of
individual points in the point cloud that is irreducible to the aggregate
of the independently measured movements of each point. Such irre-
ducibility of certain topological properties may tap into the very nature
of collective transitions in multiscale coordinative structures.

4. Discussion

The present work introduces a multiscale topological approach to
understanding metastable coordination between many diverse agents.
We first gave a conceptual framework of how the study of metastable
phase coordination can be converted into a multiscale topological
analysis of frequency graphs. Under this conceptual framework, we
employed persistent homology as a natural analytical tool for such
multiscale topological problems. We further demonstrated for proof of
concept how topological recurrence plots helped uncover structures and
transitions in example trials of multiagent social coordination from

(Zhang et al., 2018), especially those that were elusive to traditional
means (e.g. contrast topological recurrence plots in Fig. 8D and E with
its traditional counterpart in Fig. 3B). In particular, an important to-
pological transition (major transition around 30 s in Figs. 8D and 9) was
discovered, showing how sudden, coordinated pattern switching can
occur across multiple local groups segregated in frequency. Taken to-
gether, the conceptual and computational tools developed here provide
a new perspective on the analyses of complex rhythmic patterns with
multiscale and metastable characteristics, an advance that has been
deemed to be very necessary (Tognoli and Kelso, 2014a, 2014b).

Such multiscale coordination dynamics figures prominently in the
brain (Tognoli and Kelso, 2014b). The brain is fundamentally a multi-
frequency device both in terms of neuronal firing rates and in terms of
rhythmic activities at larger scales (Kelso, 1995; Buzsáki et al., 2013;
Buzsáki and Draguhn, 2004). To understand how the brain, and its
innumerable elements, work as a single system, one must ask how
dynamical processes spanning a wide range of time scales coordinate
with each other to partake in higher-level organizations. The present
method, and the human experiment which it is based on (Zhang et al.,
2018), was designed with precisely this question in mind. Behavioral
data used in the present study are, in their raw form, a series of discrete
events (onsets of taps), a format not so different from the timing of
neuronal spikes. Therefore, translation of the present method to the
study of neuronal firing patterns is straightforward. With respect to
rhythmic activities such as those typically recorded using electro-
encephalography (EEG) and magnetoencephalography (MEG), wavelet

Fig. 9. Examining the dynamic relevance of topological transitions in the eight-agent example. (A–C) shows trajectories of frequency and relative phase from Fig. 2,
smoothed out by a 2 s moving average. (A) shows the frequency dynamics of all eight agents. (B) shows the dynamics of three slowly varying relative phases
(thickened trajectories in Fig. 2A), corresponding to three pairs of frequency trajectories enclosed by black circles in (A). (C) shows the dynamics of two fast varying
relative phases (among the thin trajectories in Fig. 2A), corresponding to relations between frequency trajectories connected by double arrows in (A). (D) shows the
rate of change of connected components (blue trajectory) and pointwise rate of change (yellow trajectory), which is the distance between two consecutive multiscale
topological portraits under the metric D0 (Eq. (8)) and dx (Eq. (9)) respectively. Both trajectories are normalized by mapping [min, max] [0, 1] for comparison. Two
transitional periods seen in Fig. 8D are highlighted with black backgrounds, bordered by adjacent peaks in the blue trajectory in (D). See text for interpretation.
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transform of signals may be used in lieu of frequency and phase tra-
jectories as in the frequency-phase graphs (Fig. S2). More generally, the
present work points to new conceptual and methodological directions
for characterizing multiscale dynamics of the intricate relations that
govern brain and behavior.

In addition to its utility in characterizing metastable rhythmic co-
ordination, a few important features of this topological approach may
prove advantageous in more general settings regarding coordination
phenomena in complex systems. First, a simplicial complex obtained as
a Rips complex associated to a point cloud is a purely relational, co-
ordinate-free representation of the structure of the point cloud, and
hence is invariant under rigid motions as is its homology. In the study of
coordination phenomena, relational quantities are essential (Kelso,
1995, 2012). These relational quantities and their evolution in a dy-
namic pattern may be conveniently described through the topology of
simplicial complexes. Second, topology is the mathematical discipline
that integrates local information into global information (Thom, 1975).
In multiagent coordination, the number of relational quantities multi-
plies, for example there are N N( 1)/2 dyadic relations between N
agents. These relational quantities constrain each other and form
higher-order structures which may not be discernible by examining
each quantity individually. Algebraic topology provides a mature set of
tools to build global pictures from such local (e.g. dyadic) relational
quantities. In the present work, the ability of topological portraits to
capture global properties is a key to detecting transitions in collective
patterns that are not just an accumulation of pointwise changes (see
Fig. 9D and corresponding text). In other words, topological portraits
capture emergent features in the collective dynamics that are not re-
ducible to the sum of its parts, tapping into a key feature of complex
systems (Holland, 1998; Wolfram, 2002; Miller and Page, 2009; Kelso,
2009). Last but not least, persistent homology (Edelsbrunner et al.,
2002; Zomorodian and Carlsson, 2005) provides a well-developed
mathematical framework to describe multiscale structures. The coex-
istence of multiple relevant scales happens to be a central characteristic
of complex systems (from the biochemical to the social), making
meaningful methods of multiscale analyses highly valuable (e.g. Simon,
1977; Oltvai and Barabási, 2002; Bar-Yam, 2004; Sales-Pardo et al.,
2007; Vespignani, 2012; Sekara et al., 2016; Aguilera, 2018). For
computing persistent homology of complex systems of larger scales,
Rips complexes as employed in the present work may become too large
to handle, since they are built on all data points. In contrast, witness
complexes (De Silva and Carlsson, 2004) can be built on a small set of
chosen landmarks. Constructing witness complexes in place of Rips
complexes is thus more efficient and practical for large-scale analysis.
In short, the topological approach outlined in the present work may
serve as a prototype for more general analyses of complex systems.

Over the past decade, computational topology has gradually at-
tracted the attention of biologists as a set of new tools to shed light on
geometrical or topological structures in complex, high-dimensional
data that were difficult to quantify or visualize by traditional means.
For example, various types of topological portraits (not limited to
persistent homology) have been used to study the shape of viral evo-
lutionary tracks (Chan et al., 2013), RNA folding pathways (Yao et al.,
2009), collective encoding of global spatial organization by groups of
neurons (Curto and Itskov, 2008; Dabaghian et al., 2012) and the
geometry of neural dynamics (Petri et al., 2014; Giusti et al., 2015;
Saggar et al., 2018) (see Giusti et al., 2016 for more applications in
neuroscience). In contrast to these studies, where topological portraits
were the primary subject of analyses and interpretation, here we fo-
cused on the change of topological portraits without direct interpreta-
tion of the portraits per se. Given the time of topological changes (e.g.
brackets in Fig. 8D), we returned to the original dynamics to verify that
those topological changes truly reflect transitions between different
phase coordination patterns. There are both technical and theoretical
reasons to proceed in this fashion. Technically, the direct interpretation
of a topological portrait may be affected by how the original data were

sampled and preprocessed (e.g. Section 2.3). But it is much less am-
biguous to interpret changes in the topological portrait: If we see a
change in the topological portrait, there must be a corresponding
change in the coordination pattern; and if the change in the coordina-
tion pattern is sufficiently small, the change in the topological portrait
is also small, due to the fact that the topological portraits are stable
with respect to the metric defined in Eq. (8) (Bubenik, 2015). On the
theoretical side, studying transitions is a key to understanding non-
linear dynamical processes; and for reasons shown in Section 2.2, one
would expect changes in the multiscale topological portrait during
transitions within and between metastable patterns. Furthermore, to-
pological features during a transition per se may be highly nongeneric
compared to what happens before or after a transition, and therefore
stand out in the topological recurrence plot (e.g. Fig. 8D). For these
reasons, the current method directly addresses dynamically relevant
topological changes in the original time series, without interpreting the
topological portraits as an intermediate step. At this stage of develop-
ment of a multiscale topological approach to complex collective pat-
terns, it helps to check whether one's system of measurement really
captures the dynamic features of interest.

The present approach, however, does not exclude a direct analysis
and interpretation of the topological portraits. Indeed, the motivation
behind using persistent landscapes is that they are conducive to further
statistical analyses. Before that we need to know more concretely which
quantities are relevant to the kind of dynamic features of interest. For
example, does the magnitude of change in connected components re-
flect in general how global a transition is? Can we accurately classify
different types of transitions by taking into account more statistical
features of the landscape functions? To deliver valid answers, potential
methods may be validated based on transitions whose classification we
know a priori, e.g. simulated transitions based on mathematical models
of biological coordination (e.g. Zhang et al. (2019) for a model devel-
oped based on the Human Firefly experiment (Zhang et al., 2018)).

To conclude, we presented a multiscale topological approach to
understanding the metastable coordination dynamics involving mul-
tiple agents. We demonstrated by analysis of examples of dynamics and
theoretical discussions that this method possesses great potential for
characterizing complex, multiscale dynamic patterns. Further devel-
opments using simulated time series are desirable to move toward a
systematic method of classifying phase transitions in complex collective
dynamics, for which this work provides a prototype.
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